数控加工刀具轨迹规划
- 格式:doc
- 大小:1.04 MB
- 文档页数:5
数控车削加工刀具轨迹自动生成的算法本文针对数控车削加工的特点,结合被加工零件的特征,提出了数控车削加工刀具轨迹自动生成的算法。
该算法在实际应用中,取得了理想的效果。
1 零件图的预处理根据数控车削加工的特点,零件的加工工艺分为:孔加工(包括打中心孔),外(内)表面加工、退刀槽及螺纹加工,根据表面质量的要求,又分为粗加工、半精加工和精加工等工艺。
数控车削加工刀具轨迹的规划,重点外(内)表面粗加工时刀具轨迹的规划处理。
对退刀槽、螺纹样的零件特征在进行表面粗加工时将其用表面代替,如图1。
数控加工中为减少多次安装带来的安装误差,一般采用一次装夹,对那些需要调头加工的部位则采取右偏刀反向走刀切削。
此外,对端面的加工有时选取向下的切削方向。
因此加工时的切削方向分为向左、向右和向下的切削方向。
图1对于倒角和倒圆角等工艺的处理在算法上将其作为表面处理。
对反向走刀切削时的刀具轨迹规划的算法与正向切削时类似,对内表面加工时刀具轨迹规划的算法与外表面切削时也相类似。
另外对精加工时的刀具轨迹规划,以及退刀槽和螺纹加工的刀具轨迹规划处理也较为容易。
一般,为减少刀具轨迹生成算法的复杂性,在刀具轨迹生成前对零件进行刀具干涉处理(刀具干涉处理的算法另文讨论)。
本文仅讨论正向切削外表面时粗加工刀具轨迹生成的算法。
2 刀具轨迹生成的算法图2由于粗加工刀具轨迹规划是从毛坯开始的,因此生成刀具轨迹时必须考虑毛坯的形状,并且随着工步的不同,其毛坯的形状也是不同的,此即工艺毛坯。
由于在轨迹生成前已经进行过刀具干涉的处理,所在刀具轨迹生成时主要考虑的是零件图形的特征。
经过零件图的预处理后,零件图形是由直线和圆弧所构成的连续表面,其中的关键是对图形中凹槽的识别和处理。
如图2所示,零件图形经过处理后,其粗加工的外表面轮廓为ABCDEPFGHIQJKM,经刀具切削方向为左时干涉处理后,其轮廊为ABCDPEFGHQJKM,其阴影部分为欠切削部分,在下一工步加工时,反向走刀切削时的刀具的起点分别为P点和Q点,通过反向向右走切切除其残留部分,从而形成所要求的零件轮廓QIH和PED。
数控加工技术专业学习中的刀具与刀具路径规划数控加工技术是现代制造业中的重要一环,而刀具与刀具路径规划是数控加工技术中的关键环节。
刀具是数控加工中最常用的工具之一,它直接影响着加工的质量和效率。
刀具路径规划则是指在数控加工过程中,通过合理的路径规划来控制刀具的运动轨迹,以实现对工件的加工。
本文将从刀具的选择与使用、刀具路径规划的原则与方法以及刀具与刀具路径规划在数控加工中的应用等方面进行论述。
首先,刀具的选择与使用是数控加工技术中不可忽视的重要环节。
在数控加工中,刀具的选择应根据工件的材料、形状和加工要求等因素进行合理的选择。
不同材料的工件需要使用不同材质、不同刃型的刀具,以保证加工的效果。
同时,刀具的使用寿命也是需要考虑的因素之一。
合理的刀具使用可以延长刀具的寿命,减少更换刀具的频率,提高生产效率。
其次,刀具路径规划是数控加工中的关键环节。
刀具路径规划的目标是通过合理的路径规划来控制刀具的运动轨迹,以实现对工件的加工。
在刀具路径规划中,需要考虑的因素有很多,如加工过程中的切削力、切削温度、切削速度等。
合理的刀具路径规划可以减少切削力和切削温度,提高加工精度和表面质量。
刀具路径规划的原则主要包括以下几点:首先,要尽量减少刀具的空行程,即在切削和非切削过程中,刀具的移动距离应尽量减少,以提高加工效率。
其次,要避免刀具与工件的干涉,即在刀具路径规划中,要避免刀具与工件之间的干涉,以防止加工出现误差。
此外,还要考虑切削力和切削温度等因素,以保证加工的质量。
在刀具路径规划中,有多种方法可以实现合理的路径规划。
其中,最常用的方法是刀具半径补偿。
刀具半径补偿是通过在刀具路径规划中对刀具半径进行补偿,来实现对工件的精确加工。
通过刀具半径补偿,可以减少切削力和切削温度,提高加工的精度和效率。
此外,还有其他一些方法,如刀具轨迹优化、刀具轨迹平滑等,也可以用于刀具路径规划中。
刀具与刀具路径规划在数控加工中有着广泛的应用。
五轴联动数控加工中的刀具轨迹控制算法五轴联动数控加工是一种高精度、高效率的加工方式,可以实现对复杂曲面的加工。
在五轴联动数控加工中,刀具轨迹控制算法起着至关重要的作用,决定了加工精度和效率。
本文将介绍几种常见的刀具轨迹控制算法,并对其原理和应用进行详细阐述。
1. 五轴联动数控加工概述五轴联动数控加工是指在数控加工机床上,通过同时控制五个坐标轴的运动,实现对工件的加工。
相比于传统的三轴加工,五轴联动可以更加灵活地加工复杂曲面,提高加工质量和效率。
2. 刀具轨迹控制算法的作用刀具轨迹控制算法是五轴联动数控加工中的关键技术之一。
它可以根据工件的三维模型和加工要求,计算出刀具在加工过程中的运动轨迹,从而实现精确的加工。
刀具轨迹控制算法的好坏直接影响加工精度和效率。
3. 刀具轨迹控制算法的分类刀具轨迹控制算法可以分为两类:离散点算法和曲线插补算法。
离散点算法是指将工件曲面离散化为一系列离散点,然后通过逐点加工来实现曲面加工。
常见的离散点算法有直线连接法、圆心法和切点法等。
这些算法简单直观,适用于加工简单曲面。
曲线插补算法是指根据工件的曲线方程和刀具半径,通过插补计算出刀具的运动轨迹。
常见的曲线插补算法有圆弧插补法、曲线插补法和样条插补法等。
这些算法可以实现对复杂曲面的高精度加工。
4. 圆弧插补算法圆弧插补算法是五轴联动数控加工中最常用的一种刀具轨迹控制算法。
它通过计算刀具半径和工件曲线的切向方向,确定刀具的圆弧插补路径。
圆弧插补算法具有计算简单、加工效率高的优点,适用于多数加工场景。
5. 曲线插补算法曲线插补算法是一种更加精细的刀具轨迹控制算法,可以实现对复杂曲面的高精度加工。
曲线插补算法通过计算刀具在曲线上的切向方向和曲率,确定刀具的插补路径。
与圆弧插补算法相比,曲线插补算法需要更复杂的计算和控制,但可以实现更高的加工精度。
6. 样条插补算法样条插补算法是一种基于数学样条曲线的刀具轨迹控制算法。
它通过计算曲面上的样条曲线,将刀具的运动路径进行插补。
数控机床技术中的加工路径规划与优化数控机床技术在现代制造领域中扮演着重要的角色。
而在数控机床的加工过程中,加工路径规划与优化是其中至关重要的一环。
本文将从加工路径规划与优化的概念、方法和应用方面进行阐述,以期对读者深入了解数控机床技术的加工路径规划与优化提供帮助。
加工路径规划是指在数控机床加工过程中,确定加工轨迹和顺序的过程。
一个合理的加工路径规划可以最大限度地提高加工效率和质量,减少加工成本和时间。
加工路径规划主要包括切削路径规划和刀具轨迹规划两个方面。
切削路径规划是指确定加工曲线的过程。
常用的切削路径规划方法有直线插补、圆弧插补和曲线插补等。
直线插补是在直线段上进行加工,对于简单的平面加工来说效果较好。
圆弧插补则适用于复杂曲面加工,可以通过插值算法进行计算。
曲线插补是在非直线和非圆弧部分进行加工,可以通过曲线方程进行计算。
选择合适的插补方法和加工参数可以进一步提高加工效率和质量。
刀具轨迹规划是指确定刀具的轨迹和顺序的过程。
刀具轨迹的选择和优化与加工效率和质量密切相关。
一般情况下,刀具轨迹选择时要考虑到切削力的平衡以及尽量减少换刀次数。
而在刀具轨迹优化方面,常用的方法有最短路径算法和遗传算法等。
最短路径算法是通过寻找最短路径来优化刀具轨迹,可以减少刀具的行程时间。
遗传算法则是模拟生物进化过程,通过迭代计算来寻找最优的刀具轨迹。
刀具轨迹的优化可以进一步提高加工效率和质量,减少加工成本和时间。
加工路径规划与优化在数控机床技术中的应用非常广泛。
首先,在汽车制造和航空航天等大型工件的加工过程中,合理的加工路径规划和优化可以提高加工效率和质量,降低成本和时间。
其次,在微细加工领域,加工路径的精确规划和优化对于保证加工精度和表面品质至关重要。
此外,在多通道数控机床中,加工路径的合理规划和优化可以实现多通道的同步甚至互补运动,提高加工效率和灵活性。
总之,加工路径规划与优化是数控机床技术中不可或缺的一部分。
合理的加工路径规划和优化可以提高加工效率和质量,降低成本和时间。
数控加工中的边界特征提取与刀具轨迹规划随着科技的进步和制造业的发展,数控加工已经成为现代工业中不可或缺的一部分。
在数控加工中,边界特征提取和刀具轨迹规划是两个重要的环节,对于加工质量和效率具有重要影响。
边界特征提取是指在数控加工中,从设计模型中提取出需要进行加工的特征边界。
这些特征边界可以是直线、曲线、圆弧等形状,也可以是复杂的曲面。
边界特征提取的目的是将设计模型转化为数控机床可以理解和加工的形式。
在传统的加工中,工人需要根据设计图纸进行手工测量和标记,然后根据标记进行加工。
而在数控加工中,边界特征提取可以通过计算机软件自动完成,大大提高了加工的效率。
在边界特征提取的过程中,常用的方法包括几何特征提取和曲线拟合。
几何特征提取是通过计算机算法,从设计模型中提取出直线、曲线等基本几何元素。
曲线拟合则是将设计模型中的复杂曲线拟合成一系列简单的曲线段。
这些方法可以根据设计模型的不同特点进行选择和组合,以提取出最准确的边界特征。
在边界特征提取完成后,接下来就是刀具轨迹规划。
刀具轨迹规划是指确定刀具在加工过程中的运动轨迹,以保证加工的准确性和效率。
在数控加工中,刀具轨迹规划需要考虑多个因素,包括切削力、切削速度、切削深度等。
同时,还需要考虑加工过程中的约束条件,如刀具与工件的碰撞避免和刀具路径的平滑性。
刀具轨迹规划的方法有很多种,常用的包括直线插补、圆弧插补和曲线插补等。
直线插补是指刀具沿直线路径进行加工,适用于直线边界特征。
圆弧插补则是刀具沿圆弧路径进行加工,适用于圆弧边界特征。
曲线插补是将复杂的曲线边界特征转化为一系列简单的直线和圆弧插补,以实现加工。
这些方法可以根据加工要求和机床的性能进行选择和优化,以达到最佳的加工效果。
除了边界特征提取和刀具轨迹规划,数控加工中还有其他一些重要的环节。
例如,切削参数的选择和刀具路径的优化。
切削参数的选择包括切削速度、进给速度和切削深度等参数的确定。
刀具路径的优化则是通过计算机算法,对刀具路径进行优化,以减少加工时间和提高加工质量。
在数控加工过程中,工艺编制的一项重要内容就是刀具路径的规划。
所谓刀具路径,就是指刀具相对工件运动的轨迹,其规划的目的在于如何更好地回避刀具与工件的干涉。
路径规划是否合理,都将直接影响数控加工的精度和效率。
为此,技术人员可以通过优化刀具形状和优化刀具轨迹算法这两种方法来实现。
优化刀具形状:数控加工如果刀具形状不同,其干涉部位和干涉判断就会有所区别。
所以,对刀具形状及其切削部位的分布进行合理优化,就可以在很大程度上避免刀具的干涉现象。
在对复杂工件,尤其是结构复杂的组合模具进行加工时,为了避免刀具与工件发生干涉,保证切削质量和效率,选择不同形状的刀具并优化刀具形状,就显得尤为重要了。
举例来说,球头刀之所以成为五轴数控加工中心上广泛采用的切削刀具,就是因为其具有良好的自适应能力,且对过切干涉可以进行快速检查,并作出及时应对。
但是,这类刀具也尤其缺点,那就是各个不同切削位置的切削速度不同,而且相差很大,其球头中心附近的切削速度接近于零。
所以,遇到曲率较小的曲面等,球头刀的加工效果很不理想。
另外,球头刀的价格比较安规,修整过程也十分复杂。
而非球头刀具虽然不具备过切干涉检查能力,但通过合理地调整刀具位置和姿态,也同样能够避免刀具干涉。
而且合理调整还能够使刀触点轨迹线附近的带状区域内,刀具包络曲面更加接近理论设计曲面,从而显著提升给定精度下的加工带宽,增大了刀具的有效切削面积,可以获得更高的去除率和加工效率。
优化刀具轨迹算法:除了对刀具形状进行优化以外,还必须计算出刀具与工件的实际接触点,并结合刀具形状确定准确的刀位点位置,这样才能规划处合理的加工刀具轨迹。
优化刀具轨迹算法的方法主要包括等参数线法、等距截面法、等残留高度法和投影法这四种。
等参数线法是基于原始曲面参数路径的算法。
由于大部分被加工曲面的构建过程都有固定的曲面参数,因此可以借用这些参数获取加工路径。
这种方法比较简单,所以应用也较多。
但是,借助原始参数生成的路径有时对实际加工并不绝对适用,刀具路径在曲面较窄的部位可能过于复杂,而在曲面较宽的部位又过于简单,加工精度得不到保证。
图2-3-1车削加工X 、Z 向安全间隙设计 2.3 数控加工刀具路径拟定CNC 加工的刀具路径指,加工过程中,刀具刀位点相对于工件进给运动的轨迹和方向。
刀具路径一般包括:从起始点快速接近工件加工部位,然后以工进速度加工工件结构,完成加工任务后,快速离开工件,回到某一设定的终点。
可归纳为两种典型的运动:点到点的快速定位运动——空行程;工作进给速度的切削加工运动——切削行程。
确定刀具走刀路线的原则主要有以下几点:⑴规划安全的刀具路径,保证刀具切削加工的正常进行。
⑵规划适当的刀具路径,保证加工零件满足加工质量要求。
⑶规划最短的刀具路径,减少走刀的时间,提高加工效益。
2.3.1规划安全的刀具路径在数控加工拟定刀具路径时,把安全考虑放在首要地位更切实际。
规划刀具路时,最值得注意的安全问题就是刀具在快速的点定位过程中与障碍物的碰撞。
为了节省时间,刀具加工前接近工件加工部位,完成加工任务后,快速离开工件,常用快速点定位路线。
快速点定位时,刀具以最快的设定速度移动,一旦发生碰撞后果不堪设想。
1.快速的点定位路线起点、终点的安全设定工艺编程时,对刀具快速接近工件加工部位路线的终点和刀具快速离开工件路线的起点的位置应精心设计,应保证刀具在该点与工件的轮廓应有足够的安全间隙,避免刀具与工件的碰撞。
在拟定刀具快速趋近工件的定位路径时,趋向点与工件实体表面的安全间隙大小应有谨慎的考虑。
如图2-3-1,刀具相对工件在Z 向或X 向的趋近点的安全间隙设置多少为宜呢?间隙量小可缩短加工时间,但间隙量太小对操作工来说却是不太安全和方便,容易带来潜在的撞刀危险。
对间隙量大小设定时,应考虑到Z0的加工面是否已经加工到位,若没有加工,还应考虑可能的最大的毛坯余量。
若程序控制是批量生产,还应考虑更换新工件后Z 向尺寸带来的新变化,以及操作员是否有足够的经验。
在铣削工艺编程,刀具从X 、Y 向快速趋于工件轮廓时的情况,与Z 向趋近相比较,同样应精心设计安全间隙,但情况又有所不同,因为刀具X 、Y 向刀位点在圆心,始终与刀具切削工件的点相差一个半径,刀具快速趋近的同时,又需建立半径补偿,因此设计刀具趋近工件点与工件的安全间隙时,除了要考虑毛坯余量的大小,又应考虑刀具半径值的大小。