西安交大数理统计作业(完整版)
- 格式:doc
- 大小:1.27 MB
- 文档页数:26
2(0,)N σ15)X 是来自225122156)X X X ++++服从的分布是___ 机变量X 服从数为λ的]2)1=,则λ= 设两个随机变量X 与Y 的方差分别为共 4 页 第 1 页共4 页第2 页,)X为来自总体n求(1)θ的矩估计;(10分)设ˆθ是一定是θ的相合估计。
共4 页第3 页共4 页第4 页西安交通大学本科生课程考试试题标准答案与评分标准课程名称:概率论与数理统计(A ) 课时:48 考试时间:2007 年7 月9 日(200,169)N 180200169P -⎧⎨⎩1.54)=0.93941()x dx =⎰1X θ=+,得1()(nk f θ==∏,),n1,,),n 当0,)nln k x ∑,求导得似然方程0=其唯一解为2,故θ的极大似然估优于页1(1,F n -(24,19)=0.429,21.507≈∈2的条件下,进一步检验假设:2μ<。
选取检验统计量12(t n n +0.05(43)t =-2.647 1.681-<-)B=)1Y≥=个人在第一层进入十八层楼的电梯,假如每个人以相同的概率从任个人在不同楼层走出电梯的概2=-1Xe-5,,X 都服从参数为分布,若将它们串联成整机,求整机寿命的分布密度。
分)某汽车销售点每天出售的汽车数服从参数为且每天出售的汽车数是相互独立的,西安交通大学本科生课程考试试题标准答案与评分标准课程名称:概率论与数理统计(A)课时:48 考试时间:2008 年7 月9 日三、1exp(),5 X2 (5,)B e-,∴四、设1iX⎧=⎨⎩第,n1n-第 1页1,2,,5min {k X 5,0,x e λ--0,x > exp(5)λ,365,(3652,365iN ⨯⨯3652)3652-⨯=⨯七、()E X dx θθ==+1X θθ=+2⎪⎫; 1)(ni θ==∏()ln nθθ= 第 2 页(0,1)N 的样本9,)X 是来自正态总体N 的置信区间为 分)某卡车为乡村小学运送书籍,共装有1,2,,n.设各部件的状态相互独立,以转中同时需要调整的部件数,求(E X,)X是来自总体的一组样本nˆμ,它是否是的极大似然估计量*μ,它是否是西安交通大学本科生课程考试试题标准答案与评分标准(A)n,则X,nX相互独立,1,2,i n= ()E X=()D X: (1)0x y<<<⎰⎰10000,X独立同分布,1,2,n ,因此当,)n x 中最小值时,的极大似然估计量为 ,}n X 2,}n X X 分布函数是1(1(X F z --,分布密度是((Z x f z μμ>≤ ()n x nxe dx μ--=12min{,,}n X X X 不是统计量X T S -=代入数据()Pλ,且已知{(,)=G x y,X)为来自总体服从参数为…,n,λ>服从以λ(0)求该样本的联合密度函数共2 页第1 页5,,X 是独立同分布的随机变量,其共同密度函数为:,试求5,,)Y X =的数学期望和方差。
应用数理统计答案学号:姓名:班级:目录第一章数理统计的基本概念 (2)第二章参数估计 (14)第三章假设检验 (24)第四章方差分析与正交试验设计 (29)第五章回归分析 (32)第六章统计决策与贝叶斯推断 (35)对应书目:《应用数理统计》施雨著西安交通大学出版社第一章 数理统计的基本概念1.1 解:∵2(,)X N μσ∼ ∴ 2(,)n X N σμ∼∴)(0,1)X N μσ−∼分布∴(1)0.95P X P μ−<=<=又∵ 查表可得0.025 1.96u = ∴ 221.96n σ=1.2 解:(1) ∵ (0.0015)X Exp ∼∴ 每个元件至800个小时没有失效的概率为:8000.001501.2(800)1(800)10.0015x P X P X e dxe −−>==−<=−=∫∴ 6个元件都没失效的概率为: 1.267.2()P e e −−==(2) ∵ (0.0015)X Exp ∼∴ 每个元件至3000个小时失效的概率为:30000.001504.5(3000)0.00151x P X e dxe−−<===−∫∴ 6个元件没失效的概率为: 4.56(1)P e −=−1.4 解:ini n x n x ex x x P ni i 122)(ln 2121)2(),.....,(122=−−Π∑==πσμσ1.5证:∵21122)(na a x n x a x ni ni ii+−=−∑∑==∑∑∑===−+−=+−+−=ni i ni i ni i a x n x x naa x n x x x x 1222211)()(222a) 证:)(11111+=+++=∑n ni i n x x n x )(11)(1111n n n n n x x n x x x n n −++=++=++])()1(1 ))((12)[(11)](11[11)(11212111121211212112n n n i n n n i n i n i ni n n n i n i n in x x n n x x x x n x x n x x n x x n x x n S −+++−−+−−+=−+−−+=−+=++=+=+=+=++∑∑∑∑] )(11))1()((12)([112111212n n n n n n n n n x x n x n x x n x x n x x nS n −++−+−+−−++=++++])(11S [1 ])(1[nS 11212n 212n n n n n x x n n n x x n n n −+++=−+++=++ 1.6证明 (1) ∵22112211221()()()2()()()()()nni ii i nni i i i ni i X X X X X X X X X n X X X n X μμμμμ=====−=−+−=−+−−+−=−+−∑∑∑∑∑(2) ∵2221112221221()22ii i nn ni i i i i ni ni XX X X X nX X nX nX X nX =====−=−+=−+=−∑∑∑∑∑1.10 解: (1).∑∑====ni i n i i x E n x n E X E 11)(1)1()(p np n=⋅=1np mp x D n x n D X D ni in i i )1()(1)1()(121−===∑∑==))(1()(122∑=−=n i i x x n E S E)1(1)])1(1())1(([1)])()(())()(([1])()([1])([12222212212212p mp nn p m p mp n n p m p mp n n x E x D n x E x D n x nE x E n x x E n ni i i n i i n i i −−=+−−+−=+−+=−=−=∑∑∑=== 同理,(2). λ===∑∑==ni i n i i x E n x n E X E 11)(1)1()(λnx D n x n D X D ni in i i 1)(1)1()(121===∑∑==λnn x E x D n x E x D n x nE x E n S E ni i i n i i 1)])()(())()(([1])()([1)(2122122−=+−+=−=∑∑==(3). 2)(1)1()(11b a x E n x n E X E ni i n i i +===∑∑==na b x D nx n D X D ni ini i 12)()(1)1()(2121−===∑∑==12)(1)])()(())()(([1])()([1)(22122122a b nn x E x D n x E x D n x nE x E n S E ni i i n i i −⋅−=+−+=−=∑∑==(4). λ===∑∑==ni i n i i x E n x n E X E 11)(1)1()(nx D nx nD X D ni ini i 2121)(1)1()(λ===∑∑==221221221)])()(())()(([1])()([1)(λnn x E x D n x E x D n x nE x E n S E ni i i n i i −=+−+=−=∑∑==(5). μ===∑∑==ni ini i x E nx nE X E 11)(1)1()(nx D nx nD X D ni i ni i 2121)(1)1()(σ===∑∑==221221221)])()(())()(([1])()([1)(σ⋅−=+−+=−=∑∑==nn x E x D n x E x D n x nE x E n S E ni i i n i i1.11 解:由统计量的定义知,1,3,4,5,6,7为统计量,5为顺序统计量 1.17 证:),(~ λαΓX ∵xe x xf λαααλ−−Γ=∴1)()( 令kXY =ke ky k k e ky yf kyky ⋅Γ=⋅Γ=∴−−−−λαααλαααλαλ11)()( )()()(即 ),(~ky Y αΓ1.18 证:),(~ b a X β∵),()1()( 11b a B x xx f b a −−−=∴),(),( ),()1()( 11b a B b k a B b a B x x x X E b a k k +=−=∴∫∞+∞−−−),(),1()( b a B b a B X E +=∴ba a ab a b a b a a a a b a b a a a b b a b a b a +=Γ+Γ++ΓΓ=Γ++Γ+Γ+Γ=ΓΓ+Γ⋅++ΓΓ+Γ=)()()()()()()1()()1()()()()1()()1(),(),2()(2b a B b a B X E +=))(1()1()()()()2()()2(b a b a a a a b b a b a b a ++++=ΓΓ+Γ⋅++ΓΓ+Γ= 22)]([)()( X E X E X D −=∴2))(1())(1()1(b a b a ab ba ab a b a a a +++=+−++++= 1.19 解:∵ (,)X F n m ∼分布2212(1)022()((1))((1)()()()(1)()()n n m n mn m yn m y n mn nP Y y P X X y m myP X y n n n x x dx m mm ++−−+≤=+≤=<−Γ=+ΓΓ∫2222122221122()()()1((1()()11(1)(1)(,)n n m n m n m n m n m f y P Y y y y yy y yy B ++−−−−′=≤Γ=+ΓΓ−−−−=∴ 22(1)(,)n mn n Y X X m mβ=+∼分布1.20 解:∵ ()X t n ∼分布122212()()((2(1n n P Y y P X y P X xdxn ++−≤=≤=≤≤=+112211221212122()()()(1)()1()(1(()()n n n n n f y P Y y y y n y y nn n +++−−+−−′=≤Γ=+Γ=+ΓΓ∴ 2(1,)2nY X F =∼分布1.21 解: (1) ∵ (8,4)X N ∼分布∴ 4(8,)25X N ∼ 分布,即5(8)(0,1)2X N −∼ ∴ 样本均值落在7.88.2∼分钟之间的概率为:5(7.88)5(8)5(8.28)(7.88.2)()2220.383X P X P −−−≤≤=≤≤=(2) 样本均值落在7.58∼分钟之间的概率为:5(7.58)5(8)5(88)(7.58)(2225(8)(0 1.25)20.3944X P X P X P −−−≤≤=≤≤−=≤≤= 若取100个样品,样本均值落在7.58∼分钟之间的概率为:10(7.88)10(8)10(8.28)(7.88.2)(2222*(0.84130.5)0.6826X P X P −−−≤≤=≤≤=−= 单个样品大于11分钟的概率为:110.77340.2266P =−= 25个样品的均值大于9分钟的概率为210.97980.0202P =−= 100个样品的均值大于8.6分钟的概率为310.99870.0013P =−= 所以第一种情况更有可能发生1.23 解:(1) ∵ 2(0,)X N σ∼分布 ∴ 2(0,X N nσ∼分布∴ 22)(1)nXχσ∼∵ 222221()(ni i nXa X an X an σσ===∑∴ 21a n σ=同理 21b m σ=(2) ∵2(0,)X N σ∼分布 ∴222(1)X χσ∼分布由2χ分布是可加性得:2221()ni i X n χσ=∑∼()ninX c X t m ==∑∼ ∴c =(3) 由(2)可知2221()ni i X n χσ=∑∼2221122211(,)nni ii i n mn mi ii n i n X d Xnn dF n m XmXmσσ==++=+=+=∑∑∑∑∼∴ md n=1.25 证明:∵ 211(,)X N μσ∼分布 ∴ 2211((1)i X μχσ−∼∴ 1221111(()n i i X n μχσ=−∑∼同理 2222212(()n i i Y n μχσ=−∑∼ 1122222112211111222221122112()()(,)()()n n i i i i n n i i i i X n n X F n n Y n Y n μσμσμσμσ====−−=−−∑∑∑∑∼ 第二章 参数估计2.1 (1) ∵ ()X Exp λ∼分布∴ ()1E X λ=令 ˆ1X λ= 解得λ的矩估计为: ˆ1X λ= (2) ∵ (,)X U a b ∼分布∴ ()2a bE X +=2()()12b a D X −=令 1ˆˆ2ab A X +==22221ˆˆˆˆ()()1124n i i b a a b A X n =−++==∑ (22211n i i X X S n =−=∑)解得a 和b 的矩估计为:ˆˆaX bX =−=(3) 110()1E X x x dx θθθθ−=∗=+∫令 1ˆˆ1A X θθ==+∴ˆ1XXθ=− (4) 110()(1)!kk x kE X x x e dx k βββ−−=∗=−∫令ˆkX β= ∴ ˆkXβ=(5) 根据密度函数有2221()22()E X a aE X a λλλ=+=++根据矩估计有1222221ˆˆˆ22ˆˆˆa A X a a A S X λλλ+==++==+解得λ和a 的矩估计为:ˆˆaX λ==(6) ∵ (,)X B m p ∼ ∴ ()E X mp =令 1ˆmpA X == 解得p 的矩估计为:ˆXpm= 2.3解:∵ X 服从几何分布,其概率分布为:1()(1)k P X k p p −==−故p 的似然函数为: 1()(1)ni i x nnL p p p =−∑=−对数似然函数为:1ln ()ln ()ln(1)ni i L p n p x n p ==+−−∑令 1ln ()1()01nii L p n x n p p p =∂=−−=∂−∑ ∴ 1ˆpX= 2.4 解:由题知X 应服从离散均匀分布,⎪⎩⎪⎨⎧≤≤==其它01 1)(Nk N k x p2)(NX E =矩估计: 令 7102=∧N1420=∴∧N 极大似然估计:⎪⎩⎪⎨⎧≤≤=其它07101 1)(NN N L ∵要使)(N L 最大,则710=N710=∴∧N 2.5 解:由题中等式知:2196.196.196.1)025.01(025.0)(1S X +=+=∴+=+−Φ=∴=−Φ−∧∧∧−σμθσμμσθσμθ2.6 解:(1) 05.009.214.2=−=R ∵0215.005.04299.05=×==∴∧d Rσ(2)将所有数据分为三组如下所示:1x 2x 3x 4x5x 6x i R1 2.14 2.10 2.15 2.13 2.12 2.13 0.05 2 2.10 2.15 2.12 2.14 2.10 2.13 0.05 32.11 2.14 2.10 2.11 2.15 2.10 0.050197.005.03946.005.0)05.005.005.0(316=×==∴=++=∴∧d R R σ 2.7 解:(1)⎩⎨⎧+<<=其它 01x 1)(θθx f ∵ θθθθθθ≠+==+=++=∴∧21)()(2121)(X E E X E ∴ X =∧θ不是θ的无偏估计,偏差为21=−∧θθ(2) θ=−21(X E ∵ 21−=∴∧X θ是θ的无偏估计(3)22))(()())(()(θθθθ−+=−+=∧∧X E X D E D MSE41121+=n 2.8 证:由例2.24,令2211x a x a +=∧μ,则∧μ 为μ无偏估计应 满足121=+a a因此1μ,2μ,3μ都是μ的无偏估计)()()()(21)()(2513)()(95)9491)(()())(()()(1233212221212∧∧∧∧∧∧=∧<<===+=∴+==∑μμμμμμμD D D X D D X D D X D X D D a a X D X D a D i i i ∵∵2132121X X +=∴∧μ最有效2.9证: )(~λp X ∵ λλ==∴)( )(X D XEX ∵是λ=)(X E 的无偏估计,2*S 是λ=)( X D 的无偏估计)()1()())1((2*2*S E X E S X E αααα−+=−+∴λλααλ=−+=)1(∴2*)1(SX αα−+是λ的无偏估计2.10 解:因为2222((1))()(1)()(1)()1(1)()11(1)1E X S E X E S na E S n n a E S n n n a n nααααλαλαλαλλ∗∗+−=+−=+−−=+−−−=+−=− 所以 2(1)X S αα∗+−是λ的无偏估计量2.15 解:因为ˆθ是θ的有效估计量ˆˆˆ()()()E uE a b aE b a b u θθθ=+=+=+= 221ˆˆˆˆ()()()()D u D a b a D a D θθθ=+=≤ (其中,1ˆθ是θ的任意无偏估计量中的一个)所以 ˆu是u 的有效估计量 2.26 解: 因为总体服从正态分布,所以)01X U N μσ−=∼(,)对于给定的1α−,查标准正态分布表可得2u α,使得2()1P U u αα<=−即:22()1P X p X ααα−<<=−区间的长度2d L α=<,所以 22224u n L ασ>2.28 解:因为总体服从正态分布,所以)01X U N μσ−=∼(,), 222(1)nS V n χσ=−∼由因为U 和V 是相互独立的,所以(1)X T t n =−∼对于给定的1α−,查标t 分布表可得t α,使得 2()1P U t αα<=−,即:22()1P X X ααμα<<+=− 当30n =,35X =,15S =时,第一家航空公司平均晚点时间μ的95%的置信区间为:(29.3032,40.6968)对于给定的1α−,查标t 分布表可得t α,使得 ()1P U t αα>=−, 即:()1P X αμα<+=− 故μ的具有单侧置信上限的单侧置信区间为(,)X α−∞+ 所以经计算可得:第一家航空公司的单侧上限置信区间为(,39.7327)−∞第二种航空公司的单侧上限置信区间为(,36.3103)−∞所以选择第二家航空公司。
2009(上)《数理统计》考试题(A卷)及参考解答一、填空题(每小题3分,共15分)1,设总体和相互独立,且都服从正态分布,而和是分别来自和的样本,则服从的分布是_______ .解:.2,设与都是总体未知参数的估计,且比有效,则与的期望与方差满足_______ .解:.3,“两个总体相等性检验”的方法有_______ 与____ ___.解:秩和检验、游程总数检验.4,单因素试验方差分析的数学模型含有的三个基本假定是_______ .解:正态性、方差齐性、独立性.5,多元线性回归模型中,的最小二乘估计是_______ .解:.二、单项选择题(每小题3分,共15分)1,设为来自总体的一个样本,为样本均值,为样本方差,则____D___ .(A); (B);(C); (D).2,若总体,其中已知,当置信度保持不变时,如果样本容量增大,则的置信区间____B___ .(A)长度变大; (B)长度变小; (C)长度不变; (D)前述都有可能.3,在假设检验中,分别用,表示犯第一类错误和第二类错误的概率,则当样本容量一定时,下列说法中正确的是____C___ .(A)减小时也减小; (B)增大时也增大;(C)其中一个减小,另一个会增大; (D)(A)和(B)同时成立.4,对于单因素试验方差分析的数学模型,设为总离差平方和,为误差平方和,为效应平方和,则总有___A___ .(A); (B);(C); (D)与相互独立.5,在一元回归分析中,判定系数定义为,则___B____ .(A)接近0时回归效果显著; (B)接近1时回归效果显著;(C)接近时回归效果显著; (D)前述都不对.三、(本题10分)设总体、,和分别是来自和的样本,且两个样本相互独立,和分别是它们的样本均值和样本方差,证明,其中.证明:易知, .由定理可知, .由独立性和分布的可加性可得.由与得独立性和分布的定义可得.四、(本题10分)已知总体的概率密度函数为其中未知参数, 为取自总体的一个样本,求的矩估计量,并证明该估计量是无偏估计量.解:(1),用代替,所以.(2),所以该估计量是无偏估计.五、(本题10分)设总体的概率密度函数为,其中未知参数,是来自总体的一个样本,试求参数的极大似然估计.解:当时,,令,得.六、(本题10分)设总体的密度函数为 未知参数,为总体的一个样本,证明是的一个UMVUE.证明:由指数分布的总体满足正则条件可得,的的无偏估计方差的C-R下界为.另一方面,,即得方差达到C-R下界,故是的UMVUE.七、(本题10分)合格苹果的重量标准差应小于0.005公斤.在一批苹果中随机取9个苹果称重, 得其样本标准差为公斤, 试问:(1)在显著性水平下, 可否认为该批苹果重量标准差达到要求? (2)如果调整显著性水平,结果会怎样?参考数据: , , , .解:(1),则应有:,具体计算得:所以拒绝假设,即认为苹果重量标准差指标未达到要求.(2)新设由则接受假设,即可以认为苹果重量标准差指标达到要求.八、(本题10分)已知两个总体与独立,,,未知,和分别是来自和的样本,求的置信度为的置信区间.解:设分别表示总体的样本方差,由抽样分布定理可知, ,由分布的定义可得.对于置信度,查分布表找和使得,即,所求的置信度为的置信区间为.九、(本题10分)试简要论述线性回归分析包括哪些内容或步骤.解:建立模型、参数估计、回归方程检验、回归系数检验、变量剔除、预测.2009(上)《数理统计》考试题(B卷)及参考解答一、填空题(每小题3分,共15分)1,设总体服从正态分布,而是来自的样本,则服从的分布是_______ .解:.2,是总体未知参数的相合估计量的一个充分条件是_______ .解:.3,分布拟合检验方法有_______ 与____ ___.解:检验、柯尔莫哥洛夫检验.4,方差分析的目的是_______ .解:推断各因素对试验结果影响是否显著.5,多元线性回归模型中,的最小二乘估计的协方差矩阵_______ .解:.二、单项选择题(每小题3分,共15分)1,设总体,是的样本,则___B___ .(A); (B);(C); (D).2,若总体,其中已知,当样本容量保持不变时,如果置信度减小,则的置信区间____B___ .(A)长度变大; (B)长度变小; (C)长度不变; (D)前述都有可能.3,在假设检验中,就检验结果而言,以下说法正确的是____B___ .(A)拒绝和接受原假设的理由都是充分的;(B)拒绝原假设的理由是充分的,接受原假设的理由是不充分的;(C)拒绝原假设的理由是不充分的,接受原假设的理由是充分的;(D)拒绝和接受原假设的理由都是不充分的.4,对于单因素试验方差分析的数学模型,设为总离差平方和,为误差平方和,为效应平方和,则总有___A___ .(A); (B);(C); (D)与相互独立.5,在多元线性回归分析中,设是的最小二乘估计,是残差向量,则___B____ .(A); (B);(C)是的无偏估计; (D)(A)、(B)、(C)都对.三、(本题10分)设总体、,和分别是来自和的样本,且两个样本相互独立,和分别是它们的样本均值和样本方差,证明,其中.证明:易知, .由定理可知, .由独立性和分布的可加性可得.由与得独立性和分布的定义可得.四、(本题10分)设总体的概率密度为其中参数 未知,是来自总体的一个样本,是样本均值,(1)求参数(2)证明不是的无偏估计量.解:(1),令,代入上式得到的矩估计量为.(2),因为,所以.故不是的无偏估计量.五、(本题10分)设总体服从上的均匀分布,是来自总体的一个样本,试求参数的极大似然估计.解:的密度函数为似然函数为显然时,是单调减函数,而,所以是的极大似然估计.六、(本题10分)设总体服从分布,为总体的样本,证明是参数的一个UMVUE.证明:的分布律为.容易验证满足正则条件,于是.另一方面,即得方差达到C-R下界的无偏估计量,故是的一个UMVUE.七、(本题10分)某异常区的磁场强度服从正态分布,由以前的观n α=0.1α=0.05α=0.02514 1.3450 1.7613 2.144815 1.3406 1.7531 2.131516 1.3368 1.7459 2.1199n α=0.1α=0.05α=0.0251421.06423.68526.1191522.30724.99627.4881623.34224.29628.845测可知.现有一台新仪器, 用它对该区进行磁测, 抽测了16个点, 得,问此仪器测出的结果与以往相比是否有明显的差异(α=0.05).附表如下:t分布表χ2分布表解:设:.构造检验统计量,确定拒绝域的形式.由,定出临界值,从而求出拒绝域.而,从而 ,接受假设,即认为此仪器测出的结果与以往相比无明显的差异.八、(本题10分)已知两个总体与独立,,,未知,和分别是来自和的样本,求的置信度为的置信区间.解:设,则,所求的置信度为的置信区间为 .九、(本题10分)试简要论述线性回归分析包括哪些内容或步骤.2011-2012(下)研究生应用数理统计试题(A)1设为正态总体的样本,令,试证,。
2009(上)《数理统计》考试题(A 卷)及参考解答一、填空题(每小题3分,共15分)1,设总体X 和Y 相互独立,且都服从正态分布2(0,3)N ,而129(,,)X X X L 和129(,,)Y Y Y L 是分别来自X 和Y的样本,则U =服从的分布是_______ .解:(9)t .2,设1ˆθ与2ˆθ都是总体未知参数θ的估计,且1ˆθ比2ˆθ有效,则1ˆθ与2ˆθ的期望与方差满足_______ .解:1212ˆˆˆˆ()(), ()()E E D D θθθθ=<. 3,“两个总体相等性检验”的方法有_______ 与____ ___.解:秩和检验、游程总数检验.4,单因素试验方差分析的数学模型含有的三个基本假定是_______ . 解:正态性、方差齐性、独立性.5,多元线性回归模型=+Y βX ε中,β的最小二乘估计是ˆβ=_______ . 解:1ˆ-''X Y β=()X X . 二、单项选择题(每小题3分,共15分)1,设12(,,,)(2)n X X X n ≥L 为来自总体(0,1)N 的一个样本,X 为样本均值,2S 为样本方差,则____D___ .(A )(0,1)nX N :; (B )22()nS n χ:;(C )(1)()n X t n S-:; (D )2122(1)(1,1)n i i n X F n X =--∑:. 2,若总体2(,)X N μσ:,其中2σ已知,当置信度1α-保持不变时,如果样本容量n 增大,则μ的置信区间____B___ .(A )长度变大; (B )长度变小; (C )长度不变; (D )前述都有可能.3,在假设检验中,分别用α,β表示犯第一类错误和第二类错误的概率,则当样本容量n 一定时,下列说法中正确的是____C___ .(A )α减小时β也减小; (B )α增大时β也增大; (C ),αβ其中一个减小,另一个会增大; (D )(A )和(B )同时成立. 4,对于单因素试验方差分析的数学模型,设T S 为总离差平方和,e S 为误差平方和,AS 为效应平方和,则总有___A___ .(A )T e A S S S =+; (B )22(1)AS r χσ-:;(C )/(1)(1,)/()A e S r F r n r S n r ----:; (D )A S 与e S 相互独立.5,在一元回归分析中,判定系数定义为2TS R S =回,则___B____ . (A )2R 接近0时回归效果显著; (B )2R 接近1时回归效果显著; (C )2R 接近∞时回归效果显著; (D )前述都不对.三、(本题10分)设总体21(,)X N μσ:、22(,)Y N μσ:,112(,,,)n X X X L 和212(,,,)n Y Y Y L 分别是来自X 和Y 的样本,且两个样本相互独立,X Y 、和22X Y S S 、分别是它们的样本均值和样本方差,证明12)(2)X Y t n n +-:,其中2221212(1)(1)2X Yn S n S S n n ω-+-=+-.证明:易知221212(,)X Y N n n σσμμ--+:,(0,1)X Y U N =:.由定理可知22112(1)(1)Xn S n χσ--:,22222(1)(1)Yn S n χσ--:.由独立性和2χ分布的可加性可得222121222(1)(1)(2)XYn S n S V n n χσσ--=++-:.由U 与V 得独立性和t 分布的定义可得12(2)X Y t n n =+-:.四、(本题10分)已知总体X 的概率密度函数为1, 0(),0, xe xf x θθ-⎧>⎪=⎨⎪⎩其它其中未知参数0θ>, 12(,,,)n X X X L 为取自总体的一个样本,求θ的矩估计量,并证明该估计量是无偏估计量.解:(1)()101()xv E X xf x dx xe dx θθθ-∞∞-∞====⎰⎰,用111n i i v X X n ===∑$代替,所以∑===ni iX Xn11ˆθ.(2)11ˆ()()()()ni i E E X E X E X n θθ=====∑,所以该估计量是无偏估计.五、(本题10分)设总体X 的概率密度函数为(;)(1),01f x x x θθθ=+<<,其中未知参数1θ>-,12(,,)n X X X L 是来自总体X 的一个样本,试求参数θ的极大似然估计.解:1 (1)() , 01() 0 , nn i i i x x L θθθ=⎧+∏<<⎪=⎨⎪⎩其它当01i x <<时,1ln ()ln(1)ln ni i L n x θθθ==++∑,令1ln ()ln 01ni i d L nx d θθθ==+=+∑,得1ˆ1ln nii nxθ==--∑.六、(本题10分)设总体X 的密度函数为e ,>0;(;)0,0,x x f x x λλλ-⎧=⎨≤⎩未知参数0λ>,12(,,)n X X X L 为总体的一个样本,证明X 是1λ的一个UMVUE . 证明:由指数分布的总体满足正则条件可得222211()ln (;)I E f x E λλλλλ⎡⎤∂-⎛⎫=-=-= ⎪⎢⎥∂⎝⎭⎣⎦,1λ的的无偏估计方差的C-R 下界为 2221221[()]11()nI n n λλλλλ-⎡⎤⎢⎥'⎣⎦==. 另一方面()1E X λ=, 21Var()X n λ=, 即X 得方差达到C-R 下界,故X 是1λ的UMVUE . 七、(本题10分)合格苹果的重量标准差应小于0.005公斤.在一批苹果中随机取9个苹果称重, 得其样本标准差为007.0=S 公斤, 试问:(1)在显著性水平05.0=α下, 可否认为该批苹果重量标准差达到要求? (2)如果调整显著性水平0.025α=,结果会怎样?参考数据: 023.19)9(2025.0=χ,919.16)9(205.0=χ,535.17)8(2025.0=χ,507.15)8(205.0=χ.解:(1)()()2222021:0.005,~8n S H σχχσ-≤=,则应有: ()()2220.050.0580.005,(8)15.507P χχχ>=⇒=, 具体计算得:22280.00715.6815.507,0.005χ⨯==>所以拒绝假设0H ,即认为苹果重量标准差指标未达到要求.(2)新设 20:0.005,H σ≤ 由2220.025280.00717.535,15.6817.535,0.005χχ⨯=⇒==< 则接受假设,即可以认为苹果重量标准差指标达到要求.八、(本题10分)已知两个总体X 与Y 独立,211~(,)X μσ,222~(,)Y μσ,221212, , , μμσσ未知,112(,,,)n X X X L 和212(,,,)n Y Y Y L 分别是来自X 和Y 的样本,求2122σσ的置信度为1α-的置信区间. 解:设22, X Y S S 分别表示总体X Y ,的样本方差,由抽样分布定理可知221121(1)(1)Xn S n χσ--:,222222(1)(1)Yn S n χσ--:,由F 分布的定义可得211222121222221222(1)(1)(1,1)(1)(1)XX YY n S n S F F n n n S S n σσσσ--==----:. 对于置信度1α-,查F 分布表找/212(1,1)F n n α--和1/212(1,1)F n n α---使得 []/2121/212(1,1)(1,1)1P F n n F F n n ααα---<<--=-, 即22222121/2122/212//1(1,1)(1,1)X Y X Y S S S S P F n n F n n αασασ-⎛⎫<<=- ⎪----⎝⎭, 所求2221σσ的置信度为α-1的置信区间为 22221/212/212//, (1,1)(1,1)X Y X Y S S S S F n n F n n αα-⎛⎫ ⎪----⎝⎭.九、(本题10分)试简要论述线性回归分析包括哪些内容或步骤.解:建立模型、参数估计、回归方程检验、回归系数检验、变量剔除、预测.2009(上)《数理统计》考试题(B 卷)及参考解答一、填空题(每小题3分,共15分)1,设总体X 服从正态分布(0,4)N ,而1215(,,)X X X L 是来自X 的样本,则221102211152()X X U X X ++=++L L 服从的分布是_______ . 解:(10,5)F .2,ˆnθ是总体未知参数θ的相合估计量的一个充分条件是_______ . 解:ˆˆlim (), lim Var()0n nn n E θθθ→∞→∞==. 3,分布拟合检验方法有_______ 与____ ___. 解:2χ检验、柯尔莫哥洛夫检验. 4,方差分析的目的是_______ .解:推断各因素对试验结果影响是否显著.5,多元线性回归模型=+Y βX ε中,β的最小二乘估计ˆβ的协方差矩阵ˆβCov()=_______ . 解:1ˆσ-'2Cov(β)=()X X . 二、单项选择题(每小题3分,共15分)1,设总体~(1,9)X N ,129(,,,)X X X L 是X 的样本,则___B___ .(A )1~(0,1)3X N -; (B )1~(0,1)1X N -; (C )1~(0,1)9X N -; (D ~(0,1)X N . 2,若总体2(,)X N μσ:,其中2σ已知,当样本容量n 保持不变时,如果置信度1α-减小,则μ的置信区间____B___ .(A )长度变大; (B )长度变小; (C )长度不变; (D )前述都有可能.3,在假设检验中,就检验结果而言,以下说法正确的是____B___ . (A )拒绝和接受原假设的理由都是充分的;(B )拒绝原假设的理由是充分的,接受原假设的理由是不充分的; (C )拒绝原假设的理由是不充分的,接受原假设的理由是充分的;(D )拒绝和接受原假设的理由都是不充分的.4,对于单因素试验方差分析的数学模型,设T S 为总离差平方和,e S 为误差平方和,AS 为效应平方和,则总有___A___ .(A )T e A S S S =+; (B )22(1)AS r χσ-:;(C )/(1)(1,)/()A e S r F r n r S n r ----:; (D )A S 与e S 相互独立.5,在多元线性回归分析中,设ˆβ是β的最小二乘估计,ˆˆ=-εY βX 是残差向量,则___B____ .(A )ˆn E ()=0ε; (B )1ˆ]σ-''-εX X 2n Cov()=[()I X X ; (C )ˆˆ1n p '--εε是2σ的无偏估计; (D )(A )、(B )、(C )都对.三、(本题10分)设总体21(,)X N μσ:、22(,)Y N μσ:,112(,,,)n X X X L 和212(,,,)n Y Y Y L 分别是来自X 和Y 的样本,且两个样本相互独立,X Y 、和22X Y S S 、分别是它们的样本均值和样本方差,证明12)(2)X Y t n n +-:,其中2221212(1)(1)2X Yn S n S S n n ω-+-=+-.证明:易知221212(,)X Y N n n σσμμ--+:,(0,1)X Y U N =:.由定理可知22112(1)(1)Xn S n χσ--:,22222(1)(1)Yn S n χσ--:.由独立性和2χ分布的可加性可得222121222(1)(1)(2)XYn S n S V n n χσσ--=++-:.由U 与V 得独立性和t 分布的定义可得12(2)X Y t n n =+-:.四、(本题10分)设总体X 的概率密度为1, 0,21(;), 1,2(1)0, x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他,其中参数01)θθ<<( 未知,12()n X X X L ,,,是来自总体的一个样本,X 是样本均值,(1)求参数;的矩估计量θθˆ(2)证明24X 不是2θ的无偏估计量.解:(1)101()(,)22(1)42x x E X xf x dx dx dx θθθθθθ+∞-∞==+=+-⎰⎰⎰,令()X E X =,代入上式得到θ的矩估计量为1ˆ22X θ=-. (2)222211141 (4)44[()]4()424E X EX DX EX DX DX n nθθθ⎡⎤==+=++=+++⎢⎥⎣⎦,因为()00D X θ≥>,,所以22(4)E X θ>.故24X 不是2θ的无偏估计量.五、(本题10分)设总体X 服从[0,](0)θθ>上的均匀分布,12(,,)n X X X L 是来自总体X 的一个样本,试求参数θ的极大似然估计. 解:X 的密度函数为1,0;(,)0,x f x θθθ≤≤⎧=⎨⎩其他,似然函数为1,0,1,2,,,()0,n i x i n L θθθ<<=⎧⎪=⎨⎪⎩L 其它显然0θ>时,()L θ是单调减函数,而{}12max ,,,n x x x θ≥L ,所以{}12ˆmax ,,,nX X X θ=L 是θ的极大似然估计. 六、(本题10分)设总体X 服从(1,)B p 分布,12(,,)n X X X L 为总体的样本,证明X是参数p 的一个UMVUE .证明:X 的分布律为1(;)(1),0,1x x f x p p p x -=-=.容易验证(;)f x p 满足正则条件,于是21()ln (;)(1)I p E f x p p p p ⎡⎤∂==⎢⎥∂-⎣⎦. 另一方面1(1)1Var()Var()()p p X X n n nI p -===, 即X 得方差达到C-R 下界的无偏估计量,故X 是p 的一个UMVUE .七、(本题10分)某异常区的磁场强度服从正态分布20(,)N μσ,由以前的观测可知056μ=.现有一台新仪器, 用它对该区进行磁测, 抽测了16个点, 得261, 400x s ==,问此仪器测出的结果与以往相比是否有明显的差异(α=0.05).附表如下:t 分布表 χ2分布表解:设0H :560==μμ.构造检验统计量)15(~0t ns X t μ-=, 确定拒绝域的形式2t t α⎧⎫>⎨⎬⎩⎭.由05.0=α,定出临界值1315.2025.02/==t t α,从而求出拒绝域{}1315.2>t .而60,16==x n ,从而 ||0.8 2.1315t ===<,接受假设0H ,即认为此仪器测出的结果与以往相比无明显的差异.八、(本题10分)已知两个总体X 与Y 独立,211~(,)X μσ,222~(,)Y μσ,221212, , , μμσσ未知,112(,,,)n X X X L 和212(,,,)n Y Y Y L 分别是来自X 和Y 的样本,求2122σσ的置信度为1α-的置信区间. 解:设布定理知的样本方差,由抽样分,分别表示总体Y X S S 2221 , []/2121/212(1,1)(1,1)1P F n n F F n n ααα---<<--=-, 则222221211221/2122/212//1(1,1)(1,1)S S S S P F n n F n n αασασ-⎛⎫<<=- ⎪----⎝⎭, 所求2221σσ的置信度为α-1的置信区间为 222212121/212/212//, (1,1)(1,1)S S S S F n n F n n αα-⎛⎫ ⎪----⎝⎭.九、(本题10分)试简要论述线性回归分析包括哪些内容或步骤.2011-2012(下)研究生应用数理统计试题(A )1 设,,,12X X X n L 为正态总体()2~X N μσ,的样本,令11nd X i ni μ=-∑=,试证()E d ,()221D d n σπ⎛⎫=- ⎪⎝⎭。
2(0,)N σ15)X 是来自225122156)X X X ++++服从的分布是___ 机变量X 服从数为λ的]2)1=,则λ= 设两个随机变量X 与Y 的方差分别为共 4 页 第 1 页,)X为来自总体n求(1)θ的矩估计;共4 页第4 页西安交通大学本科生课程考试试题标准答案与评分标准课程名称:概率论与数理统计(A ) 课时:48 考试时间:2007 年7 月9 日(200,169)N 180200169P -⎧⎨⎩1.54)=0.93941()x dx =⎰1X θ=+,得1()(nk f θ==∏,),n1,,),n 当0,)nln k x ∑,求导得似然方程0=其唯一解为2,故θ的极大似然估优于第 1 页1(1,F n -(24,19)=0.429,221.507≈∈2的条件下,进一步检验假设:2μ<。
选取检验统计量12(t n n +0.05(43)t =-2.647 1.681-<-)B=)1Y≥=个人在第一层进入十八层楼的电梯,假如每个人以相同的概率从任个人在不同楼层走出电梯的概2=-1Xe-5,,X 都服从参数为分布,若将它们串联成整机,求整机寿命的分布密度。
分)某汽车销售点每天出售的汽车数服从参数为且每天出售的汽车数是相互独立的,西安交通大学本科生课程考试试题标准答案与评分标准课程名称:概率论与数理统计(A)课时:48 考试时间:2008 年7 月9 日三、1exp(),5 X2 (5,)B e-,∴四、设1iX⎧=⎨⎩第,n1n-第 1页1,2,,5min {k X 5,0,x e λ--0,x > exp(5)λ,365,(3652,365iN ⨯⨯3652)3652-⨯=⨯七、()E X dx θθ==+1X θθ=+2⎪⎫; 1)(ni θ==∏()ln nθθ=第 2 页(0,1)N 的样本9,)X 是来自正态总体N1,2,,n.设各部件的状态相互独立,以转中同时需要调整的部件数,求(E X,)X是来自总体的一组样本nˆμ,它是否是的极大似然估计量*μ,它是否是西安交通大学本科生课程考试试题标准答案与评分标准(A)n ,则X ,n X 相互独立,1,2,i n = ()E X =()D X : (1)0x y <<<⎰⎰ 10000,X 独立同分布,1,2,n ,因此当,)n x 中最小值时,的极大似然估计量为 ,}n X 2,}n X X 分布函数是1(1(X F z --,分布密度是((Z x f z μμ>≤ ()n x nxe dx μ--=12min{,,}n X X X 不是统计量X T S -=代入数据()Pλ,且已知{(,)=G x y,X)为来自总体服从参数为…,n,λ>服从以λ(0)求该样本的联合密度函数共2 页第1 页,,X是独立同分布的随机变量,其共同密度函数为:55,,)X 的数学期望和方差。
第三部分 二维随机变量基础练习一. 填空1设二维随机变量,X Y 相互独立,且()()120,133P X P X ====,()103P Y ==,()213P Y == 则()P X Y == 。
答案:59;2若二维随机变量,X Y 相互独立, 且都服从正态分布,则(),X Y 服从________。
答案:二维正态分布;3若二维随机变量(),X Y 的联合分布密度为(),f x y ,则Y 的边缘分布密度为___________。
答案:()(,)Y f y f x y dx +∞-∞=⎰;4. (),()()X Y f x y f x f y =⋅ 是连续型随机变量X,Y 相互独立的______条件.答案:充要;5. 已知随机变量(),ξη的联合分布函数(){},,F x y P x y ξη=<<用它表示概率{},P a y ξη=<=__________________.答案:()()0,,F a y F a y +-6. 设二维随机变量(),ξη在由曲线2y x =和y x =所围成的区域G 上服从均匀分布,则(),ξη的联合概率密度(),x y ϕ_______________.答案:{6 (, )0x y G∈其它7. 若(52)0,0(,)0x y Ae x y x y ϕ-+⎧>>=⎨⎩ 其它为随机变量(),ξη的联合概率密度,则常数A =__________. 答案:108. 若(),ξη的联合概率密度为() 0, 0(,)0 x y e x y x y ϕ-+⎧⎪>>=⎨⎪⎩其它则有{}1P ξ>=_______________.答案:1e -9. 设(),ξη互相独立,并服从区间[]0,a 上的均匀分布,且0a >,则(),ξη的联合概率密度为(),f x y =_________.答案:21,0,00,x a y a a ⎧≤≤≤≤⎪⎨⎪⎩ 其它10. 设随机变量(),ξη的联合概率密度函数为:() 0, 0(,)0 x y e x y x y ϕ-+⎧≥≥=⎨⎩其它则(),ξη落在区域:0,0,1G x y x y >>+<内的概率(){},P G ξη∈=____________________. 答案:21e-二. 计算题1. 假设某校学生的数学能力测试成绩X 与音乐能力测试成绩Y 具有如下形式的概率密度函数:⎪⎩⎪⎨⎧≤≤≤≤+=其它,010,10),32(52),(y x y x y x f试求:)(x f X 与)(y f Y ,并判断X 与Y 是否相互独立? 答案:解:⎪⎩⎪⎨⎧≤≤+=+=⎰其它,1,5354)32(5201)(o x o x dy y x x f x ⎪⎪⎩⎪⎪⎨⎧≤≤+=+=⎰其它,010,5652)32(5201)(y y dx y x y f Y )()(),(y f x f y x f Y x ≠ )2('故,X 与Y 不独立.2. 设随机变量X 与Y 独立,且均在()1,1-区间上服从均匀分布,求:()0.5,0.5F 的值.答案:由题意,⎩⎨⎧<<=⎩⎨⎧<<=其它其它0101)(,0101)(y y f x x f Y X 且X 与Y 独立, 故⎩⎨⎧<<<<=其它010,101),(y x y x f}5.0,5.0{)5.0,5.0(<<=Y X P F 415.005.00==⎰⎰dy dx 3. 设某昆虫的产卵数X 服从参数为50的泊松分布,又设一个虫卵能孵化成虫的概率为0.8,且各卵的孵化是相互独立的,求此昆虫的产卵数X 与孵化为成虫数Y 的联合分布律.答案:解:本题已知随机变量X 的分布律为{}50!50-==e i i X P i , ,2,1,0=i由题意知,该昆虫下一代只数Y 在i X =的条件下服从参数为0.8的二项分布,故有j i i j i C i X j Y P -===2.08.0}|{,i j ,...,1,0=由{}{}{}i X P i X i Y P j Y i X P ======|,, 得),(Y X 的联合分布律为:50!502.08.0},{--===e j C j Y i X P i ji j j i ,i j i ,,1,0;,1,0 ==. 4.设二维随机变量),(Y X 的概率密度为⎩⎨⎧<<=其它,01,),(22y x y cx y x f , (1)确定常数c 的值;(2)Y X ,是否相互独立?为什么? 答案:解:(1)⎰⎰<<=121),(y x dxdy y x f ,即⎰⎰-12112x ydy cx dx =dx x x c )1(214112-⋅⎰-=121821=⋅⋅c 421=∴c . (2)⎪⎩⎪⎨⎧<<=其它,01,421),(22y x y x y x f ,1,)1(821421),()(214222<-===∴⎰⎰∞+∞-x x x ydy x dy y x f x f xX即⎪⎩⎪⎨⎧<-=其它,01),1(821)(242x x x x f X .同理,10,27421),()(25<<===⎰⎰∞+∞--y y xydx dx y x f y f yyY , 即⎪⎩⎪⎨⎧≤≤=其它1027)(25y y y f Y . 显然有)()(),(y f x f y x f Y X ⋅≠ 从而X 与Y 不独立.5. 已知,X Y 相互独立,),(Y X 的分布律为:{}31,118P X Y ===,{}21,218P X Y ===,{}11,318P X Y ===,{}62,118P X Y ===,{}2,2P X Y α===,{}2,3P X Y β===,试求:(1),αβ的值; (2),X Y 的边缘分布. 答案:(1)92;91(2){}113P X ==,{}223P X ==, {}112P Y ==,{}123P Y ==,{}136P Y ==6. 设袋中有3个球,其标号为1,2,2,今从中不放回地任取2个球,记,X Y 为第1,2次抽得球的标号,试求: (1) ),(Y X 的联合概率分布律; (2) ,X Y 的边缘分布律.答案:(1)0,1/3,1/3,1/3;(2)1/3,2/3;1/3,2/3. 7. 设),(Y X 的联合密度为⎩⎨⎧+∞<<<=-其它,00,),(y x Cxe y x f y (1) 求参数C 的值;(2) 求X 与Y 的边缘密度函数)(),(y f x f Y X . 答案:解:(1)由1),(=⎰⎰+∞∞-+∞∞-dxdy y x f ,可得1C =.(2)20,0()0,01(),020,0y x x X y yyY xe dy xe x f x x xe dx f y y e y y +∞----⎧=>⎪=⎨⎪≤⎩⎧=⎪=>⎨⎪≤⎩⎰⎰8. 已知随机向量(),X Y 的联合概率分布为(1)求,X Y 的边缘分布;(2)判断X 与Y 是否独立. 答案:解:(1)()()()()()()()()()()11101,11,01,1 0.300.30.61,11,01,1 0.10.20.10.41,11,1 0.30.10.41,01,0 p P X Y P X Y P X Y p P X Y P X Y P X Y p P X Y P X Y p P X Y P X Y --==-=-+=-=+=-==++====-+==+===++===-=-+==-=+===-=+==()()1 00.20.21,11,1 0.30.10.4p P X Y P X Y =+===-=+===+=∴综合有下表(2)111,10.60.40.240.3p p p ----⋅=⨯=≠=,,X Y ∴不独立。
第一部分 随机事件及其概率基础练习一. 填空1 设====)(,7.0)(,5.0)(,4.0)(B A P B A P B P A P 则若 答案:0.552 三次独立重复射击中,至少有一次击中的概率为则每次击,6437中的概率为 答案:1/43箱中盛有8个白球6个黑球,从其中任意地接连取出8个球,若每球被取出后不放还,则最后取出的球是白球的概率等于_________________。
答案:8144 任取两个正整数,则它们之和为偶数的概率是_______ 答案:1/25 设10件产品中有3件不合格品,从中任取两件,已知两件中有一件是不合格品,则另一件也是不合格品的概率为__________答案:2/96已知P (A )=0.8,P(A-B)=0.5,且A 与B 独立,则P (B )= 答案:3/87从1,2,…,10共十个数字中任取一个,然后放回,先后取出5个数字,则所得5个数字全不相同的事件的概率等于___________ 答案:9876104⨯⨯⨯=0.3024 8箱中盛有8个白球6个黑球,从其中任意地接连取出8个球,若每球被取出后不放还,则最后取出的球是白球的概率等于_________________ 答案:8149平面上有10个点,其中任何三点都不在一直线上,这些点可以确定_____个三角形。
答案:12010设样本空间U={1,2, 10},A={2,3,4,},B={3,4,5,},C={5,6,7},则()C B A 表示的集合=______________________。
答案:{1,2,5,6,7,8,9,10} 二. 计算题1 一打靶场备有5支某种型号的枪,其中3支已经校正,2支未经校正.某人使用已校正的枪击中目标的概率为1p ,使用未经校正的枪击中目标的概率为2p .他随机地取一支枪进行射击,已知他射击了5次,都未击中,求他使用的是已校正的枪的概率(设各次射击的结果相互独立).解 以M 表示事件“射击了5次均未击中”,以C 表示事件“取得的枪是已经校正的”,则,5/3)(=C P,5/2)(=C P 又,按题设,)1()|(51p C M P -=52)1()|(p C M P -=,由贝叶斯公式 ,)()()|(M P MC P M C P =)()|()()|()()|(C P C M P C P C M P C P C M P +=52)1(53)1(53)1(525151⨯-+⨯-⨯-=p p p.)1(2)1(3)1(3525151p p p -+--= 2 某人共买了11只水果,其中有3只是二级品,8只是一级品.随机地将水果分给C B A 、、三人,各人分别得到4只、6只、1只. (1)求C 未拿到二级品的概率.(2)已知C 未拿到二级品,求B A ,均拿到二级品的概率. (3)求B A ,均拿到二级品而C 未拿到二级品的概率.解 以,,,C B A 分别表示事件C B A ,,取到二级品,则C B A ,,表示事件C B A ,,未取到二级品.(1).11/8)(=C P(2)就是需要求).|(C AB P 已知C 未取到二级品,这时B A ,将7只一级品和3只二级品全部分掉.而B A 、均取到二级品,只需A取到1只至2只二级品,其它的为一级品.于是.5441027234103713)|(=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=C AB P(3).55/32)()|()(==C P C AB P C AB P3 一系统L 由两个只能传输字符0和1的独立工作的子系统1L 和2L 串联而成(如图13-1),每个子系统输入为0输出为0的概率为)10(<<p p ;而输入为1输出为1的概率也是p .今在图中a 端输入字符1,求系统L 的b 端输出字符0的概率.ab解 “系统L 的输入为1输出为0”这一事件(记)01(→L )是两个不相容事件之和,即),00()01()01()11()01(2121→→→→=→L L L L L 这里的记号“)11(1→L ”表示事件“子系统1L 的输入为1输出为1,其余3个记号的含义类似.于是由子系统工作的独立性得)}00()01({)}01()11({)}01({2121→→+→→=→L L P L L P L P)}00({)}01({)}01({)}11({2121→→+→→=L P L P L P L P).1(2)1()1(p p p p p p -=-+-=4 甲乙二人轮流掷一骰子,每轮掷一次,谁先掷得6点谁得胜,从甲开始掷,问甲、乙得胜的概率各为多少?解 以i A 表示事件“第i 次投掷时投掷者才得6点”.事件i A 发生,表示在前1-i 次甲或乙均未得6点,而在第i 次投掷甲或乙得6点.因各次投掷相互独立,故有.6165)(1-⎪⎭⎫⎝⎛=i i A P 因甲为首掷,故甲掷奇数轮次,从而甲胜的概率为}{}{531 A A A P P =甲胜+++=)()()(531A P A P A P ),(21两两不相容因 A A⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+= 426565161.116)6/5(11612=-=同样,乙胜的概率为}{}{642 A A A P P =乙胜+++=)()()(642A P A P A P.1156565656153=⎥⎥⎦⎤⎢⎢⎣⎡+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+=5 将一颗骰子掷两次,考虑事件=A “第一次掷得点数2或5”,=B “两次点数之和至少为7”,求),(),(B P A P 并问事件B A ,是否相互独立.解 将骰子掷一次共有6种等可能结果,故.3/16/2)(==A P 设以i X 表示第i 次掷出骰子的点数,则}).6({1})7({)(2121≤+-=≥+=X X P X X P B P因将骰子掷两次共有36个样本点,其中621≤+X X 有6,5,4,3,221=+X X 共5种情况,这5种情况分别含有1,2,3,4,5个样本点,故.12/712/5136/)54321(1)(=-=++++-=B P以),(21X X 记两次投掷的结果,则AB 共有(2,5),(2,6),(5,2),(5,3)(5,4),(5,5),(5,6)这7个样本点.故 .36/7)(=AB P今有).(36/7)12/7)(3/1()()(AB P B P A P === 按定义B A ,相互独立.6 B A ,两人轮流射击,每次各人射击一枪,射击的次序为A B A B A ,,,,,射击直至击中两枪为止.设各人击中的概率均为p ,且各次击中与否相互独立.求击中的两枪是由同一人射击的概率.解 A 总是在奇数轮射击,B 在偶数轮射击.先考虑A 击中两枪的情况.以12+n A 表示事件“A 在第12+n 轮),2,1( =n 射击时又一次击中,射击在此时结束”. 12+n A 发生表示“前n 2轮中A 共射击n 枪而其中击中一枪,且A 在第12+n 轮时击中第二枪”(这一事件记为C ),同时“B 在前n 2轮中共射击n 枪但一枪未中”(这一事件记为D ),因此)()()()(12D P C P CD P A P n ==+nn p p p p n )1()1(11-⎥⎦⎤⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛=- .)1(122--=n p np注意到 ,,,753A A A 两两互不相容,故由A 击中了两枪而结束射击(这一事件仍记为A )的概率为∑∑∞=-∞=++∞=-===1122112121)1()()()(n n n n n n p np A P A P A P1122])1[()1(-∞=∑--=n n p n p p.)2(1])1(1[1)1(2222p pP p p --=---(此处级数求和用到公式.1,)1(1112<=-∑∞=-x nx x n n 这一公式可自等比级数1,11<=-∑∞=x x x n n 两边求导而得到.) 若两枪均由B 击中,以)1(2+n B 表示事件 “B 在第)1(2+n 轮),2,1( =n 射击时又一次击中,射击在此时结束”. )1(2+n B 发生表示在前12+n 轮中B 射击n 枪其中击中一枪,且B 在第)1(2+n 轮时击中第2枪,同时A 在前12+n 轮中共射击1+n 枪,但一枪未中.注意到 ,,,864A A A 两两互不相容,故B 击中了两枪而结束射击(这一事件仍记为B )的概率为∑∞=+-+∞=--⎪⎪⎭⎫ ⎝⎛==111)1(21)1()1(1)()(n n n n n p p p p n B P B P 12112222])1[()1()1(-∞=∞=--=-=∑∑n n n np n p p p np.)2()1(])1(1[1)1(222222p p p p p --=---= 因此,由一人击中两枪的概率为222)2()1()2(1)()()(p p p p B P A P B A P --+--=+= .21pp --= 7 有3个独立工作的元件1,元件2,元件3,它们的可靠性分别为.,,321p p p 设由它们组成一个“3个元件取2个元件的表决系统”,记为2/3].[G 这一系统的运行方式是当且仅当3个元件中至少有2个正常工作时这一系统正常工作.求这一2/3][G 系统的可靠性. 解 以i A 表示事件“第i 个元件正常工作”,以G 表示事件“2/3][G 系统正常工作”,则G 可表示为下述两两互不相容的事件之和: 321321321321A A A A A A A A A A A A G = 因321,,A A A 相互独立,故有)()()()()(321321321321A A A P A A A P A A A P A A A P G P +++=)()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P +++=.)1()1()1(321321321321p p p p p p p p p p p p +-+-+-= 8 甲、乙、丙三部机床独立工作由一名工人照看,某段时间内甲、乙、丙三部机床不需要照看的概率依次为3/4、2/3、1/2,求在这段时间内有机床需要工人照看的概率及恰有1台机床需要工人照看的概率。
第一章1.1 X~N(μ,2σ)则X~N(μ,2nσ),所以X-μ~N(0,2nσ)P{X-μ<1}= P{ =0.95N(0,1),而(0.975) 1.96Φ=所以n最小要取[21.96x2σ]+11.2 (1)至800小时,没有一个元件失效这个事件等价于P{123456X X X X X X>800}的概率由已知X服从指数分布,可求得P{123456X X X X X X>800}=7.2e-(2)至3000小时,所有六个元件都失效的概率等价与P{123456X X X X X X<3000}的概率可求得P{123456X X X X X X<3000}= 4.56(1)e--1.5 21()niiX a=-∑=21[()()]niiX X X a=-+-∑=22111()2()()()n n ni ii i iX X X a X X X a===-+--+-∑∑∑因为1()niiX X=-∑=0所以21()niiX a=-∑=2211()()n nii iX X X a==-+-∑∑=221()ninS X a=+-∑所以当a=X时,21()niiX a=-∑有最小值且等于2nS1.6 (1)由11niiX Xn==∑有等式的左边=22112nnii i i XX n μμ==-+∑∑等式的右边=22221122nnii i i XX X nX nX nX n μμ==-++-+∑∑=222221122nnii i i XnX nX nX X n μμ==-++-+∑∑=22112nnii i i XX n μμ==-+∑∑左边等于右边,结论得证。
(2)等式的左边=22112nn ii i i XX X nX ==-+∑∑=221ni i X nX =-∑等式的右边=221nii XnX =-∑左边等于右边,结论得证。
1.7 (1)由11n n i i X X n ==∑ 及 2211()n n i n i S X X n ==-∑有左边=1111111111()1111n nnn n i i n i i i i X X X X X X n n n n ++++=====+=+++++∑∑∑ 111()111n n n n n nX X X X X n n n ++=+=+-+++=右边 左边等于右边,结论得证。
(2)由 左边=1221111()1n n i n i SX X n +++==-+∑ 121111[()]11n i n n n i X X X X n n ++==---++∑121111[()()]11n i n n n i X X X X n n ++==---++∑ 1221121121[()()()()]11(1)n i n i n n n n n i X X X X X X X X n n n +++==----+-+++∑2221121111()()()]11(1)n i n n n n n i X X X X X X n n n ++==-+---+++∑ 2212()1(1)n n n nS nX X n n +=+-++ 2211[()]11n n n n S X X n n +=+-++=右边 左边等于右边,结论得证。
1.9 因为 i i y ax b =+所以 111111()n n ni i i i i i y y ax b ax b ax b n n n =====+=+=+∑∑∑222111111()()()n n n yi i i i i i S y y ax b ax b ax ax n n n ====-=+--=-∑∑∑22x a S =再令179.98y =,……,1479.96y =再令 a=1,b=80由80ii i y ax b x =+=+得:i x 为:-0.02,0.04,0.02,0.04,0.03,0.03,0.04,-0.03,0.05,0.03,0.02,0.00,0.02,-0.0414110.016414i i x x ===∑14142221111()(0.0164)0.00071414xi ii i S x x x ===-=-=∑∑0.01648080.0164y ax b =+=+=2220.0007y x S a S ==1.10 由 11ni i X X n ==∑2211()ni i S X X n ==-∑故1111()()()()n ni i i i E X E X E X E X n n =====∑∑211111()()()()n n i i i i D X D X D X D X n n n =====∑∑()222211111[()][(2)()n n i i i i i n E S E X X E X X X X D X n n n==-=-=-+=∑∑(1) 二项分布()E X mp = ()(1)D X m p p=- ()()E X E X mp ==1(1)()()mp p D X D X n n -== 211()()(1)n n E S D X mp p n n--==- (2) 泊松分布()E X λ= ()D X λ=()()E X E X λ==1()()D X D X n n λ== 211()()n n E S D X n nλ--== (3) 均匀分布()2a b E X += 2()()12b a D X -=()()2a bE X E X +==2()1()()12b a D X D X n n -==22()11()()12b a n n E S D X n n ---== (4) 指数分布1()E X λ=21()D X λ=1()()E X E X λ==211()()D X D X n n λ== 2211()()n n E S D X n n λ--== (5) 正态分布()E X μ= 2()D X σ=()()E X E X μ==21()()D X D X n nσ==2211()()n n E S D X n nσ--==1.11 统计量有:(1),(3),(4),(5),(6),(7) 顺序统计量有:(5)1.12顺序统计量为:-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,3.2,3.21 所以 1317()20e m XX +===131 3.21(4)7.21r X X =-=--=添加2.7后:顺序统计量为:-4,-2.1,-2.1,-0.1,-0.1,0,0,1.2,1.2,2.01,2.22,2.7,3.2,3.21 所以 781()0.62e m X X =+=1.16因为X 服从正态分布故 (0,1)X Z N μσ-=故由定理1.2.1知: 222221111()()()nnni ii i i i X Y ZX n μμχσσ===-===-∑∑∑ 1.20已知~()X t n ,即有Y~N(0,1), 2~()Z n χ使得X =则22/Y X Z n= 而 22~(1)Y χ所以2~(1,)X F n 结论得证。
1.22已知 X~N(2.5,36) ,222~(1)nS n χσ-,~(0,1)N(1) 2222555{3044}{}69nS P S P σ≤≤=≤≤=15522925622(/2)n x nxedx n --Γ⎰=552925262(4/2)x x edx -Γ⎰=0.19294 (2) 2{3044 1.3 3.5}P S X ≤≤≤≤ =2{3044}P S ≤≤{1.3 3.5}P X ≤≤=222555{}69nS P σ≤≤{P -≤=0.19294*0.638=0.123 1.23(1)将21()nii X =∑和21()n mii nX +=+∑各看成一个整体,可得 a=21n σ,b=21m σ原式服从2(2)χ(2)原式服从t(m) (3)d=m n原式服从(,)F n m1.25令11X Z μσ-=,22Y Q μσ-=因为 211(,)X N μσ ,222(,)Y N μσ所以 (0,1)Z N ,(0,1)Q N所以12211()n ii Zn χ=∑ ,22221()n i i Q n χ=∑由定理1.2.3知:1221112212(,)n i i n ii Z n F n n Qn ==∑∑ 即:1222221112221121()(,)()n ii n i i n XF n n n Y σμσμ==--∑∑第二章2.2 (1)~()X Exp λ,则X 的概率密度为,0(;)0,0x e x f x x λλλ-⎧>=⎨≤⎩故λ的似然函数为11()(),(0,1,2,,)niii nx x ni i L eex i n λλλλλ=--=∑==>=∏对数似然函数为1ln ()ln ni i L n x λλλ==-∑令1ln ()0n i i L x n λλλ=∂=-=∂∑解得11nii nxxλ∧===∑ 所以λ的极大似然估计量1Xλ∧=(2)~(,)X U a b ,X 的概率密度为1,(;,)0,a x b f x a b b a ⎧≤≤⎪=-⎨⎪⎩其他由于12,,,n a x x x b ≤≤ ,等价于(1)(),n a x x b ≤≤。
作为a ,b 的函数的似然函数为(1)()1,,()(,)0,n na x xb b a L a b ⎧≤≤⎪-=⎨⎪⎩其他对于满足条件(1)(),n a x x b ≤≤ 的任意a ,b 有()(1)11(,)()()n nn L a b b a x x =≤-- 即(,)L a b 在(1)(),n a x b x ==时取到最大值()(1)()nn x x -- 故a ,b 的极大似然估计值为(1)()ˆˆ,n a x b x == 所以a ,b 的极大似然估计量为(1)()ˆˆ,n a X b X == (3)θ的似然函数为1111()()()nnnii i i L xx θθθθθ--====∏∏,其中12(0,,,1)n x x x <<对数似然函数为1ln ()ln (1)(ln )nii L n x θθθ==+-∑令1ln ()ln 0ni i L n x θθθ=∂=+=∂∑解得1ˆln nii nxθ==-∑故θ的极大似然估计量是1ˆln nii nXθ==-∑(4)β的似然函数是11111()()(1)![(1)!]nii i k nknnx x k k i i ni i L x e x e k k βββββ=----==∑⎛⎫== ⎪--⎝⎭∏∏,其中,12(,,,0)n x x x >对数似然函数11ln ()ln ln[(1)!](1)ln n niii i L nk n n k x xβββ===--+--∑∑令1ln ()0ni i L nk x βββ=∂=-=∂∑得1ˆnii nkkxxβ===∑ 故β的极大似然估计量是ˆkXβ= (5)a ,λ的似然函数为),,,(,),(21)(1)(11a x x x eee a L n nax n a x n n i a x ni i ni i i >∑=∑====+---=--∏ λλλλλλλλ易知,)1()()min(x x a i =≤,当)(!x a =时,),(a L λ取最大值,所以)1(111ˆx x a x naxnni i-=-=-=∑=λλ的极大似然估计量为)1(1ˆX x -=λa 的极大似然估计量为)1(ˆX a= (6)X 的分布律为m x p p C x X P x m xx m ,1,0,)1(}{=-==-故似然函数为∑-⋅∑⋅=-===-⋅=-=∏∏ni ini ii iiix m n x ni x mx m x ni x mp pC p p C p L 11)1()(])1([)(11对数似然函数)1ln()(ln )(ln )(ln 111p x m n p x C p L ni i n i i x mni i -∑-⋅+∑+====∑令01)(ln 11=-∑-⋅-∑===px m n p x p L dp d ni in i i 解得p 的极大似然估计值mxnmx pni i =∑==1ˆ 所以p 的极大似然估计量mXp=ˆ 2.3因X 的概率因数为1{}(1)k P x k p p -==- (1,2,)k =⋅⋅⋅⋅⋅⋅P 的似然函数为 111()(1)(1)(1)nii i nx x n ni L P p p p p p =--=∑⎡⎤=-=--⎣⎦∏ 对数似然函数1()()(1)nii LnL p nLn p nLn p x==--+∑令()0Ln p p∂=∂ 1111011ni i n n x p p p =∴+-=--∑有1ˆpx = 所以p 的极大似然估计为1ˆpx=2.6 (1) 2.14 2.090.05R =-=故5ˆ0.4299*0.050.214950.0215Rd σ===≈ (2) 分为三组2.14 2.10 2.152.13 2.12 2.102.132.10 2.152.12 2.14 2.132.11 2.14 2.102.11 2.15 2.101230.050.050.05R R R ===61(0.050.050.05)0.053ˆ0.3946*0.050.0197R R d σ=++====2.72E(X)=+1-/2=0.5D(X)=1/12(b-a)1/12()(1/)1/**0.50()0.5()()2()2/**0.5i E X E n X n n X E X X YE Y E X E X n n X θθθθθθθθθθθθ===≠=====∑(1)所以,是的一个有偏估计量偏差是-=-(2)取22所以,2是的一个无偏估计2.8 由11212121212ˆ()()333333E E X X EX EX μμμμ=+=+=+=21232ˆ()55E EX EX μμ=+=31211ˆ()22E EX EX μμ=+= 所以,1ˆμ,2ˆμ,3ˆμ都是μ的无偏估计量。