2-2.2晶体生长理论部分全解
- 格式:ppt
- 大小:1.26 MB
- 文档页数:47
化学材料晶体生长过程动力学分析化学材料的晶体生长过程是一种多步骤的动力学过程,其中包括原子或离子在晶体中的形成,以及晶体的长大和形状的转变。
这个过程的研究对于材料学、物理学以及工程学都具有重要意义。
在本文中,我们将介绍化学材料晶体生长的基本原理和动力学分析方法。
1. 晶体生长的动力学基础晶体的生长主要是由两个反应所组成的:核形成和晶体的长大。
晶体的成长速率取决于这两个反应。
核形成是指在溶液中形成一个晶核或一组晶核,这个过程需要热力学上的能量,即自由能。
自由能是物质系统的能量,但它并不只是由内部能量所组成,它还包括了熵和势能。
熵是无序度的度量,势能是由电荷、化学键和分子之间的相互作用所定义的。
晶核的形成需要在相变温度以下的条件下突破自由能障碍,才能促使化学物质形成晶体。
如果晶核数目较少,那么化学物质便容易形成晶体;如果晶核数目较多,成长就会很难受阻,甚至会停滞。
晶体长大是指晶体中原子或离子的增加。
众所周知,晶体中原子和分子之间的相互作用能力非常强,所以晶体的成长速率也很快。
晶体生长过程要么是源于杂质离子的不断影响,要么是由离子和原子的迁移以及原子之间的化学键长成。
晶体的成长与周围环境的温度、溶液性质、晶体表面形态等因素都有关系。
2. 动力学分析方法动力学分析涉及到了越来越多的技术,涉及到了从原子和分子相互作用到宏观结构的范围内的多个时间和空间尺度。
在本文中,我们将介绍几个通常用于分析晶体生长的动力学方法。
2.1 蒸汽沉积蒸汽沉积是一种常用的晶体生长方法,其基本原理是将两种不同元素的气态化合物混合在一起,形成一种溶液,然后把溶液补充到晶体生长的相应区域。
在这个过程中,溶液中的化学成分被气态化,在晶体表面表现出与晶体表面一致的原子结构。
2.2 原子层沉积原子层沉积是指用蒸汽或气体沉积分子的单层,并在非晶相或非晶相前进行热处理,使其有序排列。
这种方法可以用于制造超薄的电子和光学器件,也可用于晶体生长。
2.3 溶胶-凝胶法溶胶-凝胶法是一种将固体粉末溶解在水或有机溶剂中,形成一种胶体再通过烧结或干燥的方法形成二氧化硅等材料的方法,也可以作为晶体的前体。
综述晶体生长理论的发展现状1 前言晶体生长理论是用以阐明晶体生长这一物理化学过程。
形成晶体的母相可以是气相、液相或固相;母相可以是单一组元的纯材料,也可以是包含其他组元的溶液或化合物。
生长过程可以在自然界中实现,如冰雪的结晶和矿石的形成;也可以在人工控制的条件下实现,如各种技术单晶体的培育和化学工业中的结晶等。
近几十年来,随着基础学科(如物理学、化学)和制备技术的不断进步,晶体生长理论研究无论是研究手段、研究对象,还是研究层次都得到了很快的发展,已经成为一门独立的分支学科。
它从最初的晶体结构和生长形态研究、经典的热力学分析发展到在原子分子层次上研究生长界面和附加区域熔体结构,质、热输运和界面反应问题,形成了许多理论或理论模型。
当然,由于晶体生长技术和方法的多样性和生长过程的复杂性,目前晶体生长理论研究与晶体生长实践仍有相当的距离,人们对晶体生长过程的理解有待于进一步的深化。
可以预言,未来晶体生长理论研究必将有更大的发展[1]。
2 晶体生长理论的综述自从1669年丹麦学者斯蒂诺(N.Steno)开始晶体生长理论的启蒙工作以来[2] ,晶体生长理论研究获得了很大的发展,形成了包括晶体成核理论、输运理论、界面稳定性理论、晶体平衡形态理论、界面结构理论、界面动力学理论和负离子配位多面体模型的体系。
这些理论在某些晶体生长实践中得到了应用,起了一定的指导作用。
本文主要对晶体平衡形态理论、界面生长理论、PBC 理论、晶体逆向生长等理论作简要的介绍。
2.1 晶体平衡形态理论晶体具有特定的生长习性,即晶体生长外形表现为一定几何形状的凸多面体,为了解释这些现象,晶体生长理论研究者从晶体内部结构和热力学分析出发,先后提出了Bravais法则、Gibbs-Wulff晶体生长定律、Frank运动学理论。
2.1.1Bravais 法则早在1866年,A.Bravais首先从晶体的面网密度出发,提出了晶体的最终外形应为面网密度最大的晶面所包围,晶面的法线方向生长速率R 反比于面间距,生长速率快的晶面族在晶体最终形态中消失[3]。