生理学-细胞膜物质转运
- 格式:ppt
- 大小:3.07 MB
- 文档页数:54
生理学主动转运的名词解释生理学主动转运是指生物体利用一定的能量,通过细胞膜上的载体蛋白,将物质从浓度较低的一侧转运到浓度较高的一侧的过程。
这种过程不仅发生在人类身体内部,还存在于动植物等其他生物体中。
本文将对生理学主动转运的定义、机制以及与人类健康的关系进行探讨。
一、生理学主动转运的定义与分类生理学主动转运是细胞内外物质的运输过程中,由细胞膜上的载体蛋白负责调控的一种机制。
它通过利用细胞内的能量,将物质从浓度较低的一侧转移到浓度较高的一侧,以维持细胞内外物质的平衡。
生理学主动转运可分为两种类型:主动转运和辅助转运。
1. 主动转运:主动转运是通过细胞膜上的能量驱动的载体蛋白,将物质从浓度低的一侧转移到浓度高的一侧。
这种转运方式需要能量的提供,通常是通过三磷酸腺苷(ATP)的水解释放能量来完成。
2. 辅助转运:辅助转运是通过细胞膜上的载体蛋白,将物质从浓度低的一侧转移到浓度高的一侧。
与主动转运不同的是,辅助转运不需要细胞提供额外的能量,它可以利用化学梯度和电化学梯度来推动物质的转运。
二、生理学主动转运的机制生理学主动转运的机制涉及多种载体蛋白,其中最重要的是ATP酶(ATPase)和转运蛋白。
这些载体蛋白负责将物质从低浓度侧向高浓度侧转运,并在此过程中消耗能量。
1. ATPase:在主动转运的过程中,ATPase是一种关键的酶,它能够将细胞内的高能磷酸键水解为ADP和无机磷酸盐,并释放出能量。
这种能量可以用来驱动细胞内的其他生化反应,包括载体蛋白的运作。
2. 转运蛋白:主动转运过程中还离不开转运蛋白。
转运蛋白位于细胞膜上,通过结构上的变化来实现物质的转运。
一般来说,转运蛋白可以将物质从浓度较低的一侧转移到浓度较高的一侧。
这些蛋白通常具有专一性,只与特定的物质结合。
三、生理学主动转运与人体健康的关系生理学主动转运在人体健康中发挥着重要的作用。
它不仅使细胞维持内外物质的平衡,还参与多种生理过程,如营养物质吸收、药物转运和细胞间信号传递等。
-主动转运是细胞通过耗能的过程将物质逆浓度梯度或电位梯度进⾏的跨膜转运过程。
可分为原发性主动转运和继发性主动转运两类。
(⼀)原发性主动转运 1.概念:细胞直接利⽤代谢产⽣的能量将物质逆浓度梯度或电位梯度进⾏跨膜转运的过程。
2.转运对象:通常是带电离⼦。
3.特点:①直接利⽤细胞代谢产⽣的ATP;②介导转运的膜蛋⽩称为离⼦泵(ATP酶),如钠泵、钙泵、氢泵等。
钠-钾泵是在细胞膜上普遍存在的离⼦泵,简称钠泵。
钠泵具有ATP酶的活性,⼜称为Na+K+依赖性ATP酶。
钠泵的活动对维持细胞正常的结构及功能具有重要的意义:①钠泵活动造成的膜内外Na+和K+浓度差是细胞⽣物电活动产⽣的前提,其⽣电性活动⼀定程度上可影响静息电位的数值;②钠泵活动能维持细胞的正常形态、胞质渗透压、体积、pH、Ca2+浓度的相对稳定;③钠泵活动造成的细胞内⾼K+,是细胞内许多代谢反应所必需的条件;④钠泵活动所造成的膜内外Na+浓度势能差(势能储备)是其他物质继发性主动转运的动⼒。
(⼆)继发性主动转运 1.概念:多种物质在进⾏逆浓度梯度或电位梯度的跨膜转运时,所需的能量不直接来⾃ATP的分解,⽽是依靠Na+在膜两侧浓度差,即依靠存储在离⼦浓度梯度中的能量完成转运,这种间接利⽤ATP能量的主动转运过程称为继发性主动转运。
2.转运对象:①葡萄糖和氨基酸在⼩肠粘膜上⽪及肾⼩管上⽪细胞的重吸收;②神经递质在突触间隙被神经末梢重吸收;③甲状腺上⽪细胞的聚碘;④肾⼩管上⽪细胞的Na+H+交换、Na+——Ca2+交换等。
3.特点:①间接利⽤细胞代谢产⽣的ATP能量;②介导转运的膜蛋⽩为转运体。
如果被转运的离⼦或分⼦都向同⼀⽅向运动,称为同向转运,相应的转运体称为同向转运体;如果被转运的离⼦或分⼦彼此向相反⽅向运动,则称为反向转运或交换,相应的转运体称为反向转运体或交换体。
1.细胞膜物质转运的方式有几种?各有何特点?答:单纯扩散:不消耗细胞本身的能量,不需要特殊膜蛋白的参与,顺浓度梯度或电化学梯度转运;易化扩散:物质转运的动力来自高浓度溶液本身的势能,细胞不另行供能,顺浓度梯度或电化学梯度转运,需要特殊膜蛋白的参与;主动转运:物质转运过程中细胞本身要消耗能量,能量来自细胞的代谢活动,逆浓度和电位梯度进行物质转运,需要特殊膜蛋白的参与;入胞和出胞:大分子物质或团块借助于细胞膜形成吞饮泡或分泌囊泡的形式进入或排出细胞2.简述由G蛋白偶联受体介导的跨膜信号转到过程喝主要路径?答:主要过程:(1)受体识别配体并与之结合(2)激活与受体偶联的g蛋白(3)激活G蛋白效应器(4)产生第二信使(5)激活或抑制依赖第二信使的蛋白激酶或通道主要路径:(1)受体—G蛋白—AC信号转导途径()受体—G蛋白—PLC 信号转导途径(3)受体—G蛋白—离子通道途径3,简述静息电位的形成机制?答:静息时,膜对钾离子的通透性为钠离子的10到100倍。
钾离子可在化学驱动力的作用下流向膜外,而膜对包内的有机负离子几乎不通透,于是他们便在膜外表面和内表面分别构成正负离子层,形成外正内负的极化状态,此即静息电位的形成机制4,简述动作电位的产生机制?答:(1)动作电位上升支的形成由于细胞介受刺激后,细胞膜结构中存在电压门空性钠离子通道开房,细胞膜对钠离子的通透性突然增大,细胞膜外钠离子快速内流形成动作电位的上升支(2)动作电位的下降支的形成由于钠离子通道失活,膜对钾离子的通透性增加,细胞内钾离子外流,膜内电位由反极化状态恢复到原先静息电位水平(3)动作电位后膜内外离子的恢复细胞每兴奋一次或产生一次动作电位,膜电位出现一次波动后,膜电位虽然已经恢复到原先的静息电位水平,但与静息状态相比,总有一部份钠离子在去极化时进入膜内,一部分钾离子在复极化时逸出膜外,出现了膜内钠离子的增多和钾离子的减少,细胞膜内外钠离子,钾离子浓度的变化激活膜上的钠泵,钠泵活动增强,将兴奋时进入细胞内的钠离子蹦出,同时将复极化时逸出细胞外的钾离子泵入,使膜内外钠离子和钾离子的浓度也完全恢复到静息状态水平,构成后电位时相5,简述静息电位,阈刺激,阈电位,峰电位,动作电位,钠泵,局部电位的含义?答:静息电位:细胞在未接受刺激,处于静息状态时存在于细胞膜内外两侧的电位差阈刺激:是引起去极化达到阈电位水平的刺激阈电位:去极化达到刚好产生动作电位时的电位钠泵:是指利用细胞代谢产生的能量逆浓度梯度将钠离子有细胞内液移向细胞外液,同时将细胞外液中的钾离子移向细胞内液,形成并维持细胞内外离子浓度梯度的一种特殊膜蛋白局部电位:膜去极化的程度较小,未达到阈电位水平而不能形成动作电位的电位9,以骨骼肌收缩的“滑动学说“说明骨骼肌收缩的机理?答:根据这一学说,肌纤维收缩时,肌节的缩短并不是因为肌微丝本身的长度有所改变,而是由于两种穿插排列的肌微丝之间发生滑行运动,即肌动蛋白细微丝像“刀入鞘“一样地向肌球蛋白粗微丝之间滑行,结果使明带缩短,暗带不变,H带变窄,z线被牵引向A带靠拢,于是肌纤维的长度缩短3.造血干细胞有哪些基本特征?(1)有很强的潜能;(2)有多相分化的能力;(3)有自我复制的能力6.试述神经细胞动作电位阈兴奋性变化的对应关系,并简述其原因答;峰电位主要对应于细胞的绝对不应期,负后点位期细胞大约处于相对不应期和超常期,而正后电位期则相当于低常期原因:在峰电位的主要时期内,由于钠离子通道已经处于激活或失活状态,对刺激不能产生反应,此时兴奋性威灵,正处于绝对不应期;在负后电位或正后电位时期,钠离子通道已经部分或完全恢复到关闭状态,但由于电压门空性钾离子通道仍开放,钾离子外流仍继续,可以对抗去极化,因而阈强度的刺激不能引起膜产生动作电位,必须是阈上刺激才能使膜产生动作电位,所以兴奋性较低,处于相对不应期或低常期。
一,简述细胞膜的物质转运方式;1.单纯扩散脂溶性物质由高浓度侧向低浓度侧(顺浓度梯度)的扩散2.由载体介导的易化扩散分子在载体蛋白的帮助下跨膜运输。
3。
经通道易化扩散,如钠、钾、钙、氯等离子由膜的高浓度侧向低浓度侧的快速移动。
4。
继发性主动转运,这种间接利用ATP的能量推动物质逆浓度梯度跨膜转运的过程,5。
入胞和出胞大分子物质进出细胞膜的方式6。
原发性主动运输。
细胞直接利用代谢产生的能量将物质逆浓度梯度或电位梯度进行跨膜转运的过程。
二,何谓细胞静息电位?产生的机制如何?静息电位是指细胞处于相对安静状态时(未受到刺激时),存在于细胞膜内外两侧的电位差值。
静息电位产生的机制;细胞内外各种离子的浓度分布不均──细胞内高K+ ;细胞膜对各种离子有选择性的通透──膜在安静时只对K+具有较高的通透性。
三,什么是局部电位?其特点是什么?细胞受刺激后去极化未达到阈电位的电位变化。
特点;1,局部电位大小随刺激强度增加而增大,不表现全或无的特征2。
呈电紧张性扩布,随时间和距离的延长迅速衰减,不能连续向远处传播3,可以叠加,包括空间总和与时间总和。
四,骨骼肌兴奋-收缩偶联的具体过程。
在以膜的电变化为特征的兴奋过程和以肌纤维机械变化为基础的收缩过程之间,存在着某种中介性过程把二者联系起来,这一过程称为兴奋-收缩藕联,具体;细胞接受神经释放的递质或外加刺激兴奋,即产生动作电位,动作电位沿肌细胞膜深入到细胞内的横管传向肌细胞内,至三联管结构,引起纵管终末池上的CA通道开放,CA从终末池被释放入胞质,使胞质CA浓度增高,CA与肌钙蛋白结合,从而触发肌肉收缩。
五,G蛋白偶联受体介导的跨膜信号转导系统G蛋白偶联受体介导的信号转导是指细胞外信号分子-受体复合物与靶细胞的作用通过与G 蛋白的偶联后,导致细胞内信号分子浓度或膜对离子通透性的改变,从而将细胞外信号传递到细胞内的过程。
依次需要:1,G蛋白偶联受体,当细胞外信号分子与该受体结合后可激活G蛋白;2,G蛋白构象的改变可激活效应器酶和离子通道;3,第二信使4,蛋白激酶,能使底物蛋白磷酸化,使信号得到逐级放大,产生各种生物学效应。
医学基础知识考试题库:细胞膜物质转运生理学是医疗卫生事业单位招聘考试中,要求理解性记忆较高的内容,其中细胞膜物质转运属于基础知识,也是常见考点,需要大家熟练掌握。
帮助大家梳理细胞膜物质转运知识点,以便大家更好地理解掌握。
膜对物质的转运方式主要有:单纯扩散、易化扩散、主动转运、出胞和入胞。
细胞膜不仅是细胞内容物和周围环境的屏障,而且具有多种生理功能。
细胞膜是一种具有特殊结构和功能的半透膜,细胞内外的物质交换,都要通过细胞膜转运。
一、单纯扩散指物质分子依据物理学原理,由膜的高浓度一侧向低浓度一侧扩散的过程。
人体体液中存在的脂溶性物质数量并不多,比较肯定的是氧和二氧化碳等气体分子,它们是靠单纯扩散这种方式进出细胞的。
二、易化扩散非脂溶性物质,在膜上特殊蛋白质的帮助下,从膜的高浓度一侧向低浓度一侧扩散的过程。
根据膜上特殊蛋白质作用特点不同,易化扩散分为两种类型。
(一)以载体为中介的易化扩散载体蛋白的作用是在膜的一侧与被转运物质结合,再通过本身的构型改变,将其转运到膜的另一侧。
载体转运的特点:①特异性。
各种载体蛋白与它所转运的物质之间有着一定的结构特异性,如葡萄糖载体只能转运葡萄糖,氨基酸载体只能转运氨基酸。
②饱和现象。
载体转运的能力有一定限度,当被转运物质超过一定限度时,转运量就不再增加,这是由于膜上载体数量有一定限度的缘故。
③竞争抑制。
如果某一载体对A和B两种结构相似的物质都有转运能力时,当A和B两种物质同时存在,A种物质浓度增加,将减弱B种物质的转运。
(二)以通道为中介的易化扩散通道蛋白好像贯通细胞膜的一条孔道,开放时允许被转运物质通过,关闭时物质转运停止。
各种带电离子如K+、Na+、Ca2+、Cl-等,在一定情况下就是通过这种方式进出细胞。
通道的开放和关闭受一定因素控制。
由激素等化学物质控制的,称为化学依从性通道;由膜两侧电位差所决定的,称为电压依从性通道。
神经、肌细胞膜上有K+、Na+和Ca2+等通道,与生物电现象的产生、兴奋传导以及肌收缩有密切关系。
细胞膜物质转运的主要方式及特点细胞膜是细胞内外环境的分界线,起到选择性通透和物质转运的作用。
细胞膜物质转运是指细胞膜上的蛋白质通道或转运体介导的物质运输过程。
细胞膜物质转运的主要方式包括主动转运、被动转运和细胞吞噬。
1. 主动转运主动转运是指物质在细胞膜上通过转运蛋白质,逆浓度梯度进行运输的过程。
主动转运需要耗费细胞内能量(ATP),因此也被称为能动转运。
主动转运可分为原位转运和囊泡转运两种方式。
(1)原位转运:原位转运是指转运蛋白质在细胞膜上直接将物质从细胞外转运到细胞内或从细胞内转运到细胞外。
这种转运方式常见的例子是钠钾泵。
钠钾泵能将细胞内的三价阳离子钠离子和二价阳离子钾离子通过ATP的耗能驱动,从而使细胞内钠离子浓度下降,钾离子浓度上升。
(2)囊泡转运:囊泡转运是指物质通过细胞膜上的囊泡进行转运的过程。
在囊泡转运中,物质首先被包裹在囊泡中,然后囊泡与细胞膜融合,将物质释放到细胞内或细胞外。
囊泡转运在细胞内物质分泌、摄取和吞噬等过程中起到重要作用。
2. 被动转运被动转运是指物质在细胞膜上通过扩散的方式进行运输的过程,不需要耗费细胞内能量。
被动转运可分为简单扩散和依赖载体蛋白的facilitated diffusion。
(1)简单扩散:简单扩散是指物质通过细胞膜的磷脂双层直接进行扩散的过程。
简单扩散是依靠物质的浓度梯度,在细胞膜上自由扩散。
只有无电荷、小分子量和脂溶性的物质才能通过简单扩散进入细胞或离开细胞。
(2)facilitated diffusion:facilitated diffusion是指物质通过细胞膜上的载体蛋白质进行转运的过程。
在facilitated diffusion中,物质通过与载体蛋白质的结合和解离实现跨越细胞膜。
facilitated diffusion主要用于大分子、带电荷或极性物质的转运。
3. 细胞吞噬细胞吞噬是指细胞通过细胞膜上的吞噬小囊进行物质摄取的过程。
在细胞吞噬中,细胞通过将物质包裹在吞噬小囊中,形成吞噬泡。
★细胞膜的物质转运功能:▲具有特异感受结构的通道蛋白质完成的跨膜信号传递由酪氨酸激酶受体完成的跨膜信号转导细胞膜中的酪氨酸激酶受体的肽链有一个α螺旋,跨膜一次,膜外部分与相应的配体特异结合后,可激活膜内侧肽段的蛋白激酶活性,引发此肽段中酪氨酸残基的磷酸化,或促进其它蛋白质底物中的酪氨酸残基的磷酸化,由此引发各种细胞内功能的改变。
★ 静息电位:静息时,质膜两侧存在着外正内负的电位差,称为静息电位(restingpotential ,RP ) 骨骼肌:-90mV ;神经细胞:-70mV ;平滑肌细胞:-55mV产生机制:在静息状态下,细胞膜对K+具有较高的通透性是形成静息电位的最主要因素。
细胞膜内K+浓度约相当于细胞外液的30倍,K+将顺浓度梯度跨膜扩散,但扩散的同时也在细胞膜的两侧形成逐渐增大的电位差,且该电位差造成的驱动力与浓度差的驱动力的方向相反,阻止K+进一步跨膜扩散。
当逐渐增大的电位差驱动力与逐渐减小的浓度差驱动力相等时,便达到了稳态。
此时的膜电位处于K+的平衡电位(E K +=-90~-100mv ),电位差的差值即平衡电位,平衡电位决定着离子的流量。
当细胞外液中K+浓度增加(高钾)时,膜内外K+的浓度差减小,K+因浓度差外移的驱动力降低,K+外流减少。
故达到稳态时,K+平衡电位的绝对值减小;反之亦然。
而细胞膜对Na+亦有一定的通透性,扩散内流的Na+可以部分抵消由K+扩散外流所形成的膜内负电位。
所以,EK+=-90~-100mv,而RP=-70~-90mv 。
可见,细胞外液Na+浓度对RP 的影响不大。
除了以上两个方面,还有钠泵的生电作用。
钠泵使细胞内高钾、细胞外高钠。
若钠泵受抑制,膜内外K+的浓度差减小,K+外流减少,K+影响静息电位水平的因素:(1)细胞膜对K+和Na+的相对通透性,如果膜对钾离子的通透性相对增大,静息电位将增大;(2)细胞外液K+的浓度,细胞外钾离子浓度升高,将使E K 的负值减小,导致静息电位相应减小;(3)钠泵的活动,活动增强将使膜发生一定程度的超极化。
主动转运名词解释生理学主动转运是指一种通过细胞膜进行的物质转移过程,该过程需要能够助推物质从低浓度区域到高浓度区域,完成逆向运动的过程。
这种转运机制依赖于细胞膜上的运输蛋白和ATP(三磷酸腺苷)等物质的活性,能够让物质经过细胞膜进入到细胞内部,并使细胞内部对这种物质进行加工或者利用。
其中,主动转运的过程由两种方式组成:一种是直接利用ATP来完成物质的转运;另一种是依靠细胞膜上的梯度差来完成物质的转运。
无论哪一种方式,主动转运的过程中,细胞膜上的载体蛋白都参与其中,通过配对所需的物质,让其成功地通过细胞膜,并顺利进入到细胞内部。
当发现物质浓度梯度非常大时,细胞通常会选择主动转运机制。
这种机制不仅可以储存和利用更多的物质,而且还能够同时进行多种活动,以便满足细胞内的多种需要。
在一些特殊情况下,例如在体内感染微生物的过程中,细胞需要迅速地吸收足够的氨基酸,以增强自身的免疫能力。
在这种情况下,细胞会利用主动转运机制来提高它们的吸收效率,并快速获取所需的营养。
除了在免疫系统中的应用,细胞还可以通过主动转运机制完成其他一些重要的生理活动。
例如,在离开恶劣环境之前,细胞会利用主动转运机制将钾离子积累到细胞内,以保护细胞的完整性。
同时,在细胞产生锤头结构时,主动转运也将变得非常重要。
锤头结构是一种由活性氧引起的细胞变形,它可以对身体的免疫系统产生重要的影响。
通过利用主动转运机制将表面上的其他物质转移到锤头结构中,细胞可以更加有效地控制它们,并防止它们被摧毁或吞噬。
细胞还可以利用主动转运机制在生物体内维持化学平衡。
这种平衡对于细胞的健康与正常功能实现至关重要。
然而,主动转运机制也与一些疾病的发生相关。
在一些疾病的过程中,细胞膜上的运输蛋白出现了异常。
这种情况通常出现在炎症和感染时。
在这种情况下,细胞膜的过度破坏可能导致这些运输蛋白无法正常工作,从而使得细胞的代谢过程受到影响,并导致一些特殊的疾病发生。
除此之外,一些人类疾病(例如糖尿病)与主动转运机制也有一定的关系。