八年级平面直角坐标系一次函数
- 格式:doc
- 大小:429.00 KB
- 文档页数:7
一、选择题1.如图,点O为平面直角坐标系的原点,点A在x轴正半轴上,四边形OABC是菱形.已知点B坐标为(3,3),则直线AC的函数解析式为()A.y=33x+3B.y=3x+23C.y=﹣33x+3D.y=﹣3x+23D解析:D【分析】过B点作BH⊥x轴于H点,菱形的对角线的交点为P,如图,设菱形的边长为t,则OA=AB=t,在Rt△ABH中利用勾股定理得到(3﹣t)2+(3)2=t2,解方程求出t,得到A(2,0),再利用P为OB的中点得到P(32,32),然后利用待定系数法求直线AC的解析式即可.【详解】解:过B点作BH⊥x轴于H点,菱形的对角线的交点为P,如图,∵四边形ABCO为菱形,∴OP=BP,OA=AB,设菱形的边长为t,则OA=AB=t,∵点B坐标为(33∴BH3AH=3﹣t,在Rt△ABH中,(3﹣t)2+32=t2,解得t=2,∴A(2,0),∵P为OB的中点,∴P (32,32), 设直线AC 的解析式为y =kx+b ,把A (2,0),P (32,32),代入得:203322k b k b +=⎧⎪⎨+=⎪⎩,解得:323k b ⎧=-⎪⎨=⎪⎩, ∴直线AC 的解析式为y =﹣3x+23.故选:D .【点睛】本题主要考查菱形的性质,勾股定理以及一次函数的待定系数法,熟练掌握菱形的性质和待定系数法,是解题的关键.2.如图,一次函数y kx b =+(,k b 为常数,且0k ≠)的图像经过点(3,2)-,则关于x 的不等式2kx b +<的解集为( )A .3x >-B .3x <-C .2x >D .2x <A解析:A【分析】 根据图像的意义当x=-3时,kx+b=2,根据一次函数的性质求解即可.【详解】∵当x=-3时,kx+b=2,且y 随x 的增大而减小,∴不等式2kx b +<的解集3x >-,故选A.【点睛】本题考查了一次函数与不等式的关系,一次函数图像的性质,灵活运用数形结合思想确定不等式的解集是解题的关键.3.已知点()11,P y -、点()23,Q y 在一次函数(21)2y m x =-+的图像上,且12y y >,则m 的取值范围是( )A .12m < B .12m > C .m 1≥ D .1m <A解析:A【分析】由题目条件可判断出一次函数的增减性,则可得到关于m 的不等式,可求得m 的取值范围.【详解】解:∵点P (-1,y 1)、点Q (3,y 2)在一次函数y=(2m-1)x+2的图象上,∴当-1<3时,由题意可知y 1>y 2,∴y 随x 的增大而减小,∴2m-1<0,解得m <12, 故选:A . 【点睛】 本题主要考查了一次函数的性质,得出一次函数的增减性是解题的关键. 4.已知56a =-,56b =+,则一次函数y =(a +b )x +ab 的图象大致为( ) A . B . C . D .C 解析:C【分析】计算a +b 和ab 的值 ,根据一次函数的性质,可以得到该函数图象经过哪几个象限,本题得以解决.【详解】解:∵a +b=56-+56+=250>,ab=()()5656-+=10-<, ∴该函数的图象经过第一、三、四象限,故选:C .【点睛】本题考查一次函数的图象,二次根式的混合运算,解答本题的关键是明确题意,利用一次函数的性质解答.5.火车匀速通过隧道时,火车在隧道内的长度y (米)与火车行驶时间x (秒)之间的关系用图像描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A .①②③B .①②④C .③④D .①③④D解析:D【分析】 根据函数的图象即可确定在BC 段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【详解】在BC 段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确; 火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45−5−5=35秒,故③正确;隧道长是:45×30−150=1200(米),故④正确.故选D .【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,是解题的关键.6.已知:将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( )A .经过第一、二、三象限B .与x 轴交于()1,0-C .与y 轴交于()0,1D .y 随x 的增大而减小A解析:A【分析】 根据图象的平移规则:左加右减、上加下减得出直线解析式,再根据一次函数的性质即可解答.【详解】解:∵将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,∴直线y kx b =+的解析式为2(2)123y x x =+-=+,∵k=2>0,b=3>0,∴直线y kx b =+经过第一、二、三象限,故A 正确;当y=0时,由0=2x+3得:x=32-, ∴直线y kx b =+与x 轴交于(32-,0),故B 错误; 当x=0时,y=3,即直线y kx b =+与y 轴交于(0,3),故C 错误;∵k=2>0,∴y 随x 的增大而增大,故D 错误,故选:A .【点睛】本题考查图象的平移变换、一次函数的图象与性质,熟知图象平移变换规律,掌握一次函数的图象与性质是解答的关键.7.对于实数a 、b ,我们定义max {a ,b }表示a 、b 两数中较大的数,如max {2,5}=5,max {3,3}=3.则以x 为自变量的函数y =max {-x +3,2x -1}的最小值为( ). A .-1B .3C .43D .53D 解析:D【分析】 分x≤43和x>43两种情况进行讨论计算. 【详解】解:当-x+3≥2x -1, ∴x≤43, 即-x≥-43时,y=-x+3, ∴当-x=-43时,y 的最小值=53, 当-x+3<2x-1, ∴x>43, 即:x>43时,y=2x-1, ∵x>43, ∴2x >83, ∴2x-1>53, ∴y >53, ∴y 的最小值=53, 故选:D .【点睛】此题是分段函数题,以及一次函数的性质,主要考查了新定义,解本题的关键是分段. 8.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <-C解析:C【分析】 根据图象可得,直线y =mx +b 与y =kx 的交点坐标为(−1,3),所以当x >−1时,直线y =mx +b ,落在直线y =kx 的下方,可得关于x 的不等式mx +b <kx .即可得结论.【详解】根据图象可知:直线y mx b =+与y kx =的交点坐标为:(1,3)-,则关于x 的不等式mx b kx +<的解集为1x >-.故选:C .【点睛】本题考查了一次函数与一元一次不等式、一次函数的图象,解决本题的关键是掌握一次函数与一元一次不等式的关系.9.如图,在平面直角坐标系中,已知A(1,1),B(3,5),要在x 轴上找一点P ,使得△PAB 的周长最小,则点P 的坐标为( )A .(0,1)B .(0,2)C .(43,0)D .(43,0)或(0,2)C【分析】要使得△PAB 的周长最小,实则在x 轴上找到P 点,使得PA PB +最小即可,从而将A 沿x 轴对称至A 1,求解A 1B 的解析式,其与x 轴的交点坐标即为所求.【详解】∵要使得△PAB 的周长最小,A ,B 为固定点,∴在x 轴上找到P 点,使得PA PB +最小即可,∴将A 沿x 轴对称至A 1,则()11,1A -,设直线A 1B 的解析式为:y kx b =+,将()11,1A -,B(3,5),代入求解得:34k b =⎧⎨=-⎩,则解析式为:34y x =-, 令0y =,解得:43x =, 即4,03P ⎛⎫ ⎪⎝⎭时,△PAB 的周长最小, 故选:C .【点睛】本题考查轴对称最短路径问题,及一次函数与坐标轴得交点问题,能够对题意进行准确分析,建立合适的最短路径模型是解题关键.10.若一次函数()231y m x =-+-的图象经过点()11,A x y ,()22,B x y ,当12x x <时,12y y >时,则m 的取值范围是( ) A .32m > B .32m >- C .32m < D .32m <-B【分析】由当x 1<x 2时y 1>y 2,利用一次函数的性质可得出-(2m+3)<0,解之即可得出m 的取值范围.【详解】解:∵当x 1<x 2时,y 1>y 2,∴-(2m+3)<0,解得:m >-32. 故选:B .【点睛】本题考查了一次函数的性质,牢记“k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小”是解题的关键. 二、填空题11.已知一次函数41y x =-和23y x =+的图像交于点(2,7)P ,则二元一次方程组4123y x y x =-⎧⎨=+⎩的解是_.【分析】根据一次函数数和的图象交点可知点P 的坐标就是的解【详解】解:根据题意可知二元一次方程组的解就是一次函数和的图象的交点P 的坐标∴二元一次方程组的解是故答案为:【点睛】此题考查了一次函数与二元一解析:27x y =⎧⎨=⎩【分析】根据一次函数数41y x =-和23y x =+的图象交点,可知点P 的坐标就是4123y x y x =-⎧⎨=+⎩的解.【详解】解:根据题意可知,二元一次方程组4123y x y x =-⎧⎨=+⎩的解就是一次函数41y x =-和23y x =+的图象的交点P 的坐标,∴二元一次方程组4123y x y x =-⎧⎨=+⎩的解是27x y =⎧⎨=⎩. 故答案为:27x y =⎧⎨=⎩. 【点睛】此题考查了一次函数与二元一次方程(组),解答此题的关键是熟知方程组的解与一次函数的图象交点P 之间的联系,考查了学生对题意的理解能力.12.在同一平面直角坐标系中的图像如图所示,则关于x 的不等式21k x k x b <+的解为____________.x <-1【分析】根据不等式得到直线在直线的下方即可确定不等式的解集【详解】解:由不等式得直线在直线的下方∴自变量的取值范围为x <-1故答案为:x <-1【点睛】本题考查了一次函数与不等式的关系理解函数解析:x <-1【分析】根据不等式得到直线2y k x = 在直线1y k x b =+的下方,即可确定不等式的解集.【详解】解:由不等式21k x k x b <+得直线2y k x = 在直线1y k x b =+的下方,∴自变量的取值范围为x <-1.故答案为:x <-1【点睛】本题考查了一次函数与不等式的关系,理解函数与不等式的关系是解题关键.13.函数1y x =-中自变量x 的取值范围是________.且【分析】根据二次根式的性质和分式的意义被开方数大于或等于0分母不等于0可以求出x 的范围【详解】根据题意得:x≥0解得:且故答案为:且【点睛】本题考查了函数自变量的取值范围问题函数自变量的范围一般从解析:0x ≥且1x ≠【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】1y x =-, 根据题意得:x≥0 10x ≠,解得:0x ≥且1x ≠.故答案为:0x ≥且1x ≠.【点睛】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.已知 12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x=1时,y=-1,当x=3时,y=5,求y 与x 之间的函数关系式_______________.【详解】由题意设则将时和时代入得:解得:故与之间的函数关系为故答案为:【点睛】本题考查正比例函数和反比例函数定义的应用熟记函数定义是解题关键 解析:32y x x =-【详解】 由题意设12,b y ax y x ==则b y ax x=+ 将1x =时,1y =-和3x =时,5y =代入得:1353a b b a +=-⎧⎪⎨+=⎪⎩解得:23a b =⎧⎨=-⎩ 故y 与x 之间的函数关系为32y x x =-. 故答案为:32y x x=-. 【点睛】 本题考查正比例函数和反比例函数定义的应用,熟记函数定义是解题关键.15.已知直线2y ax a =-+(a 为常数)不经过第四象限,则a 的取值范围是________.0≤a≤2【分析】当a≠0时根据一次函数的图象不经过第四象限可得图象经过一三象限或一二三象限列出关于a 的不等式组求出a 的取值范围当a=0时y=2不经过第四象限综上即可得答案【详解】当a≠0时不经过第解析:0≤a≤2【分析】当a≠0时,根据一次函数的图象不经过第四象限可得图象经过一、三象限或一、二、三象限,列出关于a 的不等式组,求出a 的取值范围,当a=0时,y=2不经过第四象限,综上即可得答案.【详解】当a≠0时,2y ax a =-+不经过第四象限,∴经过一、三象限或一、二、三象限,∴020a a >⎧⎨-+⎩, 解得:02a <,当a=0时,直线方程为y=2,不经过第四象限,符合题意,∴a 的取值范围为0≤a≤2.故答案为:0≤a≤2【点睛】本题考查一次函数图象与系数的关系,熟练掌握一次函数图象与系数的关系并运用分类讨论的思想是解题关键.16.如果直线y=2x+3与直线y=3x ﹣2b 的交点在y 轴上,那么b 的值为___.【分析】先求出y=2x+3与y 轴交点坐标为(03)代入y=3x ﹣2b 即可求得答案【详解】令y=2x+3中x=0解得y=3∴直线y=2x+3与y 轴交点为(03)将(03)代入y=3x ﹣2b 中得-2b= 解析:32- 【分析】先求出y=2x+3与y 轴交点坐标为(0,3),代入y=3x ﹣2b ,即可求得答案.【详解】令y=2x+3中x=0,解得y=3,∴直线y=2x+3与y 轴交点为(0,3),将(0,3)代入y=3x ﹣2b 中,得-2b=3,解得b=32-, 故答案为:32-. 【点睛】此题考查一次函数与坐标轴的交点坐标,掌握交点坐标的计算方法是解题的关键. 17.如图,一个直角三角形与一个正方形在同一水平线上,此三角形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x ,三角形与正方形重叠部分的面积为y ,在下面的平面直角坐标系中,线段AB 表示的是三角形在正方形内部移动的面积图象,C 点表示的是停止运动后图象的结束点,下面有三种补全图象方案,正确的方案是______.①②③乙【分析】由题意可知三角形没全进入正方形之前重叠部分为直角三角形当三角形即将出正方形之后重叠部分为直角梯形利用面积公式求出两个图形的面积即可判断其图象【详解】设直角三角形的底为a 高为b 运行速度为v 由解析:乙【分析】由题意可知三角形没全进入正方形之前,重叠部分为直角三角形.当三角形即将出正方形之后,重叠部分为直角梯形.利用面积公式求出两个图形的面积即可判断其图象.【详解】设直角三角形的底为a ,高为b ,运行速度为v .由题意可知当三角形没全进入正方形之前,重叠部分为与原三角形相似的直角三角形. ∵重叠部分的直角三角形的底为vx ,∴根据三角形相似,可知:vx a b =重叠直角三角形的高 , 即重叠直角三角形的高=bvx a, ∴22122bvx bv y vx x a a==, ∵a , b , v 都为常数且大于0,∴222bv y x a=是一个开口向上的曲线. 当三角形即将出正方形之后,重叠部分为去掉与原三角形相似的直角三角形的直角梯形. 设正方形边长为l ,则该梯形的高为()l vx a --,下底为b , 根据三角形相似可知:vx l b a -=梯形上底, 即梯形上底()b vx l a -=, ∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦. ∵a , b , v ,l 都为常数且大于0,∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦中2x 项的系数为202bv a-<, ∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦是一个开口向下的曲线. ∴只有乙符合.故答案为:乙.【点睛】本题考查动点问题的函数图象.理解三角形运动过程中的分界点,利用三角形和梯形的面积公式列出关于x 的方程来判断其图象是解题关键.18.如图,函数(0)y kx k =≠和4(0)y ax a =+≠的图象相交于点(1,1)A -,则不等式4kx ax <+的解集为__________.【分析】由图象可以知道当x=-1时两个函数的函数值是相等的再根据函数的增减性可以判断出不等式的解集【详解】解:两条直线的交点坐标为(-11)当x <-1时直线y=ax+4在直线y=kx 的下方当x >-1 解析:1x >-【分析】由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式4kx ax <+的解集.【详解】解:两条直线的交点坐标为(-1,1),当x<-1时,直线y=ax+4在直线y=kx的下方,当x>-1时,直线y=ax+4在直线y=kx的上方,故不等式kx<ax+4的解集为x>-1.故答案为:x>-1.【点睛】本题考查了一次函数和一元一次不等式的知识点,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.19.某一列动车从A地匀速开往B地,一列普通列车从B地匀速开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.根据图像进行探究,图中t的值是__.4【分析】根据题意和函数图象中的数据:AB两地相距900千米两车出发后3小时相遇普通列车全程用12小时即可求得普通列车的速度和两车的速度和进而求得动车的速度解答即可【详解】由图象可得:AB两地相距9解析:4【分析】根据题意和函数图象中的数据:AB两地相距900千米,两车出发后3小时相遇,普通列车全程用12小时,即可求得普通列车的速度和两车的速度和,进而求得动车的速度,解答即可.【详解】由图象可得:AB两地相距900千米,两车出发后3小时相遇,普通列车的速度是:90012=75千米/小时,动车从A地到达B地的时间是:900÷(9003-75)=4(小时),故填:4.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.20.请写出一个符合下列要求的一次函数的表达式:_______.①函数值y 随自变量x 增大而增大;②函数的图像经过第二象限.(答案不唯一保证即可)【分析】根据题意和一次函数的性质可以写出符合要求的一个一次函数本题得以解决【详解】解:∵一次函数的函数值y 随自变量x 增大而增大∴k >0∵函数的图象经过第二象限∴b >0∴符合下列解析:23y x =+(答案不唯一,保证0k >,0b >即可)【分析】根据题意和一次函数的性质,可以写出符合要求的一个一次函数,本题得以解决.【详解】解:∵一次函数的函数值y 随自变量x 增大而增大,∴k >0,∵函数的图象经过第二象限,∴b >0,∴符合下列要求的一次函数的表达式可以是23y x =+,故答案为:23y x =+(答案不唯一).【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.三、解答题21.如图,在平面直角坐标系中,四边形OABC 是直角梯形,//BC OA ,(8,0)A ,(0,4)C ,5AB =,现有一动点P 从点A 出发,以每秒2个单位长度的速度沿AO 方向,经O 点再往OC 方向移动,最后到达C 点.设点P 移动时间为t 秒.(1)求点B 的坐标;(2)当t 为多少时,ABP ∠的面积等于13;(3)在(2)的条件下,取BP 中点M ,在x 轴上找一点N ,使BN MN +和最小,求此时N 点的坐标.解析:(1)(5,4) (2)13 s 4t =或19 s 4t = (3)23,06⎛⎫ ⎪⎝⎭或95,027⎛⎫ ⎪⎝⎭【分析】(1)过点B 作BD OA ⊥于点D ,得出ADB △为直角三角形,利用勾股定理求出AD ,BD 的值,从而可求出点B 的坐标,(2)当点P 运动时间为t 秒时,则2AP t =,由三角形的面积公式建立等量关系即可求出(3)结合(2)问,求出点P 的坐标,进而求出BP 中点M 的坐标,再作出点B 关于x 的对称点,求出该对称点与点M 所在直线的的解析式,该直线与x 的交点即为点N .【详解】(1)过点B 作BD OA ⊥于点D ,∴90BDO ∠=︒,∵四边形OABC 是直角梯形,BC OA , ∴90BCO COD ∠=∠=︒,∴四边形ODBC 为矩形,∵(0,4)C ,(8,0)A ,∴4OC BD ==,8OA =,∵5AB =,在Rt ABD △中,由勾股定理得:222AB BD AD =+, ∴2222543AD AB BD =--=,∴5OD OA AD =-=,∴(5,4)B .(2)当P 点在O 点时,4s t =,当P 点在C 点时,6s 2OA OC t +==, ①当04s t <≤时,由题可知:2AP t =, ∴112441322ABP S AP BD t t =⋅=⨯⨯==△, ∴13s 4t =. ②当46t <≤时,则28OP t =-,4122CP OP t =-=-,∴ABP AOP BCP OABC S S S S =--△△△梯形()111222OA BC OC OA OP BC CP =+⋅-⋅-⋅ 111(48)48(28)4(122)222t t =⨯+⨯-⨯⨯--⨯⨯- 24832244t t =-+-+324t =-∴419t =,19s 4t =. 故当13s 4t =或19s 4t =时,ABP △的面积是13. (3)由(2)得:①当13s 4t =时,132AP =, ∴32OP =, ∴3,02P ⎛⎫ ⎪⎝⎭, 又∵(5,4)B ,M 为BP 的中点,∴13,24M ⎛⎫ ⎪⎝⎭, 作B 点关于x 轴对称点B ',则(5,4)B '-,连接MB '交x 轴于点N ,则BN MN B N MN B M ''+=+=. 设直线B M '的解析式为(0)y kx b k =+≠,代入B ',M 两点,得451324k b k b -=+⎧⎪⎨=+⎪⎩,解得247927k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线B M '为249277y x =-+, 令0y =,则249277x =,236x =, ∴23,06N ⎛⎫ ⎪⎝⎭. ②当19s 4t =时,3282OP t =-=, ∴30,2P ⎛⎫ ⎪⎝⎭,又∵(5,4)B ,M 为BP 中点, ∴511,24M ⎛⎫ ⎪⎝⎭, 作B 点关于x 轴的对称点B '',∴(5,4)B ''-,设直线B M ''交x 轴于点N ,则MN BN MN B N MB '''+=+=.设直线B M ''的解析式为()1110y k x b k =+≠,代入M ,B ''得4511542k b k b -=+⎧⎪⎨=+⎪⎩,解得2710192k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线B M ''为2719102y x =-+, 令0y =,得19109522727x =⨯=, ∴95,027N ⎛⎫ ⎪⎝⎭. 综上N 的坐标为23,06⎛⎫⎪⎝⎭或95,027⎛⎫ ⎪⎝⎭. 【点睛】 本题考查了勾股定理,矩形的判定及性质,点的坐标的确定,以及利用轴对称求最值,待定系数法求一次函数解析式,熟练运用三角形面积,以及利用轴对称方法求最值是解题关键.22.如图,顶点M 在y 轴上的抛物线2=y ax c +与直线1y x =+相交于,A B 两点,且点A 在x 轴上,点B 的横坐标为2,连接,AM BM ,(1)求抛物线对应的函数表达式;(2)判断ABM ⊿的形状,并说明理由;(3)若将(1)中的抛物线沿y 轴上下平移,则如何平移才能使平移后的抛物线过点(2,3)--?解析:(1)21y x =-;(2)△ABM 为直角三角形,见解析;(3)向下平移6个单位过点(-2,-3)【分析】(1)将y=0,x=2,分别代入直线解析式求出x 、y 的值,即求得点A 、B 的坐标,再利用待定系数法即可求解抛物线解析式;(2)令x=0,代入抛物线解析式求得M 坐标,利用两点间的距离公式求得AB 、AM 、BM ,再利用勾股定理的逆定理即可判定△ABM 为直角三角形;(3)设抛物线2=1y x -平移后的解析式为y=x 2-1+m ,将点(-2,-3)代入上式,得到关于m 的方程,解方程即可得出结论.【详解】(1)当y=0时,有x+1=0,则x=-1.∴A (-1,0),当x=2时,y=2+1=3,∴B (2,3),将A ,B 两点代入2=y ax c +中, 得0=34a c a c +⎧⎨=+⎩,解得=11a c ⎧⎨=-⎩, ∴抛物线的解析式为2=1y x -.(2)三角形ABM 为直角三角形,理由如下:在抛物线中,当x=0时,y=-1,∴M (0,-1),又∵A (-1,0),B (2,3), ∴=32AB =2AM =25BM又∵22220AM AB BM +==,∴三角形ABM 为直角三角形.(3)设抛物线2=1y x -沿y 轴平移后的解析式为2=1y x m -+,将点(-2,-3)代入上式,得m=-6,则向下平移6个单位过点(-2,-3).【点睛】本题考查待定系数法求解析式,一次函数图象上的坐标特征、两点间的距离公式及勾股定理的逆定理,解题的关键是(1)求出A 、B 的坐标,(2)求出求得AB 、AM 、BM 的长,(3)正确写出平移后的抛物线解析式,难度适中.23.如图,在平面直角坐标系中,已知(,0)A a ,(,0)B b ,其中a ,b 满足|1|30a b ++-=.(1)填空:a =______,b =______.(2)如果在第三象限内有一点(2,)M m -,请用含m 的式子表示ABM 的面积.(3)在(2)条件下,当52m =-时,在y 轴上有一点P ,使得BMP 的面积与ABM 的面积相等,请求出点P 的坐标. 解析:(1)1-;3;(2)△ABM 的面积为2m -;(3)点P 的坐标为10,2⎛⎫ ⎪⎝⎭或70,2⎛⎫- ⎪⎝⎭. 【分析】(1)根据非负数性质可得a 、b 的值;(2)根据三角形面积公式列式整理即可;(3)先根据(2)计算S △ABM ,再分两种情况:当点P 在y 轴正半轴上时、当点P 在y 轴负半轴上时,利用割补法表示出S △BMP ,根据S △BMP =S △ABM 列方程求解可得. 【详解】解:(1)∵|1|30a b +-=,∴10a +=,30b -=,∴1a =-,3b =;(2)如图1所示,过M 作ME x ⊥轴于E ,∵(1,0)A -,(3,0)B ,∴1OA =,3OB =,∴4AB =,∵在第三象限内有一点(2,)M m -,∴||ME m m ==-, ∴114()222ABM S AB ME m m =⨯=⨯⨯-=-. (3)设(0,)P n ,BM 交y 轴于点C ,连接MP ,BP 如下图:设直线BM 的解析式为y kx b =+, 把(3,0)B ,52,2M ⎛⎫-- ⎪⎝⎭代入得 30522k b k b +=⎧⎪⎨-+=-⎪⎩, 解之得:1232k b ⎧=⎪⎪⎨⎪=-⎪⎩,即1322y x =-, ∴30,2C ⎛⎫-⎪⎝⎭, 当52m =-时,11545222ABM m S AB y =⋅=⨯⨯=. ∵BMP ABM SS =, ∴()1||52x x B M PC -=, 即13(32)522n ⨯++=, 解之得:12n =或72n =-, 综上,点P 的坐标为10,2⎛⎫ ⎪⎝⎭或70,2⎛⎫-⎪⎝⎭. 【点睛】 本题主要考查了非负数的性质,坐标与图形的性质,利用待定系数法求一次函数解析式,利用割补法表示出△BMP 的面积等知识,根据题意建立方程是解题的关键.24.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 解析:22y x =-【分析】首先根据题意设出关系式:y=k (x-1),再利用待定系数法把x=3,y=4代入,可得到k 的值,再把k 的值代入所设的关系式中,可得到答案;【详解】解:因为y 与1x -成正比例,所以设()1y k x =-(0k ≠)∵当3x =时,4y =,∴()431k =-解得2k =所以, y 与x 之间的函数关系式为:22y x =-【点睛】此题主要考查了对正比例的理解,关键是设出关系式,代入x ,y 的值求k .25.已知1y +与3x -成正比例,且5x =时,8y =,(1)求y 与x 之间的函数解析式;(2)当6y =-时,求x 的值.解析:(1)92922y x =-;(2)179【分析】(1)设1(3)(0)y k x k +=-≠,利用待定系数法求k ,从而确定函数关系式;(2)将y=-6代入解析式求x 的值.【详解】解设1(3)(0)y k x k +=-≠(1)将58x y =⎧⎨=⎩代入,得 81(53)k +=- 即92=k ∴92922y x =- (2)当6y =-时929622x -=- 179x = 【点睛】本题考查待定系数法求函数解析式,掌握待定系数法计算步骤,正确计算是解题关键. 26.某超市预购进A 、B 两种品牌的T 恤共200件,已知两种T 恤的进价如表所示,设购进A 种T 恤x 件,且所购进的两种T 恤全部卖出,获得的总利润为W 元.(2)如果购进两种T 恤的总费用为9500元,那么超市获得的总利润是多少?(提示:利润=售价-进价)解析:(1)55000W x =+;(2)5750元.【分析】(1)先根据总件数可得购进B 种T 恤的件数,再根据利润公式求出A 、B 两种T 恤的利润的和即可得;(2)先根据进价和总费用可建立一个关于x 的一元一次方程,解方程可求出x 的值,再根据(1)的结论即可得.【详解】(1)由题意得:购进B 种T 恤()200x -件,则总利润为()()()80506540200W x x =-+--,即55000W x =+;(2)由题意得:()50402009500x x +-=,解得150x =,将150x =代入(1)的结论得:515050005750W =⨯+=,答:超市获得的总利润是5750元.【点睛】本题考查了一次函数的实际应用、一元一次方程的实际应用,依据题意,正确建立函数关系式和方程是解题关键.27.如图,直线1l :1y x =+与直线2l :2y x n =-+相交于点()1,P b .(1)求点P 的坐标;(2)若120y y >>,求x 的取值范围;(3)点(),0D m 为x 轴上的一个动点,过点D 作x 轴的垂线分别交1l 和2l 于点E ,F ,当3EF =时,求m 的值.解析:(1)()1,2P ;(2)12x <<;(3)2m =或0m =.【分析】(1)把()1,P b 代入1l 的解析式可求解;(2)由(1)可先求解2l 的解析式,然后根据图像可进行求解;(3)把x m =分别代入12l l 、解析式可得点E 、F 的坐标,然后根据两点距离公式可分当1m 时和当1m <时,最后求解即可.【详解】解:(1)把()1,P b 代入1l 解析式得:112b =+=,∴()1,2P .(2)把()1,2代入2l 解析式得:22n =-+,∴4n =,∴2l :24y x =-+,当0y =时,2x =,∴当120y y >>时x 的取值范围为12x <<.(3)把x m =分别代入12l l 、解析式得:1y m =+和24y m =-+,∴点()(),1,,24E m m F m m +-+,∴当1m 时,()1243m m +--+=,∴2m =,当1m <时,2413m m -+--=,∴0m =.【点睛】本题主要考查一次函数的综合,熟练掌握一次函数的性质是解题的关键.28.矩形的周长是8cm ,设一边长为cm x ,另一边长为cm y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)在如图所示的平面直角坐标系中,作出所求函数的图象.解析:(1)()404y x x =-+<<;(2)详见解析【分析】(1)根据矩形的周长公式用x ,y 的式子表示出来,然后进行变形即可,根据矩形的边长要大于0可以求出自变量x 的取值范围;(2)由(1)的结论运用描点法先描点,再连线即可得到函数的图象.【详解】解:(1)矩形的周长是8cm ,设一边长为cm x ,另一边长为cm y ,则228x y +=,4y x =-+,∵40x -+>,∴4x <,∴y 关于x 的函数关系式为()404y x x =-+<<.(2)函数图象如图所示.【点睛】本题考查了一次函数的图象及一次函数的应用.在解答中自变量的取值范围不能忽视.。
完整版)八年级数学一次函数动点问题八年级数学一次函数动点问题1、如图所示,以等边三角形OAB的边OB所在直线为x 轴,点O为坐标原点,在第一象限建立平面直角坐标系。
其中,△OAB边长为6个单位。
点P从O点出发沿折线OAB 向B点以3单位/秒的速度运动,点Q从O点出发沿折线OBA向A点以2单位/秒的速度运动。
两点同时出发,运动时间为t(单位:秒),当两点相遇时运动停止。
①点A的坐标为(3,3),P、Q两点相遇时交点的坐标为(3,3);②当t=2时,△OPQ的面积为3/2;当t=3时,△OPQ的面积为9/4;③设△OPQ的面积为S,求S关于t的函数关系式为S=(3t-t^2)/4;④当△OPQ的面积最大时,在y轴上无法找到一点M,使得以M、P、Q为顶点的三角形是直角三角形。
2、如图所示,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动。
设点P、Q移动的时间为t秒。
1) 直线AB的解析式为y=-x+6;2) 当t=5时,△APQ的面积为24/5平方单位;3) △OPQ为直角三角形的时间范围为2≤t≤4;4) 无论t为何值,△OPQ都不可能为正三角形。
若点Q的运动速度为4个单位/秒,则此时t=2.3、如图所示,在直角三角形△AOB中,∠AOB=90°,OA=3cm,OB=4cm,以点O为坐标原点建立坐标系,设P、Q分别为AB、OB边上的动点。
它们同时分别从点A、O向B 点匀速运动,速度均为1cm/秒。
设P、Q移动时间为t(≤t≤4)。
1)过点P做PM⊥OA于M,求证:AM:AO=PM:BO=AP:AB,并求出P点的坐标(用t表示)。
证明:由于△OPM与△OAB相似,因此有PM/OB=AO/AB,即PM=AO*OB/AB=9/5.又因为△APM与△AOB相似,因此有AM/OA=PM/OB,即AM=OA*PM/OB=27/20.因此AM:AO=PM:BO=AP:AB=9:15:20.P点的坐标为(3t/5,18t/5)。
平面直角坐标系与函数知识点一、平面直角坐标系1.平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。
其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x 轴和y 轴上的点,不属于任何象限。
2.点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。
平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。
知识点二、不同位置的点的坐标的特征1.各象限内点的坐标的特征(1)点P(x,y)在第一象限0,0>>⇔y x (2)点P(x,y)在第二象限0,0><⇔y x (3)点P(x,y)在第三象限0,0<<⇔y x (4)点P(x,y)在第四象限0,0<>⇔y x2.坐标轴上的点的特征(1)点P(x,y)在x 轴上0=⇔y ,x 为任意实数. (2)点P(x,y)在y 轴上0=⇔x ,y 为任意实数. (3)点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0).3.两条坐标轴夹角平分线上点的坐标的特征(1)点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等. (2)点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数.4.和坐标轴平行的直线上点的坐标的特征(1)位于平行于x 轴的直线上的各点的纵坐标相同。
(2)位于平行于y 轴的直线上的各点的横坐标相同。
5.关于x 轴、y 轴或远点对称的点的坐标的特征(1)点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数. (2)点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数.(3)点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数.6.点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x (3)点P(x,y)到原点的距离等于22y x +知识点三、函数及其相关概念1.变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
八年级数学之一次函数的图像知识点最新5篇数学一次函数知识点篇一一、定义与定义式:自变量x和因变量y有如下关系:y=kx+b则此时称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
即:y=kx(k为常数,k≠0)二、一次函数的性质:1.y的变化值与对应的x的变化值成正比例,比值为k即:y=kx+b(k为任意不为零的实数b取任何实数)2、当x=0时,b为函数在y轴上的截距。
三、一次函数的图像及性质:1.作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图像——一条直线。
因此,作一次函数的图像只需知道2点,并连成直线即可。
(通常找函数图像与x轴和y轴的交点)2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b.(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
3.k,b与函数图像所在象限:当k>0时,直线必通过一、三象限,y随x的增大而增大;当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b=0时,直线通过原点当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限四、确定一次函数的)○(表达式:已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b.(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b.所以可以列出2个方程:y1=kx1+b……①和y2=kx2+b……②(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
五、一次函数在生活中的应用:1、当时间t一定,距离s是速度v的一次函数。
s=vt.2、当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。
平面直角坐标系与函数的概念1.平面直角坐标系如图所示:注意:坐标原点、x轴、y轴不属于任何象限。
2.点的坐标的意义:平面中,点的坐标是由一个“有序实数对”组成,如(-2,3),横坐标是-2,纵坐标是-3,横坐标表示点在平面内的左右位置,纵坐标表示点的上下位置。
3.各个象限内和坐标轴的点的坐标的符号规律①各个象限内的点的符号规律如下表。
说明:由上表可知x轴的点可记为(x , 0) ,y轴上的点可记做(0 , y )。
⒋对称点的坐标特征:点P(yx,)①关于x轴对称的点P1(yx-,);②关于y轴对称的点P2(yx,-);③关于原点对称的点P3(yx--,)。
5.坐标平面内的点和“有序实数对” (x , y)建立了___________关系。
6.第一、三象限角平分线上的点到_____轴、_____轴的距离相等,可以用直线___________表示;第二、四象限角平线线上的点到_____轴、_____轴的距离也相等,可以用直线___________表示。
7.函数基础知识(1) 函数:如果在一个变化过程中,有两个变量x、y,对于x的,y都有与之对应,此时称y是x的,其中x是自变量,y是.(2)自变量的取值范围:①使函数关系式有意义;②在实际问题的函数式中,要使实际问题有意义。
(3)常量:在某变化过程中的量。
变量:在某变化过程中的量。
(4) 函数的表示方法:①;②;③。
【巩固练习】1. 点P(3,-4)关于y轴的对称点坐标为_______,它关于x轴的对称点坐标为_______.它关于原点的对称点坐标为_____.2.龟兔赛跑,它们从同一地点同时出发,不久兔子就把乌龟远远地甩在后面,于是兔子便得意洋洋地躺在一棵大树下睡起觉来.乌龟一直在坚持不懈、持之以恒地向终点跑着,兔子一觉醒来,看见乌龟快接近终点了,这才慌忙追赶上去,但最终输给了乌龟.下列图象中能大致反映龟兔行走的路程S随时间t变化情况的是( ).3.如果点M(a+b,ab)在第二象限,那么点N(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限4.函数y=中自变量x的取值范围是()A.x≥1-B.x≠3 C.x≥1-且x≠3 D.1x<-5.右图是韩老师早晨出门散步时,离家的距离y与时间x的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是()6.已知M(3a-9,1-a)在第三象限,且它的坐标都是整数,则a等于()A.1 B.2 C.3 D.07.在平面直角坐标系中,点(34)P-,到x轴的距离为()A.3 B.3- C.4D.4-8.线段CD 是由线段AB 平移得到的。
一、选择题1.如图,平面直角坐标系中,一次函数333=-+y x分别交x轴、y轴于A、B两点.若C是x轴上的动点,则2BC AC+的最小值()A.236+B.6 C.33+D.42.如图,在平面直角坐标系中,点A的坐标为(﹣2,3),AB⊥x轴,AC⊥y轴,D是OB的中点.E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,43)B.(0,1)C.(0,103)D.(0,2)3.若直线y=kx+b经过第一、二、四象限,则函数y=bx-k的大致图像是()A.B.C.D.4.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A.B.C .D .5.甲、乙两汽车从A 城出发前往B 城,在整个行程中,汽车离开A 城的距离y 与时间t 的对应关系如图所示.下列结论错误的是( ).A .A ,B 两城相距300kmB .行程中甲、乙两车的速度比为3∶5C .乙车于7:20追上甲车D .9:00时,甲、乙两车相距60km 6.将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为( )A .22y x =--B .22y x =-+C .27y x =--D .27y x =-+ 7.甲,乙两车分别从A , B 两地同时出发,相向而行.乙车出发2h 后休息,当两车相遇时,两车立即按原速度继续向目的地行驶.设甲车行驶的时间为x (h ), 甲,乙两车到B 地的距离分别为y 1(km ), y 2(km ), y 1, y 2关于x 的函数图象如图.下列结论:①甲车的速度是45a km /h ;②乙车休息了0.5h ;③两车相距a km 时,甲车行驶了53h .正确的是( )A .①②B .①③C .②③D .①②③ 8.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .9.如图,一次函数443y x =-的图像与x 轴,y 轴分别交于点A ,点B ,过点A 作直线l 将ABO ∆分成周长相等的两部分,则直线l 的函数表达式为( )A .26y x =-B .23y x =-C .1322y x =-D .3y x =- 10.直线y kx b =+经过一、三、四象限,则直线y bx k =-的图象只能是图中的( ) A . B . C . D . 11.已知:将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( )A .经过第一、二、三象限B .与x 轴交于()1,0-C .与y 轴交于()0,1D .y 随x 的增大而减小12.某一次函数的图象经过点()1,2,且y 随x 的增大而增大,则这个函数的表达式可能是( )A .24y x =+B .31y x =-C .31y x =-+D .24y x =-+13.若点P 在一次函数31y x =-+的图象上,则点P 一定不在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 14.下列说法正确的是( )①从开始观察时起,50天后该植物停止长高;②直线AC 的函数表达式为165y x =+ ③第40天,该植物的高度为14厘米;④该植物最高为15厘米A .①②③B .②④C .②③D .①②③④ 15.下列命题中,①()1,2A -关于y 轴的对称点为()1,2--;②162±;③2y x =-+与x 轴交于点()2,0;④22x y =-⎧⎨=⎩是二元一次方程23x y +=-的一个解.其中正确的个数有( )A .1B .2C .3D .4 二、填空题16.一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③当x <3时,y 1<y 2正确的是_____.17.如图,直线y =12x +b 交x 轴于点A ,交y 轴于点B ,OA =2,点C 是x 轴上一点,且△ABC 是直角三角形,满足这样条件的点C 的坐标是_____.18.如图1,在△ABC 中,AB >AC,D 是边BC 上一动点,设B,D 两点之间的距离为x,A,D 两点之间的距离为y ,表示y 与x 的函数关系的图象如图2所示.则线段AC 的长为_____,线段AB 的长为______.19.如图,已知,,a b c 分别是Rt ABC △的三条边长,90C ∠=︒,我们把关于x 的形如a b y x c c =+的一次函数称为“勾股一次函数”;若点351,5P ⎛⎫ ⎪ ⎪⎝⎭在“勾股一次函数”的图象上,且Rt ABC △的面积是10,则c 的值是_________.20.如果直线y=2x+3与直线y=3x ﹣2b 的交点在y 轴上,那么b 的值为___.21.如图,一个直角三角形与一个正方形在同一水平线上,此三角形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x ,三角形与正方形重叠部分的面积为y ,在下面的平面直角坐标系中,线段AB 表示的是三角形在正方形内部移动的面积图象,C 点表示的是停止运动后图象的结束点,下面有三种补全图象方案,正确的方案是______.①②③22.已知:一次函数()21y a x =-+的图象不经过第三象限,化简224496a a a a -++-+=_________.23.已知y 是关于x 的正比例函数,当1x =-时,2y =,则y 关于x 的函数表达式为____.24.如图,直线y =﹣43x +8与x 轴、y 轴分别交于点A 、B ,∠BAO 的角平分线与y 轴交于点M ,则OM 的长为_____.25.若()11,A x y ,()22,B x y 是一次函数(1)2y a x =-+图像上的不同的两个点,当12x x >时,12y y <,则a 的取值范围是_________.26.平面直角坐标系中,点A 坐标为()23,3,将点A 沿x 轴向左平移a 个单位后恰好落在正比例函数23y x =-的图象上,则a 的值为__________.三、解答题27.已知如图,直线113:4l y x m =-+与y 轴交于A(0,6),直线22:1l y kx =+分别与x 轴交于点B(-2,0),与y 轴交于点C .两条直线相交于点D ,连接AB .求:(1)直线12l l 、的解析式;(2)求△ABD 的面积;(3)在x 轴上是否存在一点P ,使得43ABP ABD S S =△△,若存在,求出点P 的坐标;若不存在,说明理由.28.周末了,小红带弟弟一起荡秋千,秋千离地面的高度()m h 与摆动时间()s t 之间的关系如图所示.(1)根据函数的定义,请判断变量h 是否为t 的函数?(2)当 2.8s t =时,h 的值是多少?并说明它的实际意义;(3)秋千摆动第二个来回需要多少时间?29.已知点(2,﹣4)在正比例函数y =kx 的图象上.(1)求k 的值;(2)若点(﹣1,m )也在此函数y =kx 的图象上,试求m 的值.30.慧慧和甜甜上山游玩,慧慧乘坐缆车,甜甜步行,两人相约在山顶的缆车终点会合,已知甜甜行走到缆车终点的路程是缆车到山顶的线路长的2倍,慧慧在甜甜出发后50分才乘上缆车,缆车的平均速度为180米/分.设甜甜出发x 分后行走的路程为y 米.图中的折线表示甜甜在整个行走过程中y 随x 的变化关系.(1)甜甜行走的总路程是______米,她途中休息了______分.(2)分别求出甜甜在休息前和休息后所走的路程段上的步行速度.(3)当慧慧到达缆车终点时,甜甜离缆车终点的路程是多少.。
初二数学考试 济宁学院附属中学李涛一、选择题:1. 在实数,,0,,,﹣1.414,有理数有( )A . 1个B . 2个C . 3个D . 4个2. 9的算术平方根是 A .3B .-3C .81D .-813. 估计的值在( )之间. A . 1与2之间 B . 2与3之间 C . 3与4之间 D . 4与5之间. 4.﹣8的立方根是( ) A . ﹣2B . ±2C . 2D . ﹣5. 点A (1,﹣2)关于x 轴对称的点的坐标是( ) A . (1,﹣2)B . (﹣1,2)C . (﹣1,﹣2)D . (1,2)6. 坐标平面上有一点A ,且A 点到x 轴的距离为3,A 点到y 轴的距离恰为到x 轴距离的3倍.若A 点在第二象限,则A 点坐标为何?( ) A .(﹣9,3) B .(﹣3,1) C .(﹣3,9) D .(﹣1,3)7. (2014上海市)如果一次函数y kx b =+的图象经过第一象限,且与y 轴负半轴相交,那么( ) A .0k >,0b > B .0k >,0b < C .0k <,0b > D .0k <,0b <8. 直线y=﹣x+1经过的象限是( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D . 第一、三、四象限9.(2014•黔南州)二元一次方程组的解是( ) A .B .C .D .10.(2014•温州)一次函数y =2x +4的图象与y 轴交点的坐标是( ) A . (0,﹣4)B . (0,4)C . (2,0)D . (﹣2,0)11.(2014山东济南)若一次函数5)3(+-=x m y 的函数值y 随x 的增大而增大,则A .0>mB .0<mC .3>mD .3<m12.(2014年福建漳州)如图,在5×4的方格纸中,每个小正方形边长为1,点O ,A ,B 在方格纸的交点(格点)上,在第四象限内的格点上找点C ,使△ABC 的面积为3,则这样的点C 共有( )A .2个B .3个C .4个D .5个第13题二、填空题:13. 已知实数x 、y 满足+|y-2|=0,则x +y14. 若点A (m+2,3)与点B (﹣4,n+5)关于y 轴对称,则m+n= . 15. 如图,一个正比例函数图像与一次函数1+-=x y 的图像相交于点P ,则这个正比例函数的表达式是____________16. 已知是二元一次方程组的解,则m-2n 为 .17. 若一次函数y=kx+1(k 为常数,k≠0)的图象经过第一、二、三象限,则的取值范围是 .18. (2014•邵阳)如图,在平面直角坐标系xOy 中,已知点A (3,4),将OA 绕坐标原点O 逆时针旋转90°至OA ′,则点A ′的坐标是 . 三、解答题: 18.计算: +|﹣5| (﹣)2+|﹣4|×2﹣1﹣(﹣1)0.19.解方程组: (1)(2)20. (2014•湘潭)在边长为1的小正方形网格中,△AOB 的顶点均在格点上, (1)B 点关于y 轴的对称点坐标为 ; (2)A 点关于x 轴的对称点坐标为 ;(3)将△AOB 向左平移3个单位长度得到△A 1O 1B 1,,A 1的坐标为 .21.(2014•湖南怀化)设一次函数y=kx+b (k≠0)的图象经过A (1,3)、B (0,﹣2)两点,试求k ,b 的值.22. 某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中含药量y 与时间t 之间近似满足如图所示曲线: (1)由图像可知,当服药12小时后,每毫升血液中含药量是 (2)求出21t 时,y 与t 之间的函数关系式; (3)据测定:每毫升血液中含药量不少于4微克 时治疗疾病有效,问服药后多长时间治疗疾病有效.23. 如图,Rt △OAB 的斜边AO 在x 轴的正半轴上,直角顶点B 在第四象限内,AB=3,OB=1, (1)求A 两点的坐标. (2)求△ABO 的面积. (3)求B 两点的坐标.21y(微克)t(小时)8O624. 如图,A 、B 分别是x 轴上位于原点左右两侧的点,点P (2,p )在第一象限,直线PA 交y 轴于点C (0,2),直线PB 交y 轴于点D ,△AOP 的面积为6;(1) 求△COP 的面积;(2) 求点A 的坐标及p 的值;(3) 若△BOP 与△DOP 的面积相等,求直线BD 的函数解析式。
一、平面直角坐标系 1. 有序数对有顺序的两个数a 与b 组成的数对叫做有序数对,记作(),a b .利用有序数对,可以准确地表示出一个位置.2. 平面直角坐标系定义:平面直角坐标系是由两条互相垂直的数轴组成,且两轴的交点是原点,同一数轴上的单位长度是一样的,但两轴上的单位长度不一定相同.注意数轴有三个要素——原点、正方向和单位长度.我们规定水平的数轴叫做横轴,取向右为正方向;另一数轴叫纵轴,取向上为正方向.知识点睛中考要求平面直角坐标系与一次函数3. 象限和轴:横轴(x 轴)上的点(x ,y )的坐标满足:0y =;纵轴(y 轴)上的点(x ,y )的坐标满足:0x =;第一象限内的点(x ,y )的坐标满足:00x y >⎧⎨>⎩;第二象限内的点(x ,y )的坐标满足:00x y <⎧⎨>⎩;第三象限内的点(x ,y )的坐标满足:00x y <⎧⎨<⎩;第四象限内的点(x ,y )的坐标满足:00x y >⎧⎨<⎩;4. 点的坐标:已知点P 分别向x 轴和y 轴作垂线,设垂足分别是A 、B ,这两点在x 轴、y 轴的坐标分别是a 、b ,则点P 的坐标为(a ,b ).点的坐标是一对有序数,横坐标写在纵坐标前面,中间用“,”号隔开,再用小括号括起来.5. 特殊直线:与横轴平行的直线:点表示法(x ,m ),x 为任意实数,0m ≠的常数(即直线y m =);与纵轴平行的直线:点表示法(n ,y ),y 为任意实数,0n ≠的常数(即直线x n =); 一、三象限角平分线:点表示法(x ,y ),x ,y 为任意实数,且x y =; 二、四象限角平分线:点表示法(x ,y ),x ,y 为任意实数,且x y =-;6. 点到线的距离点(a ,b )到直线y m =(m 为常数)的距离为b m -,当0m =时,就是点到横轴(x 轴)的 距离为b ;点(a ,b )到直线x n =(n 为常数)的距离为a n -,当0n =时,就是点到纵轴(y 轴)的距离为a ;这个知识点在已知三点的坐标求三角形面积时会用到.7. 对称:①点(x ,y )关于横轴(x 轴)的对称点为(x ,y -); ②点(x ,y )关于纵轴(y 轴)的对称点为(x -,y );③点(x ,y )关于原点(0,0)的对称点为(x -,y -); ④点(x ,y )关于点(a ,b )的对称点为(2a x -,2b y -);8. 平移:⑴点平移:①将点(x ,y )向右(或向左)平移a 个单位可得对应点(x a +,y )或(x a -,y ). ②将点(x ,y )向上(或下)平移b 个单位,可得对应点(x ,y b +)或(x ,y b -). ⑵图形平移:①把一个图形各个点的横坐标都加上(或减去)一个正数a ,相应的新图形就是把原图形向右(或 向左)平移a 个单位.②如果把图形各个点的纵坐标都加上(减去)一个正数a ,相应的新图形就是把原图形向上(或 向下)平移a 个单位.二、函数与变量 常量与变量的概念:我们在现实生活中所遇到的一些实际问题,存在一些数量关系,其中有的量永远不变,同时也出现了一些数值会发生变化的两个量,且这两个量之间相互依赖、密切相关.在某一变化过程中,可以取不同数值的量,叫做变量.在某一变化过程中,有两个量,例如x 和y ,对于x 的每一个值,y 都有惟一的值与之对应,其中x 是自变量,y 是因变量,此时也称y 是x 的函数.在一些变化过程中,还有一种量,它的取值始终保持不变,我们称之为常量.例如:圆的面积S 与圆的半径r 存在相应的关系:2πS r =,这里π表示圆周率;它的数值不会变化,是常量,S 随着r 的变化而变化,r 是自变量,S 是因变量;◆ “y 有唯一值与x 对应”是指在自变量的取值范围内,x 每取一个确定值,y 都唯一的值与之相对应,否则y 不是x 的函数.◆ 判断两个变量是否有函数关系,不仅要有关系式,还要满足上述确定的对应关系.x 取不同的值,y 的取值可以相同. 例如:函数2(3)y x =-中,2x =时,1y =;4x =时,1y =.◆ 函数不是数,它是指在一个变化过程中两个变量之间的关系,函数本质就是变量间的对应关系.数学上表示函数关系的方法通常有三种:⑴解析法:用数学式子表示函数的方法叫做解析法.譬如:30S t =,2S R π=. ⑵列表法:通过列表表示函数的方法.⑶图象法:用图象直观、形象地表示一个函数的方法.关于函数的关系式(即解析式)的理解:● 函数关系式是等式. 例如4y x =就是一个函数关系式. ● 函数关系式中指明了那个是自变量,哪个是函数.通常等式右边代数式中的变量是自变量,等式左边的一个字母表示函数.例如:y =x 是自变量,y 是x 的函数. ● 函数关系式在书写时有顺序性.例如:31y x =-+是表示y 是x 的函数,若写成13yx -=就表示x 是y 的函数. ● 求y 与x 的函数关系时,必须是只用变量x 的代数式表示y ,得到的等式右边只含x 的代数式.自变量的取值范围:很多函数中,自变量由于受到很多条件的限制,有自己的取值范围,例如y =中,自变量x 受到开平方运算的限制,有10x -≥即1x ≥;当汽车行进的速度为每小时80公里时,它行进的路程s 与时间t 的关系式为80s t =;这里t 的实际意义影响t 的取值范围t 应该为非负数,即0t ≥. 在初中阶段,自变量的取值范围考虑下面几个方面: ⑴根式:当根指数为偶数时,被开方数为非负数. ⑵分母中含有自变量:分母不为0.⑶实际问题:符合实际意义.函数图象:函数的图象是由平面直角中的一系列点组成的.描点法画函数图象的步骤:⑴列表; ⑵描点; ⑶连线.函数解析式与函数图象的关系:⑴满足函数解析式的有序实数对为坐标的点一定在函数图象上; ⑵函数图象上点的坐标满足函数解析式.三、一次函数及其性质● 知识点一 一次函数的定义一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,这时即是前一节所学过的正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式.⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数.● 知识点二 一次函数的图象及其画法⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线. ⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取()00,,()1k ,两点; ②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0b k ⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点.⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,有时直接称为直线y kx b =+.● 知识点三 一次函数的性质⑴当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大; ⑵当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小.● 知识点四 一次函数y kx b =+的图象、性质与k 、b 的符号⑵一次函数y kx b =+中,当0k >时,其图象一定经过一、三象限;当0k <时,其图象一定经过二、四象限.当0b >时,图象与y 轴交点在x 轴上方,所以其图象一定经过一、二象限;当0b <时,图象与y 轴交点在x 轴下方,所以其图象一定经过三、四象限.反之,由一次函数y kx b =+的图象的位置也可以确定其系数k 、b 的符号.知识点五 用待定系数法求一次函数的解析式⑴定义:先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待字系数法. ⑵用待定系数法求函数解析式的一般步骤: ①根据已知条件写出含有待定系数的解析式; ②将x y ,的几对值,或图象上的几个点的坐标代入上述的解析式中,得到以待定系数为未知数的方程或方程组; ③解方程(组),得到待定系数的值; ④将求出的待定系数代回所求的函数解析式中,得到所求的函数解析式.板块一、平面直角坐标系【例1】 ⑴在平面直角坐标系中,点()12A x x --,在第一象限,则x 的取值范围是 ;⑵ 点12,a ⎛⎫- ⎪⎝⎭在第二象限的角平分线上,则a = ;⑶如果点()12P m m -,在第四象限,那么m 的取值范围是( ) A .210<<m B .021<<-m C .0<m D .21>m ⑷对任意实数x ,点2(2)P x x x -,一定不在..( ) A .第一象限B .第二象限C .第三象限D .第四象限【例2】 ⑴点()35P -,关于x 轴对称的点的坐标为( ) A .()35--,B .()53,C .()35-,D .()35, ⑵点()21P -,关于y 轴对称的点的坐标为( ) A .()21--,B .()21,C .()21-,D .()21-,⑶在平面直角坐标系中,点()23P -,关于原点对称点P '的坐标是 . ⑷已知点P (1a +,21a -)关于x 轴的对称点在第一象限,求a 的取值范围.【例3】 ⑴ 如图,在平面直角坐标系中,直线l 是第一、三象限的角平分线.实验与探究:①由图观察易知A (2,0)关于直线l 的对称点'A 的坐标为(0,2),请在图中分别标明B (5,3),C (2-,5)关于直线l 的对称点'B 、'C 的位置,并写出他们的坐标: 'B ,'C ; 归纳与发现:②结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P (a ,b )关于第一、三象限的角平分线l 的对称点'P 的坐标为 (不必证明); ③点A (a ,b )在直线l 的下方,则a ,b 的大小关系为 ;若在直线l 的上方,则 . ⑵ 已知:如图,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为(100)A ,,(04)C ,,点D 是OA 的中点,点P 在BC 边上运动.当ODP △是腰长为5的等腰三角形时,点P 的坐标为________.例题精讲y xl665454332121-1-2-3-1-2-3CPBDOAxy【巩固】 如图,把图①中的A 经过平移得到O (如图②),如果图①中A 上一点P 的坐标为()m n ,,那么平移后在图②中的对应点P '的坐标为 .【例4】 在平面直角坐标系中,点()25A ,与点B 关于y 轴对称,则点B 的坐标是( ) A .(52)--,B .()25--,C .()25-,D .()25-,【例5】 在平面直角坐标系中,已知线段AB 的两个端点分别是()41A --,,()11B ,,将线段AB 平移后得到线段A B '',若点A '的坐标为()22-,,则点B '的坐标为( ) A .()43,B .()34,C .()12--,D .()21--,板块二、函数及其图像【例6】 ⑴下列图形中的曲线不表示y 是x 的函数的是( ).DCBAyxOyxO yx OyxO⑵小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.请写出小张的存款y 与从现在开始的月份数x 之间的函数关系式及自变量x 的取值范围.【例7】 如图,在矩形ABCD 中,AB=2,1BC =,动点P 从点B 出发,沿路线B C D →→作匀速运动,那么ABP ∆的面积S 与点P 运动的路程x 之间的函数图象大致是( )【例8】 某污水处理厂的一个净化水池设有2个进水口和1个出水口,三个水口至少打开一个.每个进水口进水的速度由图甲给出,出水口出水的速度由图乙给出.某一天0点到6点,该水池的蓄水量与时间的函数关系如图丙所示.通过对图象的观察,小亮得出了以下三个论断:⑴0点到3点只进水不出水;⑵3点到4点不进水只出水,⑶4点到6点不进水也不出水.其中正确的是( )A .⑴B .⑶C .⑴⑶D .⑴⑵⑶甲 乙 丙(小时)))【例9】 小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( ) A .12分钟 B .15分钟 C .25分钟 D .27分钟DC P B AB .C .D .【例10】 如图表示甲、乙两名选手在一次自行车越野赛中,路程y (km )随时间x (min )的变化的图像(全程),根据图像回答以下问题:(1)求比赛开始多少分钟时,两人第一次相遇? (2)求这次比赛的全程是多少?(3)求比赛开始多少分钟时,两人第二次相遇?板块三、一次函数图像【例11】 一次函数的图象过点()1,0,且函数值随着自变量的增大而减小,写出一个符合这个条件的一次函数解析式 .【巩固】 已知一次函数的图象过点()0,3与()2,1,则这个一次函数y 随x 的增大而 .【例12】 下列图形中,表示一次函数y mx n =+与正比例函数y mnx =(m 、n 为常数且0mn ≠)的图像是下图中的()AB C D【例13】 如图所示,在同一直角坐标系中,一次函数1y k x =,2y k x =,3y k x =,4y k x =的图像分别是1l ,2l ,3l ,4l ;那么1k ,2k ,3k ,4k 的大小关系是.ll【例14】 已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( )ABCD板块四、一次函数解析式的确定【例15】 已知一次函数y ax b=+的图象经过点(02A,,(14B ,,()4C c c +,.⑴ 求c ;⑵ 求222a b c ab ac bc ++---的值.【例16】如图,将直线OA向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是.板块五、一次函数与几何综合【例17】已知:如图,直线y=+与x轴交于点A,与直线y=相交于点P.(1)求点P的坐标.(2)请判断OPA∆的形状并说明理由.(3)动点E从原点O出发,以每秒1个单位的速度沿着O→P→A的路线向点A匀速运动(E 与点O、A重合),过点E分别作EF x⊥轴于F,EB y⊥轴于B.设运动t秒时,矩形EBOF与OPA∆重叠部分的面积为S.求:①S与t之间的函数关系式.②当t为何值时,S最大,并求S的最大值.【例18】 在平面直角坐标系中,直线162y x =-+与x 轴、y 轴分别交于B 、C 两点,⑴ 直接写出B 、C 两点的坐标;⑵ 直线y x =与直线162y x =-+交于点A ,动点P 从点O 沿OA 方向以每秒1个单位的速度运动,设运动时间为t 秒(即OP t =)过点P 作PQ x ∥轴交直线BC 于点Q ,①若点P 在线段OA 上运动时(如图),过P 、Q 分别作x 轴的垂线,垂足分别为N 、M ,设矩形PQMN 的面积为S ,写出S 和t 之间的函数关系式,并求出S 的最大值;②若点P 经过点A 后继续按原方向、原速度运动,当运动时间t 为何值时,过P 、Q 、O 三点的圆与x 轴相切.【例19】 如图,平面直角坐标系xOy 中,一条直线l 与x 轴交于点A ,与y 轴交于点(0,2)B ,与正比例函数(0)y mx m =≠的图像交于点(1,1)P (1)求直线l 的解析式;(2)求AOP ∆的面积MSDC 模块化分级讲义体系 初中数学.中考复习.第04讲.学生版 Page 13 of 15【例20】 如图,在平面直角坐标系xOy 中,O 是坐标原点。
一、选择题1.如图,平面直角坐标系中,一次函数333=-+y x 分别交x 轴、y 轴于A 、B 两点.若C 是x 轴上的动点,则2BC AC +的最小值( )A .236+B .6C .33+D .42.已知函数y kx b =+的图象如图所示,则函数y bx k =-的图象大致是( )A .B .C .D . 3.如图,在平面直角坐标系中,点A 的坐标为(﹣2,3),AB ⊥x 轴,AC ⊥y 轴,D 是OB 的中点.E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A .(0,43)B .(0,1)C .(0,103)D .(0,2) 4.将直线2y x =-向下平移后得到直线l ,若直线l 经过点(),a b ,且27a b +=-,则直线l 的解析式为( )A .22y x =--B .22y x =-+C .27y x =--D .27y x =-+ 5.已知一次函数2y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()2,4-B .()2,4--C .()2,4D .()0,46.关于x 的正比例函数y kx =与一次函数y kx x k =+-的大致图像不可能是( ) A . B .C .D .7.若关于x 、y 的二元一次方程组42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩的解为非负数,且a 使得一次函数(1)3y a x a =++-图象不过第四象限,那么所有符合条件的整数a 的个数是( ) A .2B .3C .4D .5 8.若点(-2,y 1),(3,y 2)都在函数y =-2x +b 的图像上,则y 1与y 2的大小关系是( )A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法确定 9.直线y kx b =+经过一、三、四象限,则直线y bx k =-的图象只能是图中的( ) A . B . C . D . 10.下表反映的是某地区用电量x (千瓦时)与应交电费y (元)之间的关系: 用电量x (千瓦时)1 2 3 4 ······ 应交电费y (元) 0.55 1.1 1.65 2.2 ······下列说法:①x 与y 都是变量,且x 是自变量,y 是x 的函数;②用电量每增加1千瓦时,应交电费增加0.55元;③若用电量为8千瓦时,则应交电费4.4元;④若所交电费为2.75元,则用电量为6千瓦时,其中正确的有( )A .4个B .3个C .2个D .1个 11.圆的周长公式是2C r π=,那么在这个公式中,关于变量和常量的说法正确的是( )A .2是常量,C 、π、r 是变量B .2、π是常量,C 、r 是变量 C .2是常量,r 是变量D .2是常量,C 、r 是变量 12.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <-二、填空题13.如图,直线1:22l y x =-+交x 轴于点A ,交y 轴于点B ,直线21:12y l x =+交x 轴于点D ,交y 轴于点C ,直线1l 、2l 交于点M .(1)点M 坐标为________;(2)若点E 在y 轴上,且BME 是以BM 为一腰的等腰三角形,则E 点坐标为________.14.下列函数:①3x y =,②2y x =,③1y x =,④23y x =-,⑤()2221y x x x =--+其中是一次函数的有_____.(填序号)15.正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 3C 2、…,按如图所示的方式放置.点A 1、A 2、A 3、…,和点C 1、C 2、C 3,…,分别在直线y =kx +b (k>0)和x 轴上,已知点B 1(1,1),B 2(3,2),则点B 2021的坐标是_________________.16.如图,在平面直角坐标系中,点A 、C 分别在x 轴、y 轴上,四边形ABCO 是边长为2的正方形,点D 为AB 的中点,点P 为OB 上的一个动点,连接DP 、AP ,当点P 满足DP AP +的值最小时,则点P 的坐标为______.17.直线y =12x ﹣1向上平移m 个单位长度,得到直线y =12x+3,则m =_____. 18.如图,直线(0)y kx b k =+≠经过(1,2)A --和(3,0)B -两点,则关于x 的不等式组10x kx b +<+<的解是____________.19.已知一次函数12y kx k =-(k 是常数)和21y x =-+.(1)无论k 取何值,12y kx k =-(k 是常数)的图像都经过同一个点,则这个点的坐标是_______;(2)若无论x 取何值,12y y >,则k 的值是_______.20.若()11,A x y ,()22,B x y 是一次函数(1)2y a x =-+图像上的不同的两个点,当12x x >时,12y y <,则a 的取值范围是_________.三、解答题21.如图,顶点M 在y 轴上的抛物线2=y ax c +与直线1y x =+相交于,A B 两点,且点A 在x 轴上,点B 的横坐标为2,连接,AM BM ,(1)求抛物线对应的函数表达式;(2)判断ABM ⊿的形状,并说明理由;(3)若将(1)中的抛物线沿y 轴上下平移,则如何平移才能使平移后的抛物线过点(2,3)--?22.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 23.已知点(2,﹣4)在正比例函数y =kx 的图象上.(1)求k 的值;(2)若点(﹣1,m )也在此函数y =kx 的图象上,试求m 的值.24.已知1y +与3x -成正比例,且5x =时,8y =,(1)求y 与x 之间的函数解析式;(2)当6y =-时,求x 的值.25.某商品经销店欲购进A 、B 两种纪念品,用160元购进的A 种纪念品与用240元购进的B 种纪念品的数量相同,每件B 种纪念品的进价比A 种纪念品的进价贵10元. (1)求A 、B 两种纪念品每件的进价分别为多少元?(2)若这两种纪念品共购进1000件,由于A 种纪念品销量较好,进购时A 不少于B 种纪念品的数量,且不超过B 种纪念品的1.5倍,问共有多少种进购方案?(3)该商店A 种纪念品每件售价24元,B 种纪念品每件售价35元,在(2)的条件下求出哪种方案获利最多,并求出最大利润.26.某水果生产基地销售苹果,提供以下两种购买方式供客户选择:方式1:若客户缴纳1200元会费加盟为生产基地合作单位,则苹果成交价为3元/千克. 方式2:若客户购买数量达到或超过1500千克,则成交价为3.5元/千克;若客户购买数量不足1500千克,则成交价为4元/千克.设客户购买苹果数量为x (千克),所需费用为y (元)﹒(1)若客户按方式1购买,请写出y (元)与x (千克)之间的函数表达式.(备注:按方式1购买苹果所需费用=生产基地合作单位会费+苹果成交总价)(2)如果购买数量超过1500千克,请说明客户选择哪种购买方式更省钱.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】作直线AB 关于x 轴的对称直线AP ,过点C 作CD AP ⊥于点D ,过点B 作BE AP ⊥于点E ,在Rt ACD △中,30CAD ∠=︒,2AC CD =,所以()22BC AC BC CD +=+,因为BC CD BE +≥,求出BE 的长可求出2BC AC +的最小值.【详解】解:∵一次函数=y x 分别交x 轴、y 轴于A 、B 两点,∴()3,0A ,(B ,3,OA OB ∴==∴AB ==, ∵在Rt AOB 中,12OB AB =, 30BAO ∴∠=︒,作直线AB 关于x 轴的对称直线AP ,过点C 作CD AP ⊥于点D ,过点B 作BE AP ⊥于点E ,30PAO ∴∠=︒ ,60BAE BAO PAO ∴∠=∠+∠=︒ ,∴在Rt ABE △中,30ABE ∠=︒,1122AE AB ∴==⨯=3BE ∴===又∵在Rt ACD △中,2AC CD =,∴ ()22BC AC BC CD +=+,BC CD BE +≥,∴2BC AC +=()226BC CD BE =+≥=,故选:B .【点睛】本题是一次函数的综合题,考查了一次函数与坐标轴的交点,垂线的性质,直角三角形的性质,轴对称等知识,利用垂线段最短是解本题的关键.2.B解析:B【分析】根据函数y kx b =+在坐标系中得位置可知0,0k b >>,然后根据系数的正负即可判断函数y bx k =-的位置.【详解】函数y kx b =+的图像经过一、二、三象限,0,0k b ∴>>,0k -<∴∴函数y bx k =-的图像经过一、三、四象限,故选:B .【点睛】本题考查了一次函数与系数的关系,根据函数在坐标系中的位置得出系数的正负是解题关键.3.B解析:B【分析】作点A 关于y 轴的对称点A',连接A'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点.【详解】解:作点A 关于y 轴的对称点A ',连接A 'D ,与y 轴交于点E ,此时△ADE 的周长最小值为AD +DA '的长;∵A 的坐标为(﹣2,3),AB ⊥x 轴,B 点坐标为(-2,0), D 是OB 的中点,∴D 点坐标为:(﹣1,0),A 关于y 轴的对称点A',可知A '(2,3),设A 'D 的直线解析式为y =kx +b ,则:230k b k b +=⎧⎨-+=⎩, 解得:11k b =⎧⎨=⎩, ∴A 'D 的直线解析式为y =x +1,当x =0时,y =1∴E (0,1).故选:B .【点睛】本题考查了待定系数法求解析式和求一次函数图象与坐标轴交点坐标,能够利用轴对称求线段的最短距离,将AE +DE 的最短距离转化为两点之间,线段最短,并能利用一次函数求出点的坐标是解题的关键.4.C解析:C【分析】可设直线l 的解析式为y=-2x+c ,由题意可得关于a 、b 、c 的一个方程组,通过方程组消去a 、b 后可以得到c 的值,从而得到直线l 的解析式.【详解】解:设直线l 的解析式为y=-2x+c ,则由题意可得:227a c b a b -+=⎧⎨+=-⎩①②, ①+②可得:b+c=b-7,∴c=-7,∴直线l 的解析式为y=-2x-7,故选C .【点睛】本题考查用待定系数法求一次函数的解析式,设定一次函数解析式后再由题意得到含有待定系数的方程或方程组并由方程或方程组得到待定系数的值是解题关键.5.A解析:A【分析】根据函数解析式知函数图象过点(0,2),由一次函数y 随x 的增大而减小,得到函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2,即可得到答案.【详解】∵一次函数2y kx =+,当x=0时y=2,∴函数图象过点(0,2),∵一次函数y 随x 的增大而减小,∴函数图象经过第一、二、四象限,且第一、四象限内点的纵坐标小于2,第二象限内点的纵坐标大于2,故选:A .【点睛】此题考查一次函数的性质,熟记一次函数的性质并熟练解决问题是解题的关键. 6.D解析:D【分析】分k >0、k <0两种情况找出函数y=kx 及函数y=kx+x-k 的图象经过的象限,以及图象的变化趋势对照四个选项即可得出结论.【详解】解:设过原点的直线为l 1:y=kx ,另一条为l 2:y=kx+x-k ,当k <0时,-k >0,|k|>|k+1|,l 1的图象比l 2的图象陡,当k <0,k+1>0时,l 1:y kx =的图象经过二、四象限,l 2:y=kx+x-k 的图象经过一、二、三象限,故选项A 正确,不符合题意;当k <0,k+1<0时,l 1:y kx =的图象经过二、四象限,l 2:y=kx+x-k 的图象经过一、二、四象限,故选项B 正确,不符合题意;当k >0,k+1>0,-k <0时,l 1:y kx =的图象经过一、三象限,l 2:y=kx+x-k 的图象经过一、三、四象限,l 1的图象比l 2的图象缓,故选项C 正确,不符合题意;而选项D 中,,l 1的图象比l 2的图象陡,故选项D 错误,符合题意;故选:D【点睛】本题考查了正比例函数的图象及一次函数的图象,分k >0、k <0两种情况找出两函数图象经过的象限以及|k|的大小与函数图象的缓陡的关系是解答此题的关键.7.C解析:C【分析】由题意,先求出二元一次方程组的解,结合解为非负数得到a 的取值范围,再根据一次函数的性质,即可得到答案.【详解】 解:42313312x y a x y a +=+⎧⎪⎨-=+⎪⎩解方程组,得:521322x a y a ⎧=+⎪⎪⎨⎪=-+⎪⎩, ∵方程的解是非负数, ∴50213022a a ⎧+≥⎪⎪⎨⎪-+≥⎪⎩, 解得:532a -≤≤, ∵一次函数(1)3y a x a =++-图象不过第四象限,∴1030a a +>⎧⎨-≥⎩, ∴13a -<≤,∴a 的取值范围是13a -<≤,∴所有符合条件的整数a 有:0,1,2,3,共4个;故选:C .【点睛】本题考查了一次函数的性质,解二元一次方程组,解不等式组,解题的关键是掌握运算法则,正确求出a 的取值范围.8.A解析:A【分析】根据一次函数的性质得出y 随x 的增大而减小,进而求解.【详解】由一次函数y=-2x+b 可知,k=-2<0,y 随x 的增大而减小,∵-2<3,∴12y y >,故选:A .【点睛】本题考查一次函数的性质,熟知一次函数y=kx+b (k≠0),当k <0时,y 随x 的增大而减小是解题的关键.9.D解析:D【分析】先根据直线y kx b =+经过一、三、四象限判断出k 和b 的正负,从而得到直线y bx k =-的图象经过的象限.【详解】解:∵直线y kx b =+经过第一、三、四象限,∴0k >,0b <,∴0k -<,∴直线y bx k =-经过第二、三、四象限.故选:D .【点睛】本题考查一次函数的图象和性质,解题的关键是掌握根据系数的正负判断函数图象经过的象限的方法.10.B解析:B【分析】根据一次函数的定义,由自变量的值求因变量的值,以及由因变量的值求自变量的值,判断出选项的正确性.【详解】解:通过观察表格发现:每当用电量增加1千瓦时,电费就增加0.55,∴y 是x 的一次函数,故①正确,②正确,设y kx b =+,根据表格,当1x =时,0.55y =,当2x =时, 1.1y =,0.552 1.1k b k b +=⎧⎨+=⎩,解得0.550k b =⎧⎨=⎩, ∴0.55y x =,当8x =时,0.558 4.4y =⨯=,故③正确,当 2.75y =时,0.55 2.75x =,解得5x =,故④错误.故选:B .【点睛】本题考查一次函数的应用,解题的关键是掌握一次函数的实际意义和对应函数值的求解. 11.B解析:B【分析】常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.【详解】解:圆的周长计算公式是c=2πr ,C 和r 是变量,2、π是常量,故选:B .【点睛】本题主要考查了常量,变量的定义,识记的内容是解题的关键.12.C解析:C【分析】根据图象可得,直线y =mx +b 与y =kx 的交点坐标为(−1,3),所以当x >−1时,直线y =mx +b ,落在直线y =kx 的下方,可得关于x 的不等式mx +b <kx .即可得结论.【详解】根据图象可知:直线y mx b =+与y kx =的交点坐标为:(1,3)-,则关于x 的不等式mx b kx +<的解集为1x >-.故选:C .【点睛】本题考查了一次函数与一元一次不等式、一次函数的图象,解决本题的关键是掌握一次函数与一元一次不等式的关系.二、填空题13.()()或()或()【分析】(1)联立两个方程组求解即可(2)根据题意有以M 为顶点和以B 为顶点两种情况分别求解即可【详解】解:(1)联立两个方程组得将①代入②得:解得:将代入①得:∴点坐标为()故答解析:(25,65) (0,25)或(0,2-或(0,2+ 【分析】(1)联立两个方程组求解即可(2)根据题意有以M 为顶点和以B 为顶点两种情况,分别求解即可【详解】解:(1)联立两个方程组得22112y x y x =-+⎧⎪⎨=+⎪⎩①② 将①代入②得:22=112x x -++ 解得:2=5x 将2=5x 代入①得:5=6y ∴点M 坐标为(25,65)故答案为:(25,65) (2)由22y x =-+得 当x=0时,y=2故B(0,2)以BM 为一腰时,有两种情况当BME 以M 为顶点时,设E 点坐标为(0,y ) 则66255y -=- 解得:25y = 故E 点坐标为(0,25) 当BME 以B 为顶点时,设E 点坐标为(0,y )∵5= 若E 在B 下方则y=25- 若E 在B 上方则y=2故E 点坐标为(0,25-)或(0,25+)故答案为:(0,25)或(0,25-)或(0,25+) 【点睛】 本题考查两直线相交问题及等腰三角形的性质,熟练掌握等要三角形的定义及性质是解本题的关键14.①②④⑤【分析】根据一次函数的定义进行一一判断【详解】①是一次函数;②是一次函数③不是一次函数④是一次函数⑤是一次函数故答案为:①②④⑤【点睛】考查了一次函数的定义解题关键是熟记:一般地形如y=kx解析:①②④⑤【分析】根据一次函数的定义进行一一判断.【详解】①3x y =是一次函数;②y =是一次函数,③1y x =不是一次函数,④23y x =-是一次函数,⑤()222121y x x x x =--+=+是一次函数.故答案为:①②④⑤.【点睛】考查了一次函数的定义,解题关键是熟记:一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数. 15.(22021-122020)【分析】首先利用待定系数法求得直线的解析式然后分别求得B1B2B3…的坐标可以得到规律:Bn (2n-12n-1)据此即可求解【详解】解:∵B1的坐标为(11)点B2的坐标解析:(22021-1,22020)【分析】首先利用待定系数法求得直线的解析式,然后分别求得B 1,B 2,B 3…的坐标,可以得到规律:B n (2n -1,2n-1),据此即可求解.【详解】解:∵B 1的坐标为(1,1),点B 2的坐标为(3,2),∴正方形A 1B 1C 1O 1边长为1,正方形A 2B 2C 2C 1边长为2,∴A 1的坐标是(0,1),A 2的坐标是:(1,2),代入y=kx+b 得:12b k b ⎧⎨+⎩==, 解得:11k b ⎧⎨⎩==, 则直线的解析式是:y=x+1.∵A 1B 1=1,点B 2的坐标为(3,2),∴点A 3的坐标为(3,4),∴A 3C 2=A 3B 3=B 3C 3=4,∴点B 3的坐标为(7,4),∴B 1的纵坐标是:1=20,B 1的横坐标是:1=21-1,∴B 2的纵坐标是:2=21,B 2的横坐标是:3=22-1,∴B 3的纵坐标是:4=22,B 3的横坐标是:7=23-1,∴B n 的纵坐标是:2n-1,横坐标是:2n -1,则B n (2n -1,2n-1).∴B 2021的坐标是:(22021-1,22020),故答案为:(22021-1,22020).【点睛】此题主要考查了待定系数法求函数解析式和坐标的变化规律.此题难度较大,注意正确得到点的坐标的规律是解题的关键.16.【分析】根据正方形的性质得到点AC 关于直线OB 对称连接CD 交OB 于P连接PAPD则此时PD+AP的值最小求得直线CD的解析式为y=-x+2由于直线OB 的解析式为y=x解方程组得到P()即可【详解】解解析:44 , 33⎛⎫⎪⎝⎭【分析】根据正方形的性质得到点A,C关于直线OB对称,连接CD交OB于P,连接PA,PD,则此时,PD+AP的值最小,求得直线CD的解析式为y=-12x+2,由于直线OB的解析式为y=x,解方程组得到P(43,43)即可.【详解】解:∵四边形ABCO是正方形,∴点A,C关于直线OB对称,连接CD交OB于P,连接PA,PD,则此时,PD+AP的值最小,∵OC=OA=AB=2,∴C(0,2),A(2,0),∵D为AB的中点,∴AD=12AB=1,∴D(2,1),设直线CD的解析式为:y=kx+b,∴212k bb+⎧⎨⎩==,∴122kb⎧=-⎪⎨⎪=⎩,∴直线CD的解析式为:y=-12x+2,∵直线OB的解析式为y=x,∴122y xy x⎧-+⎪⎨⎪⎩==,解得:x=y=43, ∴P (43,43), 故答案为:(43,43). 【点睛】 本题考查了正方形的性质,轴对称-最短路线问题,待定系数法求一次函数的解析式,正确求出直线CD 的解析式是解题的关键.17.4【分析】首先求出直线y =x ﹣1向上平移m 个单位长度得到y =﹣1+m 结合y =x+3即可求得m 的值【详解】解:直线y =x ﹣1向上平移m 个单位长度得到直线y =x+3∴﹣1+m =3解得m =4故答案为4【点解析:4【分析】首先求出直线y =12x ﹣1向上平移m 个单位长度得到y =12x ﹣1+m ,结合y =12x+3,即可求得m 的值.【详解】解:直线y =12x ﹣1向上平移m 个单位长度,得到直线y =12x+3, ∴﹣1+m =3,解得m =4,故答案为4.【点睛】此题主要考查了一次函数图象与几何变换,关键是掌握直线y=kx+b 向上平移a 个单位,则解析式为y=kx+b+a ,向下平移a 个单位,则解析式为y=kx+b-a .18.【分析】用待定系数法求出kb 的值然后将它们代入不等式组中进行求解即可【详解】解:将A(−1-2)和B(−30)代入y=kx+b 中得:解得:∴y=-x-3则x+1<-x-3<0解得:−3<x<−2故答解析:32x -<<-【分析】用待定系数法求出k 、b 的值,然后将它们代入不等式组中进行求解即可.【详解】解:将 A(− 1,-2) 和 B(− 3,0) 代入 y=kx+b 中得:230k b k b -+=-⎧⎨-+=⎩解得:13k b =-⎧⎨=-⎩,∴y=-x-3,则 x+1<-x-3<0 ,解得: −3<x<−2,故答案为:−3<x<−2【点睛】本题考查了待定系数法求一次函数解析式以及不等式的解法,难度不大.19.(20)-1【分析】(1)解析式变形为y =k (x ﹣2)即可得到无论k 取何值y1=kx ﹣2k (k 是常数)的图象都经过点(20);(2)由题意可知y1的图象始终在y2上方得到两函数不相交平行即可得出k =解析:(2,0) -1【分析】(1)解析式变形为y =k (x ﹣2),即可得到无论k 取何值,y 1=kx ﹣2k (k 是常数)的图象都经过点(2,0);(2)由题意可知,y 1的图象始终在y 2上方,得到两函数不相交,平行,即可得出k =﹣1.【详解】解:(1)∵y =kx ﹣2k =k (x ﹣2),∴当x =2时,y =0,∴这个点的坐标是(2,0),故答案为(2,0);(2)∵无论x 取何值,y 1>y 2,∴y 1的图象始终在y 2上方,∴两个函数平行,∴k =﹣1,故答案为﹣1.【点睛】本题考查了一次函数与一元一次不等式,一次函数的性质,难度适中.20.【分析】根据一次函数的图象当时y 随着x 的增大而减小分析即可【详解】解:因为A (x1y1)B (x2y2)是一次函数图象上的不同的两个点当x1>x2时y1<y2可得:解得:a <1故答案为:【点睛】本题考解析:1a <【分析】根据一次函数的图象(1)2y a x =-+,当10a -<时,y 随着x 的增大而减小分析即可.【详解】解:因为A (x 1,y 1)、B (x 2,y 2)是一次函数(1)2y a x =-+图象上的不同的两个点, 当x 1>x 2时,y 1<y 2,可得:10a -<,解得:a <1.故答案为:1a <.【点睛】本题考查了一次函数图象上点的坐标特征.函数经过的某点一定在函数图象上.解答该题时,利用了一次函数的图象y=kx+b 的性质:当k <0时,y 随着x 的增大而减小;k >0时,y 随着x 的增大而增大;k=0时,y 的值=b ,与x 没关系.三、解答题21.(1)21y x =-;(2)△ABM 为直角三角形,见解析;(3)向下平移6个单位过点(-2,-3)【分析】(1)将y=0,x=2,分别代入直线解析式求出x 、y 的值,即求得点A 、B 的坐标,再利用待定系数法即可求解抛物线解析式;(2)令x=0,代入抛物线解析式求得M 坐标,利用两点间的距离公式求得AB 、AM 、BM ,再利用勾股定理的逆定理即可判定△ABM 为直角三角形;(3)设抛物线2=1y x -平移后的解析式为y=x 2-1+m ,将点(-2,-3)代入上式,得到关于m 的方程,解方程即可得出结论.【详解】(1)当y=0时,有x+1=0,则x=-1.∴A (-1,0),当x=2时,y=2+1=3,∴B (2,3),将A ,B 两点代入2=y ax c +中, 得0=34a c a c +⎧⎨=+⎩,解得=11a c ⎧⎨=-⎩, ∴抛物线的解析式为2=1y x -.(2)三角形ABM 为直角三角形,理由如下:在抛物线中,当x=0时,y=-1,∴M (0,-1),又∵A (-1,0),B (2,3), ∴AB AM BM又∵22220AM AB BM +==,∴三角形ABM 为直角三角形.(3)设抛物线2=1y x -沿y 轴平移后的解析式为2=1y x m -+,将点(-2,-3)代入上式,得m=-6,则向下平移6个单位过点(-2,-3).【点睛】本题考查待定系数法求解析式,一次函数图象上的坐标特征、两点间的距离公式及勾股定理的逆定理,解题的关键是(1)求出A 、B 的坐标,(2)求出求得AB 、AM 、BM 的长,(3)正确写出平移后的抛物线解析式,难度适中.22.22y x =-【分析】首先根据题意设出关系式:y=k (x-1),再利用待定系数法把x=3,y=4代入,可得到k 的值,再把k 的值代入所设的关系式中,可得到答案;【详解】解:因为y 与1x -成正比例,所以设()1y k x =-(0k ≠)∵当3x =时,4y =,∴()431k =-解得2k =所以, y 与x 之间的函数关系式为:22y x =-【点睛】此题主要考查了对正比例的理解,关键是设出关系式,代入x ,y 的值求k .23.(1)-2;(2)2【分析】(1)结合点(2,-4)在正比例函数y =kx 的图象上,根据正比例函数的性质,列方程并求解,即可得到答案;(2)根据(1)的结论,得到正比例函数的解析式;结合题意,通过计算即可得到答案.【详解】(1)∵点(2,-4)在正比例函数y =kx 的图象上∴-4=2k解得:k =-2;(2)结合(1)的结论得:正比例函数的解析式为y =-2x∵点(-1,m )在函数y =-2x 的图象上∴当x =-1时,m =-2×(-1)=2.【点睛】本题考查了正比例函数的知识;解题的关键是熟练掌握正比例函数、坐标的性质,从而完成求解.24.(1)92922y x =-;(2)179 【分析】(1)设1(3)(0)y k x k +=-≠,利用待定系数法求k ,从而确定函数关系式; (2)将y=-6代入解析式求x 的值.【详解】解设1(3)(0)y k x k +=-≠(1)将58x y =⎧⎨=⎩代入,得 81(53)k +=- 即92=k ∴92922y x =- (2)当6y =-时929622x -=- 179x = 【点睛】本题考查待定系数法求函数解析式,掌握待定系数法计算步骤,正确计算是解题关键. 25.(1)A 、B 两种纪念品每件进价分别为20元、30元;(2)101种;(3)A 种500件,B 种中500件时,最大利润为4500元【分析】(1) 设A 种纪念品每件进价a 元,则B 种纪念品每件进价(10)x +元,根据题意列方程求解即可;(2)设A 种纪念品购进y 件,则B 种纪念品购进(1000)y -件,依据题意列不等式组,求出y 的整数取值范围,即可得出进购方案;(3)根据题意得出利润的关系式,再结合第二问y 的取值范围求出最大利润.【详解】解:(1)设A 种纪念品每件进价a 元,则B 种纪念品每件进价(10)x +元. 根据题意得16024010x x =+,去分母, 得:160(10)240x x +=,解得:20x , 经检验,20x 是原方程的解,1030x +=(元),∴A 种纪念品每件进价20元,B 种纪念品每件进价30元.(2)设A 种纪念品购进y 件,则B 种纪念品购进(1000)y -件,根据题意得:10001.5(1000)y y y y ≥-⎧⎨≤-⎩,解得:500600y ≤≤. 又y 只能取整数,500y ∴=,501, (600)则共有101种购进方案.(3)由题意得,最大利润为:(2420)(3530)(1000)5000W y y y =-+--=-+,在500600y ≤≤时,当500y =时,max 4500W =(元),∴当A 种购进500件,B 种购进500件时,利润最大为4500元.【点睛】本题考查分式方程、一元一次不等式组及一次函数的综合应用,解题关键在于充分理解题意,根据题意列出相关关系式进行求解.26.(1)12003y x =+;(2)当15002400x <<时,选择方案二省钱;当 2400x =时,两种方案费用一样;当2400x >时,选择方案一省钱.【分析】(1)根据题意即可得出y (元)与x (千克)之间的函数表达式;(2)设方式2购买时所需费用记作y 2元,求出y 2与x (千克)之间的函数表达式,结合(1)的结论解答即可;【详解】解:(1)根据题意得:12003y x =+.(2)方案一:112003y x =+,方案二:2 3.5y x =,当12y y >,12003 3.5,x x +>2400,x <当12,12003 3.5y y x x =+=,2400,x =当12,12003 3.5y y x x <+>2400,x >∴当15002400x <<时,选择方案二省钱;当2400x =时,两种方案费用一样;当2400x >时,选择方案一省钱.【点睛】此题主要考查一次函数的应用;得到两种方案总付费的等量关系是解决本题的关键.。
方法回顾
则本年度新增用电量y (亿度)与(x – 0.4 )(元)成反比例,又当x = 0.65时,y = 0.8。
(1)、求y 与x 之间的函数关系式;
(2)、若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%?[ 收益 = 用电量 × ( 实际电价 – 成本价 )]
4、为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费,超过7立方米的部分每立方米收费1.5元有并加收0.4元的城市污水处理费,设某户每月用水量为x (立方米),应交水费为y (元)
(1) 分别写出用水未超过7立方米和多于7立方米时,y 与x 间的函数关系式;
(2) 如果某单位共有用户50户,某月共交水费514.6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?
5、辽南素以“苹果之乡”著称,某乡组织20辆汽车装满运三种苹果42吨到外地销售。
按规定每辆车只装同一种苹果,且必须装满,每种苹果不少于2车。
(1)、设有x 辆车装运种A 苹果,用y 辆车装运种B 苹果,根据下表提供的信息求y 与x 之间的函数关系式,并求x 的取值范围;
(2)、设此次外销活动的利润为W (百元),求w 与x 的函数关系式以及最大利润,并安排相应的车辆分配方案。
苹果品种
A B C 每辆汽车运载量 (吨)
2.2 2.1 2 每吨苹果获利 (百元) 6 8 5
6、某自行车保管站在某个星期日接受保管的自行车共有3500辆次,其中变速车保管费是每辆一次0.5元,一般车保管是每辆一次0.3元。
(1)、若设一般车停放的辆次数为x ,总的保管费收入为y 元,试写出y 关于x 的函数关系式;
(2)、若估计前来停放的3500辆次自行车中,变速车的辆次不小于25%,但不大于40%,试求该保管站这个星期日收入保管费总数的范围。
7、张师傅驾车运送货物到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示。
请根据图象回答下列问题:
(1)汽车行驶 小时后加油,
中途加油 升;
(2)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由。
解
8.(本题满分14分)甲船从A 港出发顺流匀速行驶向B 港,行至某处,发现船上一救生圈不知何时落入水中,立即原路返回,找到救生圈后,继续行驶向B 港,乙船从B 港出发逆流匀速行驶向A 港。
已知救生圈漂流的速度和水流速度相同;甲乙两船在静水中的速度相同。
甲乙两船离A 港的距离、1y 、2y (km )与行驶时间t(h)之间的函数图像如图所示。
(1)
写出乙船在逆流中行驶的速度;
(2)求甲船在逆流中行驶的路程;
(3)求甲船离A 港的距离、1y 与行驶时间x 之间的函数关系式;
(4)求救生圈落入水中时,甲船离开A 港的距离。
【参考公式:船顺流航行的速度=船在静水中航行的速度+水流速度;船逆流
航行的速度=船在静水中航行的速度-水流速度;】。