拉姆齐模型
- 格式:doc
- 大小:97.50 KB
- 文档页数:3
第三章 无限期界模型(拉姆齐模型)
一、问题的提出
在索洛模型中,储蓄率s 被假定为外生参数,储蓄率的变动将影响稳态的人均消费和动态的人均消费水平。
当gold s s >时,与最优储蓄(相对应于最优资本存量和最优消费)相比会出现“过度储蓄”(即“过度积累”)的情况,而一个高于黄金率的储蓄率被证明是动态无效的。
当gold s s <时,只有在给定在当前消费与未来消费之间的权衡参数的条件下,才能判断增加储蓄率的合理性。
图示:s 的变动对稳态和动态的人均消费的影响
c c gol
d 那么,储蓄率是如何决定的?必须引入消费者(家庭)行为来分
析跨期预算约束条件下的消费和储蓄选择,即储蓄率的“内生化”。
二、模型假定
1.完全竞争市场结构
2.长生不老的不断扩展的家庭(有限寿命的个人和基于利他主义的代际转让)
3.家庭和个人完全同质
4.忽略资本的折旧
5.暂不考虑政府行为
在简单经济中,家庭与厂商之间的关系:
三、厂商行为。
拉姆齐模型拉姆齐模型是一种用于分析企业资本结构和债务重组的理论模型。
拉姆齐模型以名字命名,是由经济学家弗兰克·拉姆齐(Frank P. Ramsey)在20世纪30年代提出的。
该模型用于探讨企业在决定自己的资本结构时所面临的权衡问题,帮助企业制定最佳的债务比例。
背景资本结构是指企业所采用的资本来源和组织方式。
一般来说,企业可以通过两种方式筹集资金:通过债务融资和通过股权融资。
债务融资指的是企业通过发行债券或贷款等方式借入资金,而股权融资则是通过发行股票或吸引投资者购买股权来筹集资金。
企业的资本结构选择对其经营和财务状况有着重要的影响。
合理的资本结构可以降低企业的融资成本、提高税务效益,并平衡利益相关者之间的关系。
这就引出了拉姆齐模型。
模型解释拉姆齐模型首先假设企业的资本结构通过对债务与股权的选择进行优化来实现最大化价值的目标。
在这个模型中,企业的价值受到利润、税收、资本结构和风险等多个因素的影响。
模型中最基本的假设是,企业的资本结构会影响其成本和价值。
企业选择债务的比例是为了最大化净利润,同时平衡税务和金融风险。
根据拉姆齐模型的理论,债务的选择可以通过计算企业的债务税盾等参数来进行。
债务税盾是指企业由于债务利息的抵扣而减少应纳税额的优势。
在拉姆齐模型中,债务税盾会对企业的价值产生积极的影响,因为它减少了企业的纳税额,提高了净现金流。
此外,模型还考虑了资本结构对企业风险的影响。
债务融资可以增加企业财务风险,因为债务必须偿还,而股权融资则可以减少财务风险,因为股票的回报没有偿还压力。
因此,企业需要权衡风险与税盾所带来的优势,以确定最佳的资本结构。
实践应用拉姆齐模型的应用可以帮助企业确定最佳的资本结构,以实现最大化的价值。
通过分析债务税盾和风险影响,企业可以选择适合自己的债务比例,从而降低融资成本,改善财务状况。
在实际应用中,企业可以通过以下步骤使用拉姆齐模型:1.确定企业的利润和税务情况。
第三章 无限期界模型(拉姆齐模型)一、问题的提出在索洛模型中,储蓄率s 被假定为外生参数,储蓄率的变动将影响稳态的人均消费和动态的人均消费水平。
当gold s s >时,与最优储蓄(相对应于最优资本存量和最优消费)相比会出现“过度储蓄”(即“过度积累”)的情况,而一个高于黄金率的储蓄率被证明是动态无效的。
当gold s s <时,只有在给定在当前消费与未来消费之间的权衡参数的条件下,才能判断增加储蓄率的合理性。
图示:s 的变动对稳态和动态的人均消费的影响c c gold 那么,储蓄率是如何决定的?必须引入消费者(家庭)行为来分析跨期预算约束条件下的消费和储蓄选择,即储蓄率的“内生化”。
二、模型假定1.完全竞争市场结构2.长生不老的不断扩展的家庭(有限寿命的个人和基于利他主义的代际转让)3.家庭和个人完全同质4.忽略资本的折旧5.暂不考虑政府行为在简单经济中,家庭与厂商之间的关系:三、厂商行为沿用新古典生产函数),(AL K F Y = 根据欧拉定理,AL AL Y K K Y Y )(∂∂+∂∂=其中,资本的边际产品为:r k f KY==∂∂)('(真实利率) 有效劳动的边际产品为:w k kf k f AL Y=-=∂∂)(')()((工资率)四、家庭行为1.一些假定和符号总人口为L ,以速率n 增长,e L t L nt )0()(=; 家庭的个数为H ,每个家庭有L/H 个人; 每个家庭成员在每一时点上提供1单位劳动;资本最初存量为K(0),每个家庭初始资本存量为K(0)/H 。
2. 家庭效用函数和即期效用函数定义家庭效用函数(也称作“幸福函数”)为:dt HL t C u dt H t L t C u U o t tn o t te e )0()]([)()]([)(⎰⎰∞=--∞=-==ρρ 其中,C(t)为每个家庭成员的消费,)(∙u 为即期效用函数,ρ为贴现率(ρ越大表明与现期消费相比远期消费的价值就越低)。
5拉姆齐—卡斯—库普曼斯模型几个重要关系:● 收入由生产函数决定:(),Y F K AL = ● 收入=消费+储蓄:YC S =+● 在均衡中,储蓄=投资:SI =● 在没有折旧、人口增长和技术进步时,资本存量的增长=投资:K I ∆=●()()0ntL t L e =,人口,资本,效用等都以指数形式增长。
Ramsey模型的基本思想:国民收入()Y F K AL=。
所以经济增长决定于资本存量K、人,口L和劳动有效性A的增长。
在Solow和Ramsey增长模型中,人口L和劳动有效性A的增长率外生给定。
因此,必须研究经济增长与资本存量增长之间的关系。
资本存量的变化源于投资,投资形成于储蓄,所以,储蓄率影响资本存量的变化并进而影响经济增长。
在Solow模型中,储蓄率为外生变量。
但是在Ramsey模型中为内生变量,我们必须分析决定储蓄率的机制。
国民产出(收入)分为消费和储蓄两部分。
所以,分析储蓄必须分析消费。
家庭的消费行为是在生命周期收入约束下使其效用最大。
最优储蓄规模=投资经济增长分析步骤:1、确定家庭的效用函数2、确定家庭的预算约束 3、 确定最优消费数量 4、 确定最优投资 5、 6、5.1假定1、消费者的行为:在预算约束下(支出小于禀赋)最大化效用函数:()max ..u s t y≤x px离散时间下消费者的效用函数:消费者生存n 个时期,n →∞,在时期t ,消费t C ,获得效用()()u C t ,该效用贴现值为()()t e uC t ρ-。
ρ为贴现率,总效用为()()ntt eu C t ρ-=∑或()()tt eu C t ρ∞-=∑ 连续时间下消费者的效用函数:()()0te u C t dt ρ∞-⎰teρ-:()()u C t :()C t :个人在时点t消费的数量人口数量:()0L ()L t :()()0ntLt e L =家庭数量:()()0H H t H ==(有人口出生但是没有新的婚姻) 家庭的人口数量:()0L H()L t H ()()0ntL t L e H H=家庭效用函数:()()()()()()()()()()()()()00000,ttn t t e u C t dt e u C t dt L e u C t dt H L e u C t dt n H ρρρρρρ∞-∞-∞--∞'-=='==-⎰⎰⎰⎰nt L t H L 0e H瞬时效用函数的形式:()()()1,01C t u C t θθθ-=>-)1(>---g n θρ相对风险厌恶系数为()()u C Cu C ''-' 这里,相对风险厌恶系数固定为θ,因此称为“相对风险厌恶系数固定”的效用函数。
简答什么是拉姆齐模型
简单来说,拉姆齐模型与索罗模型不同,拉姆齐模型是研究在任何情况下,国民产出有多少应该分配给消费从而产生当前的效用,又有多少国民产出应该分配给储蓄并进而投资以提高未来的产出和消费,从而产生未来的效用。
与新古典增长模型或者说索罗模型不同,因为在新古典增长模型中,储蓄率是被假定为一个外生参数,并没有说明其是如何决定的。
对此,拉姆齐模型引入了消费者(家庭)行为来分析跨期预算约束条件下的消费和储蓄选择,从而将储蓄这个参数内生化了。
拉姆齐模型的基本假定主要是:
1)市场是完全竞争的;
2)家庭是不断延续的;
3)家庭和个人是完全同质的;
4)忽略了资本折旧;
5)不考虑政府行为。
拉姆齐模型研究的结论可归结为以下几点:
第一,拉姆齐模型并没有改变新古典增长模型关于经济平衡增长路径的基本结论。
第二,在对应于拉姆齐模型中的参数稳态下,新古典增长模型可以看作是拉姆齐模型的一个特例。
第三,拉姆齐模型的特点在于从家庭和个人的跨期消费行为
的微观基础出发决定稳态的消费和储蓄,从厂商的微观基础出发决定稳态的资本存量,所以消费和储蓄是同时决定的。
在这个过程中,储蓄的决定被内生化了。
第四,拉姆齐模型避免了新古典增长模型中的无效的过度资本积累。
第五,拉姆齐模型中的任意初始状态不一定会收敛到稳态,会存在发散的情况,而新古典增长模型则不会。
拉姆齐模型与世代交替模型的异同一、拉姆齐模型与世代交替模型的相同点拉姆齐模型(又称RCK 模型)与世代交替模型(又称Diamond 模型)都是现代经济增长理论的基准分析模型。
两个模型的主要相同点在于:第一,在这两种基准模型的一般均衡分析框架下,宏观层面的经济增长都具备了各个经济主体追求利益最大化的微观基础,这就使得经济学家能够在动态时间视角以及资源跨期最优配置的设定下对宏观经济增长进行更为深入的研究。
第二,两个模型均放弃了储蓄率外生给定的假设而通过家庭的效用最大化行为,将储蓄率表示为资本存量的函数,以便分析储蓄率的变动情况。
第三,两个模型在求解经济体一般均衡的结果时,都从市场竞争以及中央计划者配置(社会性最优)两个角度审视相应最优化结果是否具有一致性,从而比较并分析市场机制与计划手段的社会福利情况。
第四,两个模型的一般均衡结果中,人均资本存量以及人均消费量(以效率劳动的角度衡量)在长期内的增长率均为零,不存在持续性的增长机制。
二、拉姆齐模型与世代交替模型的区别从两个模型形式上的区别来看,经典的拉姆齐模型假设经济体中个人的寿命是无限的,因此对于家庭效用函数的构建以及效用最大化问题的讨论便从数理角度转化为了无限期连续型最优控制问题;而经典的世代交替模型假设经济体中个人的寿命是有限的,将人的一生简单划分为青年和老年两个阶段,青年阶段通过投入自身要素禀赋获得相应收入并消费,老年阶段则消费青年阶段的储蓄量,经济体每一期都存在着青年人出生、老年人死亡、上一期青年人变成老年人的迭代,因此对于消费者效用最大化行为的刻划便从数理角度转化为了跨期的非线性规划问题。
除了这种形式上的区别之外,两类模型还存在如下两点本质性的差异: 第一,竞争性均衡与社会性最优的关系。
在经典的拉姆齐模型中,竞争性均衡与社会性最优的结果是一致的。
首先考虑社会性最优的情形(计划增长模型),假设存在一个代表经济体中全部民众的善意计划者(中央政府)在既定资源约束下选择最优消费与资本增长路径使得家庭消费效用最大化,则最优选择问题可以表示为如下最优控制问题:0(,)0max :(())..:(),(0)t c k U c t e dt s t k f k c nk k k θ∞-=--=⎰解该最优控制问题,得到家庭最优消费路径为:(())c k cc U c f k n c U cθ=--- 接下来考虑竞争性均衡(分散化决策)的情形。
拉姆齐模型的主要结论
拉姆齐模型,又称拉姆齐-拉米哈模型,是当代生物信息学领域中一种非常重要且被广泛使用的基因表达预测模型。
该模型的核心思想是利用RNA结合蛋白(RBP)相互作用来预测基因表达。
拉姆齐模型由多个步骤组成,包括:1)基因筛选2)RP结合3)RP解离4)基因表达5)蛋白质检测。
拉姆齐模型的主要优点在于其高度的预测准确性。
与传统的基因表达预测方法相比,拉姆齐模型在预测基因表达方面具有更好的表现。
此外,该模型还具有较好的可扩展性,可以处理大规模数据。
除此之外,拉姆齐模型还具有其他优点,如易于计算,并且可以与其他生物信息学方法相结合。
然而,拉姆齐模型也存在一些局限性。
首先,该模型主要适用于预测编码蛋白质的基因表达。
对于其他类型的基因表达,如RNA预测、代谢网络预测等,拉姆齐模型可能无法获得同样的预测准确。
其次,拉姆齐模型的预测结果可能受到RP结合物的选择性影响。
因
此,在进行基因表达预测时,需要进行严格的实验验证,以确保结果的可靠性。
尽管如此,拉姆齐模型在基因表达预测中仍然具有广泛的应用。
该模型可以用于研究基因功能、基因表达调控、基因敲除等研究领域。
此外,随着生物信息学技术的不断发展,拉姆齐模型也在不断更新,以更好地满足新的研究需求。
总之,拉姆齐模型是一种非常有价值的基因表达预测工具。
它的主要优点在于高度的预测准确性和较好的可扩展性。
然而,也存在一些局限性,需要根据具体需求进行选择。
拉姆齐模型的详细推导拉姆齐模型(Ramsey model)是一种用来研究经济增长和储蓄决策的动态经济模型。
它由经济学家弗兰克·拉姆齐(Frank Ramsey)于1928年提出。
拉姆齐模型的基本假设是在一个无限时间段内,个体的目标是最大化消费效用的总和。
模型中的主要变量包括消费(C),资本(K)和劳动(L)。
模型的核心是通过设立动态规划问题来推导最优的消费和储蓄决策规则。
下面是拉姆齐模型的详细推导过程:1. 假设:-整个经济的生产函数为Y = F(K, L),其中Y为产出,K为资本,L为劳动。
-消费者的效用函数为U(C),其中C为消费。
-劳动力的增长率为n,资本的折旧率为δ。
-时间折现率为ρ(消费者对未来收益的偏好程度)。
-模型是一个无期限模型,没有考虑人口增长和技术进步。
2. 确定个体的动态规划问题:-消费者的目标是最大化消费效用的总和,即max [∫[0,∞] U(C(t))e^(-ρt)dt]-消费者面临的约束条件为C(t) + K(t+1) = F(K(t), L(t)) + (1-δ)K(t),即消费和资本投资的总和等于产出和资本折旧的总和。
3. 利用欧拉方程推导消费决策规则:-求解拉格朗日函数:J = ∫[0,∞] U(C(t))e^(-ρt)dt + λ[∫[0,∞] {F(K(t), L(t)) - C(t) - K(t+1) + (1-δ)K(t)}dt]-通过求极值问题,得到欧拉方程:U'(C(t)) = U'(C(t+1))(F'(K(t+1), L(t+1)) -δ)-将欧拉方程整理为消费决策规则:C(t) = (1/ρ)(1+n+g)F(K(t), L(t)) - (1/ρ)(1+n+g-δ)K(t+1),其中g为人口增长率。
4. 确定资本积累规律:-将消费决策规则代入约束条件,得到资本积累规律:K(t+1) = (1/ρ)(1+n+g)F(K(t), L(t)) - C(t),即现期资本等于当期产出减去消费。
拉姆齐(Ramsey)模型的详细推导弗兰克·拉姆齐(英国著名科学家)弗兰克·拉姆齐(Frank Plumpton Ramsey),1903年2月22日—1930年1月19日),英国科学家、数学家、哲学家、逻辑学家、经济学家,在他短促的一生中对许多领域做出开拓性的贡献。
弗兰克·拉姆齐(Frank Plumpton Ramsey,1903.2.22 - 1930.1.19)生于剑桥,其父亲是麦格达伦学院的校长,其弟弟迈克尔·拉姆齐是第100任坎特伯里大主教。
拉姆齐于温切斯特公学学习,后来进入剑桥大学三一学院学习数学。
他涉猎了很多领域。
在政治上,他有左翼的倾向;宗教上,其妻指他是个态度坚定的无神论者。
他和查尔斯·凯·奥格顿聊天时,说他想学德语。
奥格顿便给他一本文法书、字典和一篇深奥的心理学论文并告诉他:使用那本文法书和字典,告诉我们你的想法。
约一星期后,他不止学会了德语,还对语法书中一些理论提出了反对意见。
他阅读了维根斯坦的Tractatus Logico-Philosophicus。
这本书深深影响了他,1923年他去奥地利跟维根斯坦讨论。
1924年21岁的他成为国王学院的研究员。
拉姆齐为治疗慢性肝疾而接受腹部手术,但术后并发黄疸,于1930年1月19日病逝于伦敦盖氏医院(Guy's Hospital),得年仅26岁又11个月。
有些哲学家将他视为可能比维根斯坦更伟大的哲学家。
一些重要贡献:哲学:真理的多余理论组合数学:拉姆齐定理经济学:拉姆齐定价拉姆齐(Ramsey)模型为现代宏观经济分析最有力的工具之一。
弗兰克·拉姆齐是英国剑桥大学的数学家和逻辑学家,1928年12月,他在[经济学杂志]上发表了[储蓄的数学原理]一文,建立了拉姆齐模型。
该模型在确定性的条件下,分析最优经济增长,推导满足最优路径的跨时条件,阐述了动态非货币均衡模型中的消费和资本积累原理。
第三章 无限期界模型(拉姆齐模型)一、问题的提出在索洛模型中,储蓄率s 被假定为外生参数,储蓄率的变动将影响稳态的人均消费和动态的人均消费水平。
当gold s s >时,与最优储蓄(相对应于最优资本存量和最优消费)相比会出现“过度储蓄”(即“过度积累”)的情况,而一个高于黄金率的储蓄率被证明是动态无效的。
当gold s s <时,只有在给定在当前消费与未来消费之间的权衡参数的条件下,才能判断增加储蓄率的合理性。
图示:s 的变动对稳态和动态的人均消费的影响c c gold 那么,储蓄率是如何决定的?必须引入消费者(家庭)行为来分析跨期预算约束条件下的消费和储蓄选择,即储蓄率的“内生化”。
二、模型假定1.完全竞争市场结构2.长生不老的不断扩展的家庭(有限寿命的个人和基于利他主义的代际转让)3.家庭和个人完全同质4.忽略资本的折旧5.暂不考虑政府行为在简单经济中,家庭与厂商之间的关系:三、厂商行为沿用新古典生产函数),(AL K F Y = 根据欧拉定理,AL AL Y K K Y Y )(∂∂+∂∂=其中,资本的边际产品为:r k f KY==∂∂)('(真实利率) 有效劳动的边际产品为:w k kf k f AL Y=-=∂∂)(')()((工资率)四、家庭行为1.一些假定和符号总人口为L ,以速率n 增长,e L t L nt )0()(=; 家庭的个数为H ,每个家庭有L/H 个人; 每个家庭成员在每一时点上提供1单位劳动;资本最初存量为K(0),每个家庭初始资本存量为K(0)/H 。
2. 家庭效用函数和即期效用函数定义家庭效用函数(也称作“幸福函数”)为:dt HL t C u dt H t L t C u U o t tn o t te e )0()]([)()]([)(⎰⎰∞=--∞=-==ρρ 其中,C(t)为每个家庭成员的消费,)(∙u 为即期效用函数,ρ为贴现率(ρ越大表明与现期消费相比远期消费的价值就越低)。
拉姆齐模型
家庭行为:
总人口:L 人口增长率:n 家庭数量:H 家庭初始资本量:K (0)/H
家庭效用函数:
()[]()dt H
t L t C u e
U t t
⎰
∞
=-=0
ρ (1)
C (t ):t 时刻家庭每个成员的消费 u :瞬时效用函数,L (t )/H :家庭成员数 ρ:贴现率
瞬时效用函数(相对风险厌恶不变的函数(CRRA )):
()()()θ
θ
-=
-11t C t C u θ>0,ρ-n-(1-θ)g >0 (2) 相对风险厌恶的系数:
()()θ=-C u C Cu '/'
'
厂商行为:
厂商生产函数:Y=F (K ,AL ) A 以速率g 外生的增长
资本的边际产品:)(/),('k f K AL K F =∂∂,()∙f 是生产函数的紧致形式 市场竞争性的,不存在折旧,资本的真实报酬率等于其每单位时间的收入,即真
实利率为:
()()()t k f t r '=
有效劳动的边际产品:()AL AL K F ∂∂/,=()()()())('t k f t k t k f -,
即等于每单位有效劳动的工资:w(t)=
()()()())('t k f t k t k f - (3)
家庭预算约束:
家庭的终生消费的贴现值不能超过其初始财富与其终生劳动收入的现值之和 考虑r 可随时间变化,定义()()τττ
d r t R t
⎰==
(4)
在0时刻投资一单位产出品,在t 时刻获得产品()t R e
在t 时刻的一单位产品的价值用0时刻的产出表示为()
t R e
-
每个家庭成员数:L (t )/H
t 时刻的劳动总收入是W (t )L (t )/H t 时刻的消费支出是C (t )L (t )/H 家庭初始资本:K (0)/H
家庭预算约束:
()
()()()()()()⎰⎰∞=-∞
=-+≤0
0t t R t t R dt H t L t W e H K dt H t L t C e
(5) 我们可以用家庭的资本持有量的极限形式表示预算约束
将(5)式各项移到右边,化简得:()()()()[]()⎰∞
=-≥-+0
00t t R dt H t L t C t W e H K (6)
我们可以写出从t=0到t=∞的及积分形式作为一种极限,(6)式等价于:
()()
()()[]()00lim 0≥⎥⎦
⎤⎢⎣⎡-+⎰=-∞→s
t t R s dt H t L t C t W e H K (7)
家庭最大化问题:
考虑到技术进步,c (t )为有效劳动的消费
()()gt e A t A 0=,()()()t c t A t C =,()()()()H L A k K /0000=
由(2)式:
()()()()()[]()[]()
()
()()θ
θ
θ
θθ
θθ
θ
θ
θ
θ
-=-=
-=
-=-------1010111111111t c e A t c e A t c t A t C t C u gt gt (8)
将(8)式代入(1)得: a .家庭效用函数:
()()()()()()()
()()()()dt t c e B
dt t c e e H L A dt H e L t c e A e
dt H
t L t C e
U t t
t gt t nt t gt t
t t
⎰
⎰⎰
⎰
∞
=--∞
=----∞
=----∞
=---=-=⎥
⎦⎤⎢⎣
⎡-=
-=
10
1110
1110
111000101θ
θ
θθ
θ
βθ
θρθ
θ
θθρθ
ρ (9)
其中,()()H L A B /001θ
-=,()g n θρβ---=1
b .家庭预算约束
()()()()()()()()
()()()⎰⎰∞
=-∞
=-+≤0
0000t t R t t R dt H t L t A t w e H L A k dt H t L t A t c e (10)
其中,家庭的有效劳动数量是A (t )L (t )/H ,A (t )L (t )等于
()()()t g n e L A +00 (11)
将(11)代入(10)得到:
()()()()()()()⎰
⎰
∞
=+-∞
=+-+≤0
00t t
g n t R t t g n t R dt e t w e k dt e t c e (12) 求家庭最大化,由(9)和(12)式构造拉格朗日函数:
()()()()()()()()⎥⎦
⎤⎢⎣⎡-++-=Φ⎰⎰⎰∞=∞
=+-+-∞
=--000101t t t
g n t R t g n t R t t dt t c e e dt t w e e k dt t c e B λθθβ (13)
其中,()g n θρβ---=1
在时刻t ,家庭消费c (t ),对于每一个c (t ),一阶条件是:
()
()()t g n t R t
e e t c Be
+---=λθ
β (14)
对(14)式两边取对数:
()()()()()t g n d r t g n t R t c t B t
++-=++-=--⎰=0
ln ln ln ln τττλλθβ (15)
利用了()()τττ
d r t R t
⎰==
两边求关于t 的导数:
()()
()()g n t r t c t c ++-=--∙
θ
β (16) 由(16)式得到:
()()()()θ
θρθβg
t r g n t r t c t c --=---=∙
(17)
利用了()g n θρβ---=1的定义。