半导体的带间光吸收谱曲线.
- 格式:pdf
- 大小:221.28 KB
- 文档页数:4
半导体材料光学带隙的计算计算半导体材料的光学带隙有多种方法,下面将介绍几种常用的方法:1.线性光学吸收谱法(LOA)线性光学吸收谱法是通过测量半导体材料在紫外-可见光范围内的吸收光谱来计算光学带隙。
这种方法基于光与材料中电子的相互作用,根据材料吸收光的能量与光学带隙之间的关系来计算带隙。
这种方法相对简单,可以得到相对准确的结果,但只适用于直接带隙材料。
2.激发态光吸收法(ESA)激发态光吸收法是通过测量材料在光激发下的光吸收谱来计算光学带隙。
这种方法适用于间接带隙材料,它考虑了光激发引起的电子能级变化。
通常,材料在低温下通过光激发形成激发态,然后测量其吸收光谱来计算带隙。
这种方法比较复杂,需要进行光谱拟合和数据处理,但可以得到更准确的结果。
3.电子能谱方法电子能谱方法是通过计算材料中电子的能量态密度来计算光学带隙。
这种方法通常使用基于密度泛函理论(Density Functional Theory,DFT)的第一性原理计算方法。
在计算中,需要考虑电子间相互作用、自旋-轨道耦合等因素。
由于计算的复杂性和计算结果的依赖于近似方法,这种方法通常用于研究特殊材料的带隙特性。
4.傅里叶变换红外光谱法(FTIR)傅里叶变换红外光谱法是一种通过测量半导体材料在红外光谱范围内的光吸收谱来计算光学带隙的方法。
这种方法适用于间接带隙材料,可以考虑光与材料中声子的相互作用,更准确地计算带隙。
总结来说,计算半导体材料的光学带隙需要根据具体材料的特性选择适合的方法。
实验方法包括线性光学吸收谱法和激发态光吸收法,理论方法包括电子能谱方法和傅里叶变换红外光谱法。
各种方法都有其适用的范围和计算复杂度,需要根据研究目的和材料特点选择合适的方法进行计算。
半导体材料能带测试及计算对于半导体,是指常温下导电性能介于导体与绝缘体之间的材料,其具有一定的带隙(E g)。
通常对半导体材料而言,采用合适的光激发能够激发价带(VB)的电子激发到导带(CB),产生电子与空穴对。
图1. 半导体的带隙结构示意图。
在研究中,结构决定性能,对半导体的能带结构测试十分关键。
通过对半导体的结构进行表征,可以通过其电子能带结构对其光电性能进行解析。
对于半导体的能带结构进行测试及分析,通常应用的方法有以下几种(如图2):1.紫外可见漫反射测试及计算带隙E g;2.VB XPS测得价带位置(E v);3.SRPES测得E f、E v以及缺陷态位置;4.通过测试Mott-Schottky曲线得到平带电势;5.通过电负性计算得到能带位置.图2. 半导体的带隙结构常见测试方式。
1.紫外可见漫反射测试及计算带隙紫外可见漫反射测试2.制样:背景测试制样:往图3左图所示的样品槽中加入适量的BaSO4粉末(由于BaSO4粉末几乎对光没有吸收,可做背景测试),然后用盖玻片将BaSO4粉末压实,使得BaSO4粉末填充整个样品槽,并压成一个平面,不能有凸出和凹陷,否者会影响测试结果。
样品测试制样:若样品较多足以填充样品槽,可以直接将样品填充样品槽并用盖玻片压平;若样品测试不够填充样品槽,可与BaSO4粉末混合,制成一系列等质量分数的样品,填充样品槽并用盖玻片压平。
图3. 紫外可见漫反射测试中的制样过程图。
1.测试:用积分球进行测试紫外可见漫反射(UV-Vis DRS),采用背景测试样(BaSO4粉末)测试背景基线(选择R%模式),以其为background测试基线,然后将样品放入到样品卡槽中进行测试,得到紫外可见漫反射光谱。
测试完一个样品后,重新制样,继续进行测试。
•测试数据处理数据的处理主要有两种方法:截线法和Tauc plot法。
截线法的基本原理是认为半导体的带边波长(λg)决定于禁带宽度E g。
根据紫外-可见光谱计算半导体能带Eg光学吸收系数满足方程:α=(A/hν)(hν-Eg)1/2,其中 A 是比例常数,hν是光子能量,Eg 是ZnO的能隙。
Eg可以通过画(αhν)2与hν的曲线,然后把线性部分延长到α=0得出。
这些数据先用excel计算出来,再导入origin画出曲线图,然后做切线,切线与和横坐标的交点数值就是禁带宽度在origin中做曲线的切线的话~那个切点是怎么确定的下一个画切线的插件targent,它会自动画,切点选一个最陡峭的点1.薄膜:需要的数据:薄膜厚度d,透过谱T%,并且还要知道半导体是直接还是间接型。
首先需要求吸收系数(absorption coefficiency, a)a=-ln(T%)/dAα=dhv的计算在origin里进行,大概可以使用hv=1240/(wavelength(nm))得到间接半导体:纵坐标为(ahv)^2,横坐标为hv直接半导体:纵坐标为(ahv)^(1/2),横坐标为hv最后,做出曲线的切线(这方面我是自己拉一条直线),与横轴的交点就是Eg。
2.粉体:需要的数据:粉体的漫反射谱Rx。
同样也需要换算成吸收系数,使用a=(1-Rx)2/2Rx (这个就是Kubelka-Munk Function)。
其他的就是按照薄膜同样的方法进行了。
当然,这些方法都是近似的,其中还会存在粉体颗粒对光的散射,薄膜岛状结构对光的散射而对最后结果产生的误差,所以,在研究化学和材料方面可以作为一定知道的数据。
方法1:利用紫外可见漫反射测量中的吸光度与波长数据作图,利用截线法做出吸收波长阈值λg(nm),利用公式Eg=1240/λg (eV) 计算禁带宽度。
方法2:利用(Ahν)2 对hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。
也可利用(Ahν)0.5对hν做图,利用直线部分外推至横坐标交点,即为禁带宽度值。
前者为间接半导体禁带宽度值,后者为直接半导体禁带宽度值。
第五章半导体中的光辐射和光吸收1. 名词解释:带间复合、杂质能级复合、激子复合、等电子陷阱复合、表面复合。
带间复合:在直接带隙的半导体材料中,位于导带底的一个电子向下跃迁,同位于价带顶的一个空穴复合,产生一个光子,其能量大小正好等于半导体材料E。
的禁带宽度g浅杂质能级复合:杂质能级有深有浅,那些位置距离导带底或价带顶很近的浅杂质能级,能与价带之间和导带之间的载流子复合为边缘发射,其光子能量总E小。
比禁带宽度g激子复合:在某些情况下,晶体中的电子和空穴可以稳定地结合在一起,形成一个中性的“准粒子”,作为一个整体存在,即“激子”。
在一定条件下,这些激子中的电子和空穴复合发光,而且效率可以相当高,其复合产生的光子能量小E。
于禁带宽度g等电子陷阱复合:由于等电子杂质的电负性和原子半径与基质原子不同,产生了一个势场,产生由核心力引起的短程作用势,从而形成载流子的束缚态,即陷阱能级,可以俘获电子或空穴,形成等电子陷阱上的束缚激子。
由于它们是局域化的,根据测不准关系,它们在动量空间的波函数相当弥散,电子和空穴的波函数有大量交叠,因而能实现准直接跃迁,从而使辐射复合几率显著提高。
表面复合:晶体表面的晶格中断,产生悬链,能够产生高浓度的深的或浅的能级,它们可以充当复合中心。
通过表面的跃迁连续进行表面复合,不会产生光子,因而是非辐射复合。
2. . 什么叫俄歇复合,俄歇复合速率与哪些因素有关?为什么长波长的InGaAsP 等材料的俄歇复合比短波长材料严重?为什么俄歇复合影响器件的J th 、温度稳定性和可靠性? 解析:● 俄歇效应是一个有三粒子参与、涉及四个能级的非辐射复合的效应。
在半导体中,电子与空穴复合时,把能量或者动量通过碰撞转移给第三个粒子跃迁到更高能态,并与晶格反复碰撞后失去能量。
这种复合过程叫俄歇复合.整个过程中能量守恒,动量也守恒。
●半导体材料中带间俄歇复合有很多种,我们主要考虑CCHC 过程(两个导带电子与一个重空穴)和CHHS 过程(一个导带电子和两个重空穴)。
半导体的带间光吸收谱曲线
Xie Meng-xian.(电子科大,成都市)
(1)光吸收系数:
半导体吸收光的机理主要有带间跃迁吸收(本征吸收)、载流子吸收、晶格振动吸收等。
吸收光的强弱常常采用描述光在半导体中衰减快慢的参量——吸收系数α来表示;若入射光强为I,光进入半导体中的距离为x,则定义:
吸收系数的单位是cm-1。
(2)带间光吸收谱曲线的特点:
对于Si和GaAs的带间跃迁的光吸收,测得其吸收系数a与光子能量hν的关系如图1所示。
这种带间光吸收谱曲线的特点是:①吸收系数随光子能量而上升;②各种半导体都存在一个吸收光子能量的下限(或者光吸收长波限——截止波长),并且该能量下限随着温度的升高而减小(即截止波长增长);③GaAs的光吸收谱曲线比Si的陡峭。
为什么半导体的带间光吸收谱曲线具有以上一些特点呢?——与半导体的能带结构有关。
(3)对带间光吸收谱曲线的简单说明:
①因为半导体的带间光吸收是由于价带电子跃迁到导带所引起的,则光吸收系数与价带和导带的能态密度有关。
而在价带和导带中的能态密度分布较复杂(在自由电子、球形等能面近似下,能态密度与能量是亚抛物线关系),不过在价带顶和导带底附近的能态密度一般都很小,因此,发生在价带顶和导带底附近之间跃迁的吸收系数也就都很小;随着能量的升高,能态密度增大,故吸收系数就相应地增大,从而使得吸收谱曲线随光子能量而上升。
但是由于实际半导体能带中能态密度分布函数的复杂性,而且电子吸收光的跃迁还必须符合能量守恒、动量守恒和量子力学的跃迁规则——选择定则,所以就导致半导体光吸收谱曲线变得很复杂,可能会出现如图1所示的台阶和多个峰值或谷值。
②因为价电子要能够从价带跃迁到导带,至少应该吸收禁带宽度Eg大小的能量,这样才能符合能量守恒规律,所以就存在一个最小的光吸收能量——光子能量的下限,该能量下限也就对应于光吸收的长波限——截止波长λg:
这时,吸收系数与光子能量hν和禁带宽度Eg之间的函数关系可以表示为
式中的常数γ等于2(容许跃迁)或者3(禁戒跃迁)。
可以见到:a)这种间接跃迁的实现需要第三者(声子)参与,因此这种光吸收的效率要低于直接跃迁的光吸收,所以光吸收谱曲线的上升速度较慢(即不太陡峭);b)因为声子的参与,则这时的能量守恒规律即给出:最小的光吸收能量(相应的)并不严格地对应于禁带宽度(其间多出了一个声子能量Ep),因此光吸收的截止波长并不像直接带隙半导体的那么明显。
不过,由于声子能量非常小(Ep<0.1eV),所以最小的光吸收能量往往比较接近于禁带宽度。
(4)参考曲线:一些半导体的带间光吸收谱曲线见图2。
Si和Ge是间接跃迁能带结构的半导体,它们具有类似型式的光吸收谱;而GaAs和InP等则是直接跃迁能带结构的半导体,它们的光吸收谱曲线都很陡峭。
此外,半导体中载流子的光吸收谱曲线一般都位于带间光吸收谱曲线的截止波长以外。
因为载流子光吸收是关系到在能带内部的各个能级之间的跃迁,所以吸收的光子能量更小,因此吸收的光波长更长。
【注】带间光跃迁的量子力学规则:
价电子从价带到导带的光跃迁除了考虑各个能带的能态密度的分布形式以外,还需要考虑初态和终态的性质。
这就是说,按照量子力学的跃迁理论,电子的跃迁还需要遵从一定的规律——选择定则(selection rule),即只有在跃迁前后能够保持动量几乎不变的那些跃迁才是可能的。
对于带间光跃迁,满足选择定则的跃迁有两种:容许跃迁(allowed transition)和禁戒跃迁(forbidden transition)。
这是由于电子在跃迁时的初态和终态的奇偶性需要符合一定的要求,才能吸收光而发生跃迁。
例如电子从s态跃迁到p 态是可以的——容许跃迁,但是从s态跃迁到s态却是不可以的——禁戒跃迁。
这就意味着,波函数奇偶性不同的状态之间的跃迁是容许跃迁,波函数奇偶性相同的状态之间的跃迁是禁戒跃迁。
然而,禁戒跃迁并不是一点也不会发生的一种跃迁过程,实际上禁戒跃迁也是一种吸收光的跃迁形式,只是跃迁几率非常小——远小于容许跃迁。
之所以禁戒跃迁也可以吸收光,是由于能带之间的相互作用将使得电子状态的奇偶性会有一点点改变,所以奇偶性相同的电子状态之间,也有可能发生一定几率的光吸收跃迁——禁戒跃迁。