桥梁结构计算-2013
- 格式:ppt
- 大小:6.15 MB
- 文档页数:61
桥梁临时施工结构计算目录1、满堂支架计算2、墩梁式支架计算3、挂篮设计与计算(包括三角形与菱形挂篮)4、悬臂施工0#块、现浇段及合拢段计算5、钢栈桥的设计与计算6、基坑防护措施及稳定性7、围堰与施工平台的设计与检算满堂支架计算模板为一次使用,支架可支架现浇法主要适用于浇注孔径较少、工期不太紧的桥梁,其施工较灵活,适合于一些桥墩高度较矮(10m以下)的桥梁。
支架主要采用贝雷梁、碗扣式支架、六四式军用梁等。
施工流程简单:在支架上立模板、绑扎钢筋、浇注混凝土并张拉预应力钢筋、支架需设置砂箱等特殊落梁措施。
支架可以拆卸反复使用,节省部分费用。
就地浇注是在支架上安装模板、绑扎及安装钢筋骨架、预留孔道,并在现场浇注混凝土与施加预应力的施工方法。
近年来由于临时钢构件及万能杆件的大量使用,在一些弯桥、变宽桥等异形桥梁,或是一些边远地区的中小跨径桥梁中广泛使用。
算例1-1(海口某酒店景观桥-多跨35m连续梁支架)本桥采用满堂支架法施工,通过钢管立柱、纵横梁、贝雷梁、满堂支架形成施工平台。
施工平台的支架基础管桩采用直径630mm、壁厚8mm的钢管桩,横向每排8根,钢管桩中心距为3~3.5m;垫梁采用双I40b工字钢。
P0桥台至P16桥墩支架纵梁采用贝雷梁,P16桥墩至P19桥台支架纵梁采用I56工字钢。
满堂支架算例1-1:第一联至第四联贝雷梁采用间距45cm双拼共20组,梁横截面中心线两边12组横向净间距0.8m(中心间距1.25m),翼缘两边上8组净间距为1.1m (中心间距1.55m);第五联I56工字钢横向中心间距腹板下为0.6m,空箱底板下为1.2m,翼缘板下为1.8m。
分配梁采用I20工字钢,中心距为40cm。
分配梁顶铺12cm×10cm方木,中心距60cm;方木顶搭设满堂支架为梁中部横向60cm×纵向90cm×竖向60cm,梁端部为横向60cm×纵向60cm×竖向60cm;支架顶纵向铺设10#槽钢,中心距60cm,槽钢上横向铺设10×10cm方木,中心距30cm。
桥梁上部结构的搭接长度计算桥梁上部结构搭接长度计算桥梁是连接两个地点的重要交通工具,而桥梁上部结构的搭接长度计算是桥梁设计中不可或缺的重要环节。
在桥梁设计中,搭接长度的计算是保证桥梁结构安全性和稳定性的重要一环。
在本文中,我将从搭接长度的概念、计算方法、实际应用等方面进行全面探讨,以便读者能够更深入地理解和运用该知识。
一、搭接长度的概念搭接长度,顾名思义,就是搭接部分的长度。
在桥梁设计中,搭接长度是指桥梁上部结构中,梁与梁、梁与支座之间的连接长度。
搭接长度的计算需考虑桥梁的荷载、变形、挠度等多种因素,以保证桥梁结构的稳定和安全。
二、搭接长度的计算方法搭接长度的计算方法包括静力计算法、动力计算法和有限元计算法。
静力计算法是最基本的计算方法,通过考虑桥梁在静态荷载作用下的受力特性,计算梁与支座、梁与梁之间的搭接长度。
动力计算法则考虑了桥梁在动态荷载作用下的振动特性,结合振动理论进行搭接长度的计算。
有限元计算法则是通过有限元分析软件对桥梁结构进行模拟,从而得出搭接长度的计算结果。
三、搭接长度的实际应用搭接长度的计算结果直接影响桥梁的安全性和稳定性。
合理的搭接长度能够有效减小梁与支座、梁与梁之间的应力集中,延长桥梁的使用寿命。
在实际施工中,搭接长度的计算也是施工图设计的重要内容之一,施工图中应标明搭接长度的具体数值,以指导施工工程师进行施工。
四、个人观点和理解在桥梁设计中,搭接长度的计算对于保证桥梁结构的安全性和稳定性至关重要。
在实际工程中,我们需要充分考虑桥梁的荷载情况、变形特性等因素,合理选择并计算搭接长度,以确保桥梁结构的稳固性和使用寿命。
与静力计算法相比,动力计算法和有限元计算法计算结果更加精确,可以更好地指导工程实践。
总结桥梁上部结构的搭接长度计算是桥梁设计中的重要环节,合理的搭接长度设计直接影响桥梁结构的安全性和稳定性。
搭接长度的计算方法多种多样,需要根据具体桥梁情况进行选择。
在实际应用中,搭接长度的计算是桥梁设计和施工过程中不可或缺的重要内容。
桥梁常用计算公式桥梁是道路、铁路、水路等交通工程中非常重要的基础设施。
在设计和施工过程中,需要进行一系列的计算来保证桥梁的稳定性和安全性。
下面是桥梁常用的计算公式和方法,供参考:1.静力平衡计算桥梁的静力平衡是保证桥梁结构稳定的基础。
在计算静力平衡时,常用的公式有:-受力平衡公式:对于简支梁,ΣFy=0,ΣMa=0;对于连续梁,ΣFy=0,ΣMa=0。
-桥墩反力计算公式:P=Q+(M/b),其中P为桥墩反力,Q为桥面荷载,b为桥墩底宽度。
2.梁的弯矩计算桥梁在受到荷载作用时,会出现弯矩。
常用的梁的弯矩计算公式有:-点荷载的弯矩计算公式:M=Px;- 面荷载的弯矩计算公式:M=qx^2/2;-均布载荷的弯矩计算公式:M=qL^2/83.梁的挠度计算挠度是指梁在受荷载作用时的变形程度。
常用的梁的挠度计算公式有:-点荷载的挠度计算公式:δ=Px^2/(6EI);- 面荷载的挠度计算公式:δ=qx^2(6L^2-4xL+x^2)/24EI;-均布载荷的挠度计算公式:δ=qL^4/(185EI)。
4.桥梁的自振频率计算自振频率是指桥梁结构固有的振动频率。
常用的自振频率计算公式有:-单跨梁自振频率计算公式:f=1/2π(1.875)^2(EI/ρA)^0.5/L^2;-多跨梁自振频率计算公式:f=1/2π(π^2(EI/ρA)^0.5/L^2+Σ(1.875)^2(EI/ρA)^0.5/L_i^2)。
5.破坏形态计算桥梁在受到荷载作用时可能发生不同的破坏形态,常用的破坏形态计算公式有:-弯曲破坏计算公式:M=P*L/4;-剪切破坏计算公式:V=P/2;-压弯破坏计算公式:M=P*L/2;-压剪破坏计算公式:V=P。
6.抗地震设计计算在地震区设计的桥梁需要进行抗地震设计,常用的抗地震设计计算公式有:-设计地震力计算公式:F=ΣW*As/g;-结构抗震强度计算公式:S=ηD*ηL*ηI*ηW*A。
其中,ΣW为结构作用力系数,As为地震地表加速度,g为重力加速度,ηD为调整系数,ηL为长度和工况调整系数,ηI为体型和影响系数,ηW为材料和连接性能系数,A为结构抗震强度。
桥梁结构计算汇总桥梁结构计算是指对桥梁进行力学计算和结构分析,以确定其安全可靠性及合理性的过程。
桥梁结构计算通常包括静力分析、动力分析、疲劳分析和地震响应分析等。
以下是对桥梁结构计算的汇总,详细介绍了桥梁结构计算的主要内容和方法。
静力分析是桥梁结构计算的基础,主要通过静力平衡方程来计算桥梁的受力状态。
在静力分析中,需要考虑桥梁受力的各种载荷形式,如自重、交通荷载、温度荷载等。
同时还要考虑桥梁结构的几何形状和材料特性等因素。
静力分析的结果可以用于确定桥梁各个部位的受力大小和分布情况,进而评估桥梁结构的安全可靠性。
动力分析是桥梁结构计算中的重要内容,主要用于评估桥梁在受到动态载荷作用时的响应情况。
动力分析需要考虑桥梁的固有振动特性和外部载荷的激励作用。
通常采用有限元方法进行动力分析,通过求解桥梁结构的动力方程,得到桥梁受力和挠度的频率响应函数。
通过分析这些频率响应函数,可以评估桥梁在不同载荷频率下的响应情况,从而判断其安全性和合理性。
疲劳分析是桥梁结构计算中的另一个重要内容,主要用于评估桥梁在交通荷载作用下的疲劳寿命。
疲劳分析需要考虑桥梁结构的应力历程和疲劳寿命曲线等因素。
通常采用Wöhler曲线来描述桥梁材料的疲劳寿命,然后通过计算桥梁的应力范围来评估其疲劳寿命。
疲劳分析的结果可以用于确定桥梁的疲劳寿命和安全系数,进而指导桥梁的维护和管理。
地震响应分析是桥梁结构计算中的另一个重要内容,主要用于评估桥梁在地震作用下的动态响应情况。
地震响应分析需要考虑桥梁的地震波输入、结构的动力特性和地震荷载的激励作用。
通常采用时程分析方法进行地震响应分析,通过求解桥梁结构的动力方程和地震方程,得到桥梁在地震作用下的位移、加速度和应力等参数。
地震响应分析的结果可以用于评估桥梁在地震作用下的安全性和可靠性,进而指导桥梁的设计和改造。
总的来说,桥梁结构计算是一项复杂且关键的工作,需要综合考虑桥梁的力学特性、材料特性和环境特性等因素。
桥梁上部结构计算
首先,需要进行荷载计算,根据设计规范和实际情况确定车辆荷载、
行人荷载等各种荷载作用在桥梁上部结构上的分布。
然后,需要进行受力分析,确定主要构件的受力状态。
常见的受力状
态包括受拉、受压、受弯和受剪等。
根据不同受力状态,选择合适的构件
截面形式,以满足受力要求。
例如,在受拉状态下,主梁的截面应满足抗
拉强度要求;在受压状态下,桥墩的截面应满足抗压强度要求。
接下来,进行构件尺寸计算。
根据受力分析结果和设计规范的要求,
确定构件的尺寸。
例如,主梁的高度和宽度等。
在进行尺寸计算时,需要
考虑构件的刚度和挠度要求,以确保桥梁在使用过程中不发生过大的变形。
然后,进行构件的验算。
验算是对构件的强度和稳定性进行检验,确
保构件在各种荷载作用下不发生破坏。
常见的验算内容包括截面强度验算、扭转强度验算和局部稳定验算等。
最后,根据计算结果和设计规范的要求,选择合适的材料。
根据不同
的荷载作用和受力要求,选择合适的材料,如钢材、混凝土等。
同时,还
需要进行材料的耐久性计算,以确保桥梁的使用寿命。
总之,桥梁上部结构的计算是一个复杂的过程,需要充分考虑各种荷
载作用和受力要求。
通过合理的计算和设计,保证桥梁的安全性和稳定性,满足实际使用的需求。
关于桥梁结构计算分析摘要:结合当代桥梁计算技术的发展,从桥梁结构工程师的角度分析指出桥梁计算从属于和促进了精细化设计。
分析计算工作的层次性和动态性特点,强调结构分析的人员对结构概念的掌握尤其重要。
指出计算工作需要策划,不同的桥型有其侧重点,计算应有针对性的提出解决方案,并建议了计算工作的一般流程。
就具体实施而言,工程计算应该立足于现有的软件硬件资源。
探讨如何对待软件工具和判断调试计算结果,总结了一些分析判断经验。
通过列举特定案例计算内容和解决思路,给桥梁计算工作同行起到抛砖引玉的作用。
关键词:桥梁结构分析解决方案思路1前言我国的桥梁建设发展迅猛,其规模和科技水平已紧随世界先进行列。
基于有限元方法的软件技术也日新月异,计算已经和理论,实验一起,并列为三大科学方法之一。
随着桥梁跨度记录不断刷新、新的结构体系和组合材料的应用以及施工工艺的发展,计算分析不断遇到新的需求和挑战。
桥梁结构计算往精细化方向发展,桥梁结构计算面临复杂化。
例如逐步抛弃偏载系数的概念,采用空间影响线(面)求解活载效应,梁、板和实体单元以及混合模型广泛应用,计算模型的自由度和机时都在不断增加。
例如超长拉索结构的非线性问题及施工控制、钢筋混凝土结构开裂非线性分析、墩水耦合振动分析、钢桥细节构造的疲劳分析[1]、钢砼组合结构细部分析[2]、基于并行计算技术的车桥耦合分析[3]、数值风洞计算等,这些问题都相当复杂。
桥梁计算从属于和促进了精细化设计。
桥梁设计工作涉及项目需求分析,功能定位,美学,经济性,安全性等要求,以及桥址地形、地质、气象、通航、行洪、地震、道路、管线等其它桥址环境约束和施工条件的应对。
桥梁计算工作是为设计服务的,计算分析主要解决结构受力性能问题。
有些结构设计也开始提出稳健性、敏感性、冗余度、宽容度和可维护性方面的分析内容,属于设计思路主导的具体方法。
精细化计算与新材料应用一样,使桥梁设计水平得到长足的进步。
以下从桥梁结构工程师的角度谈谈计算工作的一些特点和认识。
目录第一局部工程概况及根本设计资料1 1.1 工程概况11.2 技术标准与设计规11.3 根本计算资料1第二局部上部构造设计依据3 2.1 概况及根本数据32.1.1 技术标准与设计规32.1.2 技术指标32.1.3 设计要点42.2 T梁构造尺寸及预应力配筋42.2.1 T梁横断面42.2.2 T梁预应力束52.2.3 罗望线T梁构造配筋与部颁图比拟52.3 构造分析计算52.3.1 活载横向分布系数与汽车冲击系数52.3.2 预应力筋计算参数52.3.3 温度效应及支座沉降62.3.4 有限元软件建立模型计算分析6第三局部桥梁墩柱设计及计算73.1 计算模型的拟定73.2 桥墩计算分析73.2.1 纵向水平力的计算73.2.2 竖直力的计算83.2.3 纵、横向风力93.2.4 桥墩计算偏心距的增大系数 103.2.5 墩柱正截面抗压承载力计算113.2.6 裂缝宽度验算123.3 20米T梁墩柱计算123.3.1 计算模型的选取123.3.2 15米墩高计算133.3.3 30米墩高计算173.4 30米T梁墩柱计算223.4.1 计算模型的选取223.4.2 15米墩高计算223.4.3 30米墩高计算273.4.4 40米墩高计算313.5 40米T梁墩柱计算353.5.1 计算模型的选取353.5.2 15米墩高计算363.5.3 30米墩高计算40第四局部桥梁抗震设计464.1 主要计算参数取值464.2 计算分析464.2.1 抗震计算模型464.2.2 动力特性特征值计算结果47 4.2.3 E1地震作用验算结果49 4.2.4 E2地震作用验算结果49 4.2.5 延性构造细节设计504.3 抗震构造措施53第一局部工程概况及根本设计资料1.1 工程概况省余庆至安龙高速公路罗甸至望谟段,主线全长77.4公里,工程地形起伏大,山高坡陡,地质、水文条件复杂,桥梁工程规模大,高墩大跨径桥梁较多,通过综合比选,考虑技术、经济、构造耐久、施工方便、维修便利及施工标准化等因素。