探讨风电接入对电力系统的影响
- 格式:docx
- 大小:11.44 KB
- 文档页数:2
分析风电接入对电力系统的影响作者:潘瑞球来源:《科技风》2018年第35期摘要:近些年来,我国综合国力的不断增强同时也带动了我国工业的增强,人们对于能源的利用率正在迅速增加,随着不可再生的传统能源的掠夺式开采,开发与利用新的能源已经成为了我们必须要解决的问题,风力能源作为一种新型能源,作为一种可再生能源近些年来在我国能源使用领域使用广泛,但与此同时,对于风力能源使用还存在着许多的不可控因素,本文将对于风电接入对电力系统的影响做出简单分析,希望能够为我国电力行业的发展做出贡献。
关键词:风电接入;电力系统;影响随着我国对于电力需求的迅速增长,人们也开始不断地对新能源进行开发与利用,将其使用到电力的发展当中,为电力领域做出贡献,而风能源作为一种新型且可再生能源,就被广泛运用在电力系统的运作中,这样不仅能够充分解决了我国电力不足的情况,而且风力能源作为一种清洁能源,与其具备的可再生性,可以更好地为我国的环境保护做出贡献,符合我国可持续发展的目标,我们应加大对风能源的研究,为电力领域做出贡献。
1 风电接入的基本特征及发展现状风电作为一种新型的电力能源,相比于传统发电厂而言,既有与传统发电厂相同的地方,又具备传统发电厂所不具备的特殊性。
我国的地理面积较为辽阔,其中地势地貌也是多种多样,总体来看,我国平原地区的面积在总面积中占比并不是很高,而在风能发电的运作中,地理位置对于风能发电产生着重要的影响。
对于山地高原等不平坦地势来说,风力发电厂的建立与运行会受到一些影响,比如,受到天气影响,使风能带动电力运作的稳定性大大降低,发电量会随着风能的波动而波动,而天气对我们来说存在着很强的不可控性,这样就无法保证风能带动电力的更好运作,加上各种各样因素的影响,如“三北地区”风资源最丰富,但较经济发达的东部地区来说,区域负荷较低,电网建设相对较薄弱,“弃风”现象非常严重,全年可利用的风力能源被大大减少,造成能源的浪费。
我国现如今在风电建设方面投入越来越多的人力以及物力,正全方面的建设风电接入,可以预见的风电接入会在我国政策的支持下进行大力发展,具有广阔的发展前景与发展意义,但是对于风力能源这种不可控因素,对于其运用我们也要充分认识其弊端,因为风电接入的稳定性较差,所以会经常对于日常电网的应用造成干扰,导致电力运行的的安全性存在隐患,所以,根据这一弊端,我们需要对风力能源进行更好的探索与利用,采取相应的措施,以确保电力系统正常平稳的运行。
风电接入对电力系统的影响及控制措施互联网环境下,电力网络日趋复杂,使电网维护和管理难度增加,很容易出现电网瘫痪情况,造成严重的经济损失。
在电力系统中接入风电,能够减少停电损失和故障发生率,使电力网络管理效率得到明显提升。
文章简要论述风电场特点及风力发电机组故障情况,分析风电接入对电力系统的影响,提出具体控制方法。
标签:风电接入;电力系统;保护装置前言:风力发电属于可再生能源发电技术,应用日益普遍。
风力资源丰富,但开发难度大。
一些地区虽然适合风电大规模开发,但都处于电网末端,网架结构简单,一旦把风电接入电网,不仅影响电能质量、继电保护等,还会导致电网稳定性差。
明确风电接入对电力系统的影响,采取专业技术手段加以控制,优化电力系统性能,为客户提供优质电力服务。
1风电场及风力发电机组故障1.1风电场特点风能具备随机性和不可控性,也不能够存储,很难像常规火电厂一样,通过调节汽轮机汽门,对出力进行有效控制,故而,风电机组发出的电能具备波动性和随机性特征。
因风能具备不可控特征,无法依据负荷调度风力发电,使调度难度增加。
当前,风电机组以异步发电机为主,尽管把无功补偿电容器组装设在机端出口,有功功率输出过程中,发电机会以系统为载体,对无功功率进行吸收,而无功需求受有功输出变化影响。
1.2风力发电机组故障特征风力发电机组应用时间并不是很长,尚存在诸多技术桎梏,其故障特征主要表现在以下方面。
具体而言,将控制技术和运行特征作为划分依据,可把风力发电机细分为变速恒频和衡速衡频两类。
前者有双馈式风力发电机、永磁直驱式风力发电机等,后者则以鼠笼式感应风力发电机为主[1]。
在风电故障点、接入点位置已知,且保持不变时,短路电流会受接入的风电机组类型影响,表明不同类型风电机组故障特征存在差异。
2风电接入对电力系统的影响在电力系统中接入风电,会对继电保护产生影响,还容易干扰电网稳定性、电能质量等,甚至影响电流保护。
具体如下:2.1风电接入影响继电保护如果风电机组的切入频率相对比较高,很容易干扰接触器,导致其使用年限缩短,或者对其产生损坏。
探究风电接入对电力系统的影响摘要:工业的发展对于能源的有着更为迫切的需求。
虽然现阶段人们对能源的利用率在不断的增加,但是受到传统粗放式的资源开发利用模式的影响,导致我国资源匮乏问题日医院案中。
风电能源作为一种新型的能源,具有环保性的特征,在各行各业中广泛应用可以提升资源利用效率与质量。
而风力能源在实践中还是收到诸多因素的影响,分析风电接入电力系统产生的影响,对于我国电力行业的发展来说具有重要的贡献。
基于此,文章主要对风电接入对电力系统的影响进行了简单的分析研究。
关键词:风电接入;电力系统;影响随着各行各业对电力需求的不断增长,人们加强对新能源的开发与利用,在电力开发中风能源作为一种新型的可再生能源,在电力系统运作中广泛应用。
合理的运用风电资源可以提升资源利用效率,解决我国电力资源不足的问题,也为我国环境保护工作开展奠定了基础。
加强对风能源的研究分析,对于电力领域的持续发展来说具有重要的价值与意义。
而在风电接入会在不同程度上对电力系统产生影响,分析这些影响因素,探究合理有效的完善对策与手段,对于我国社会经济的持续发展来说具有重要的价值与意义。
1.风电接入对电网的影响随着国际上风力资源开发以及风力发电技术的逐渐成熟,现阶段风电建设的规模呈现大规模的发展趋势,但是在实践中其对电网的影响问题也逐渐凸显,其主要表现在以下几个方面:1.1电网方面异步电机因为没有设置独立的励磁装置,在并网时则会出现冲击电流,其强度是额定电流的数倍,持续零点几秒左右之后电机才可以进入到稳定的状态中。
而针对大容量地区电网中,在接入风力发电机组之后,瞬时的冲击电流并不会对电网运行造成较为显著的影响,而相对于一些容量较小的电网则就会产生较为严重的影响,导致电网电压出现大幅度的下降,这样就会给在在同一电网上链接的电气设备产生不良影响。
1.2电压方面在风电场并网运行中如果端电压出现升高或者降低的变化则就会导致电网侧无功功率出现变化,这样则就会导致电网局部出现电压失稳的问题,造成电网电压出现不同程度的波动、闪变以及失衡、波形畸变等相关问题,直接的影响了电网电压变整体的稳定性,降低了电压质量。
刍议风电接入对电力系统的影响及控制措施摘要;随着现代电力系统中风力发电技术的积极引入,系统经济性、能源性、效益性逐渐凸显。
在可再生能源快速发展的背景下,国家对可再生能源发电的重视程度越来越高,某种程度上为我国风力发电的建设与发展奠定了坚实基础。
我国属于风力资源大国,但在实际开发过程中面临诸多艰难险阻,如,通常可用于大规模风电开发的区域主要集中在电网末端,将风电接入电网后,将影响电网整体质量和性能,不利于继电保护的开展和电网稳定性的维持。
因此,文章深入探讨风电接入电力网络后对整个系统的影响,并结合实际进行相关控制措施的有效制定。
关键词:风电接入;电力系统;影响;控制措施1.电力系统恢复的基本理论通常情况下,电力系统运行过程中出现临时停电现象时,将及时启动相关停电恢复措施。
但从目前实际来看,停电恢复所涉及内容除了电力供应的恢复外,还与电力网络整体安全性、稳定性、可靠性等息息相关。
传统电力恢复方式主要有两种,一种是并行恢复,另一种是串行恢复。
其中,并行恢复主要恢复对象是电力设备和电力网络,而串行恢复则重点强调对局部或整个电力网络的恢复,在具体选择恢复方式时,应以电网实际规模大小为选择依据。
电力恢复可分为启动、骨架重构和负荷恢复三个阶段:第一,启动阶段。
一般,启动工作需耗用将近30~60分钟时间,在启动工作开展前,需对相关电力设备和电力网络状态进行全面检查,判断其是否处于停运状态。
在启动过程中一切需遵循常规步骤,首先确保启动电源,使电力设备运行状态逐渐恢复。
第二,骨架重构阶段。
骨架重构阶段所持续时间大约为3~4小时,并且需在确保启动工作正式完成后方可开展。
值得注意的是,在重构骨架过程中,应尽可能的保证节点的丰富性。
第三,负荷恢复阶段。
不同于其他阶段,该阶段在时间上的消耗较长,大约在12小时以上,该阶段的开展主要是为了确保电力负荷的有效恢复,在规定时间内确保每一个电气设备恢复自身负荷。
除此之外,在负荷恢复阶段,还应加快实现对整个系统的重新构建与完善,按照相关要求所规定顺序对具体内容就进行恢复,对等级较高的负荷或者与电源负荷相临近的电器进行优先恢复。
大规模风电场接入对电力系统调峰的影响一、本文概述随着全球能源结构的转型和可再生能源的大力发展,风电作为一种清洁、可再生的能源形式,在全球能源布局中占据了越来越重要的地位。
大规模风电场的接入,无疑为电力系统的清洁能源供应注入了新的活力,然而,与此其对于电力系统调峰的影响也不容忽视。
本文旨在探讨大规模风电场接入对电力系统调峰的影响,分析风电出力的随机性、波动性以及反调峰特性对电力系统调峰能力的要求,并研究如何通过优化调度策略、改进电网结构等方式来应对这些挑战,以确保电力系统的安全、稳定、经济运行。
文章将介绍风电出力的基本特性,包括其随机性、波动性以及反调峰特性,并分析这些特性对电力系统调峰能力的影响。
接着,文章将深入探讨大规模风电场接入对电力系统调峰的影响机制,包括风电出力波动对系统调峰能力的影响、风电反调峰特性对系统调峰策略的影响等方面。
在此基础上,文章还将提出一系列应对策略,包括优化调度策略、改进电网结构、提升储能技术应用等,以期减轻大规模风电场接入对电力系统调峰的压力,提高电力系统的稳定性和经济性。
文章将总结研究成果,并展望未来的研究方向,以期为相关领域的学术研究和实践应用提供参考和借鉴。
二、风电场接入对电力系统调峰的基本原理风电作为一种可再生能源,其接入电力系统对调峰产生了显著影响。
理解这种影响的基本原理对于优化电力系统的运行和确保电力系统的稳定性至关重要。
风电场的接入对电力系统调峰的影响主要体现在以下几个方面。
风电的出力特性决定了其在不同时间段的出力波动较大。
由于风的随机性和间歇性,风电场的出力在一天之内会有很大的变化,这使得风电场在电力系统中起到了一种“负荷”的作用。
在风力充足的时候,风电场可以提供大量的电力,减轻其他电源的供电压力;而在风力不足的时候,风电场的出力会大幅下降,甚至可能为零,这时就需要其他电源来弥补这部分电力的缺失。
风电场的接入改变了电力系统的调峰需求。
在传统的电力系统中,调峰主要由燃煤机组、燃气机组等可控电源来完成。
风电的接入对电网的影响1.对电网频率的影响风电出力波动将会产生严重的有功功率平衡问题。
风电比例大小对系统调频影响严重,当电力系统中风电装机容量达到一定规模时,风电功率波动或者风电场因故整体退出运行,可能会导致系统有功出力和负荷之间的动态不平衡,当电网其他发电机组不能够快速响应风电功率波动时,则有可能造成系统频率偏差,严重时可能导致系统频率越限,进而危及电网安全运行[1]。
因此,始终保持电力系统频率在允许的很小范围内波动,是电力系统运行控制的最基本目标,也是电力调度自动化系统的最重要任务。
电力系统正常运行时,频率始终保持在50Hz±0.2Hz 的范围内,当采用现代自动调频装置时,误差可以不超过0.05~0.15Hz。
2.对电网电压的影响风电场并入电网后,由于风电具有间歇性和随机性的特点,使得当风电功率变化时,电网电压也将随之发生波动。
随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将会超出安全范围,严重时会导致电压崩溃。
影响电压波动有很多因素,例如风电机组类型、风况、所接入电网的状况和策略等,但最根本的原因是风速的波动带来的并网风电机组输出功率的变化。
系统要求节点电压与额定值的偏差不允许超过一定的范围。
因此,必须釆取适当的措施来防止偏差过大,维持系统的节点电压在限定的范围之内,防止与额定值的偏差超过允许范围。
风电接入系统的所带来的电压与无功功率问题亟待解决。
综上所述,为保证大规模风电接入后电网的安全稳定运行,风电接入后的电网运行控制技术越来越重要,电网的稳定控制技术、运行控制技术、优化调度技术以及风电与电网的协调控制技术将成为风电并网控制技术中的关键技术[2,3]。
[1] 计崔. 大型风力发电场并网接入运行问题综述[J]. 华东电力, 2008, 36(10): 71-73.[2] 耿华, 杨耕, 马小亮. 并网型风力发电机组的控制技术综述[J]. 电力电子技术, 2007, 40(6): 33-36.[3] 王伟胜, 范高锋, 赵海翔. 风电场并网技术规定比较及其综合控制系统初探 [J]. 电网技术, 2007, 31(18): 73-77.。
风电对电力系统的影响由于风速变化是随机性的,因此风电场的出力也是随机的。
风电本身这种特点使其容量可信度低,给电网有功、无功平衡调度带来困难。
在风电容量比较高的电力网中,可能会产生质量问题。
例如电压波动和闪变、频率偏差、谐波等问题。
即可分为:对电能质量的影响,对稳定性的影响,对保护装置的影响。
1.对电能质量的影响风资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,可能影响电网的电能质量 ,,如电压偏差、电压波动和闪变、谐波以及周期性电压脉动等。
电压波动和闪变是风力发电对电网电能质量的主要负面影响之一。
电压波动的危害表现在照明灯光闪烁、电视机画面质量下降、电动机转速不均匀和影响电子仪器、计算机自动控制设备的正常工况等。
影响风力发电产生波动和闪变的因素有很多:随着风速的增大,风电机组产生的电压波动和闪变也不断增大。
并网风电机组在启动、停止和发电机切换过程中也产生电压波动和闪变。
风电机组公共连接点短路比越大,风电机组引起的电压波动和闪变越小。
另外,风电机组中的电力电子控制装置如果设计不当,将会向电网注入谐波电流,引起电压波形发生不可接受的畸变,并可能引发由谐振带来的潜在问题。
异步电机作为发电机运行时,没有独立的励磁装置,并网前发电机本身没有电压,因此并网时必然伴随一个过渡过程,流过 5~6 倍额定电流的冲击电流,一般经过几百毫秒后转入稳态。
风力发电机组与大电网并联时,合闸瞬间的冲击电流对发电机及电网系统安全运行不会有太大影响。
但对小容量的电网而言,风电场并网瞬间将会造成电网电压的大幅度下跌,从而影响接在同一电网上的其他电器设备的正常运行,甚至会影响到整个电网的稳定与安全。
2.对稳定性的影响风力发电通常接入到电网的末端,改变了配电网功率单向流动的特点,使潮流流向和分布发生改变,这在原有电网的规划和设计时是没有预先考虑的。
因此,随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将会超出安全范围,严重时会导致电压崩溃[11,13]。
风电接入对电力系统的影响分析【摘要】风能是一种可再生的绿色能源,风能具有随机性、间歇性、不稳定性的特点,会给系统的电能质量、稳定性等造成严重的影响。
阐述了当前风力发电的特点,综述了风电接入电网对电力系统带来的影响。
【关键词】电力系统风电影响1 引言随着现代工业的飞速发展,人类对能源的需求显著增加,然而煤炭、石油、天然气等常规化石能源日趋匮乏。
为了实现能源的可持续发展,新能源和可再生能源得到了全世界范围内的日益关注。
风能是一种洁净的可再生能源,可以说取之不尽、用之不竭。
风能的大规模利用成为世界范围内解决能源短缺、减少有害气体排放的一项有效措施。
但是由于风力发电的自身特性,风电的大规模接入将对电力系统运行产生一定影响。
2 风力发电的特点大型风电场并网时具有与常规能源发电厂不同的特点,主要体现在以下几个方面:(1)出力不可控性。
风电机组的输出功率随着风速的频繁波动而不断变化,呈现出很强的随机性,风电场出力的间歇性和波动性将影响系统的发电可靠性,导致系统备用容量增加。
(2)不可调度性。
由于风能的不可控性,因而不可能根据负荷的大小来对风电场进行调度,给电力系统调度带来了不小压力。
(3)目前广泛采用的风电机组一般是异步发电机,在发出有功功率的同时,发电机会从系统中吸收无功功率,并且无功需求随有功输出的变化而变化。
3 风电并网对电力系统的影响风力发电机的原动力是自然风,风的随机性和间歇性决定了风力发电机的输出也是波动和间歇的。
当风电场容量较小时,这些特性不会对电力系统运行产生明显影响,但随着风电渗透率的增加,风电接入对电力系统的影响就越来越显著。
风电并网对电力系统的影响主要体现在以下几个方面。
3.1 对电网的冲击大型风电场的风力发电机以异步发电机为主。
由于异步发电机没有独立的励磁装置,在并网前发电机本身没有电压,因此并网时会出现一个暂态过渡过程,将流过冲击电流,其大小是额定电流的4~7倍,而最大瞬时电流可能达到额定值的8倍,然后在零点几秒内进入稳态。
大规模风电并入电网对电力系统的影响摘要:风力发电是可再生能源发电形式中技术最成熟、最具开发规模和商业化发展前景的,然而风电场的出力不可控,为配合风电场出力的频繁波动,需要其他常规发电厂出力及系统备用的频繁改变。
随着新能源风电总装机容量的增加,这些问题将会严重影响电力系统的安全性、可靠性、经济性等指标。
分析风电并入电网后对电力系统的影响对于新能源应用水平的提高和我国电力事业的发展都有着积极的意义。
针对于此本文就大规模风电并入电网对电力系统的具体影响进行了分析。
关键词:风力发电;电力系统;电能质量随着风力发电技术的快速发展和国家在政策上对可再生能源发电的重视,我国风力发电建设已进入了快速发展的时期。
我国风资源较丰富,但适合大规模开发风电的地区一般都处于电网末端,由于此处电网网架结构较薄弱,因此大规模风电接入电网后可能会出现电网电压水平下降、线路传输功率超出热极限、系统短路容量增加和系统暂态稳定性改变等一系列问题。
一、风电对电力系统电压的影响电压稳定问题取决于风电场及接入电网的无功特性。
由于一般风能资源丰富地区距离负荷中心较远,大规模的风力发电是无法就地消纳的,需要通过输电网远距离输送到负荷中心。
在风电场的风电出力较高时,大量风电功率的远距离输送往往会造成线路压降过大,风电场的无功需求及电网线路的无功损耗增大,电网的无功不足,局部电网的电压稳定性受到影响、稳定裕度降低。
随着接入风电容量的增大。
风电场从系统中吸收的无功功率逐渐增大,如果系统不能提供充足的无功,网内相关节点电压会逐渐降低。
电网的电压稳定极限限制了风电场最大的装机容量,在电网规划没有与风电规划协调时,往往电网接纳风电的能力不能适应风电规划的发展,接入的风电场容量受到电网自身条件的限制。
通过采用一定的无功补偿手段,可以增加电网的电压稳定裕度,提高风电场的最大装机容量。
如果在风电场中安装一定容量的无功补偿装置(如并联电容器组)来提高风电场并网点的电压水平,能够改善风电接人地区的电压水平,提高电压稳定裕度,增加风电场的最大装机容量。
风电技术发展对电力系统的影响有哪些在当今能源转型的大背景下,风电技术作为一种清洁能源技术,取得了长足的进步。
风电技术的发展不仅为我们提供了更多的绿色能源,也给电力系统带来了多方面的影响。
首先,风电技术的发展增加了电力系统的能源供应多样性。
过去,电力系统主要依赖传统的化石能源,如煤炭、石油和天然气。
然而,随着对环境问题的日益关注和能源可持续发展的需求,风电作为一种可再生能源,逐渐成为电力供应的重要组成部分。
这种多样性有助于降低对有限且不可再生的传统能源的依赖,增强了能源供应的稳定性和安全性。
风电的大规模接入改变了电力系统的电源结构。
传统电源,如火力发电,其输出相对稳定且可控。
而风力发电则具有间歇性和波动性的特点。
这意味着风电的输出功率会随着风速的变化而不断变化。
在风速较高时,风电出力大;在风速较低时,出力则小。
这种不稳定性给电力系统的调度和运行带来了挑战。
为了应对这一挑战,电力系统需要更加灵活的调度策略和先进的预测技术,以更好地平衡供需关系。
风电技术的发展对电力系统的电能质量产生了影响。
由于风电输出的波动性,可能导致电压波动、频率偏差等电能质量问题。
这对于对电能质量要求较高的用户,如精密制造业等,可能会产生不利影响。
为了保障电能质量,电力系统需要采取一系列措施,如安装无功补偿装置、优化电网结构等。
在电网规划方面,风电的发展也带来了新的要求。
为了有效地消纳风电,需要建设更加坚强、智能的电网。
这包括加强输电线路的建设,提高输电能力,以及发展智能电网技术,实现电网的智能化监控和管理。
同时,在电网规划中还需要考虑风电的分布特点和季节性变化,以确保电网的可靠性和经济性。
从电力市场的角度来看,风电的发展也推动了电力市场机制的改革和完善。
由于风电的成本和价格与传统能源存在差异,需要建立合理的市场机制来促进风电的消纳和发展。
这可能包括制定差异化的电价政策、建立绿色证书交易制度等,以激励各方积极参与风电的开发和利用。
风电接入对电力系统的影响研究摘要:现如今风电并网规模明显扩大,传统电源在电网运行调控方面的能力被削弱,这就必须要重视电能质量与运行安全等问题。
本文就风电接入对电力系统的影响进行阐述,进一步探究改善风电接入对电力系统影响的可行策略,旨在促进电力系统的安全可靠运行。
关键词:风电接入;电力系统;影响风电接入电网后,在远距离输送大量风电功率的情况下,会影响线路电压水平,导致风电场存在较大的无功需求,电网线路无功损耗也明显加大。
系统电压降低会导致并联电容器无功补偿量降低,进而导致电压水平恶化,甚至会瓦解电网电压。
若此类问题得不到有效解决,势必会影响电能供应的稳定性,风电技术的发展也会受到制约。
一、风电接入对电力系统的影响风能的显著特点在于,稳定性不足,且具有随机性,在总电网容量中,若风电装机存在较大容量,则会在一定程度上影响电网的稳定性与安全性,进而影响电力系统的可靠运行。
在不同地理位置下,风力资源的分布风速也存在一定差异,受到电网结构控制方式、机组所受塔影效应等因素的影响,风电场输出功率的间歇性与扰动性也比较强。
风电场规模较小的情况下,装机容量也相对较小,对于电力系统并不会产生强烈影响,但对于大规模风电场来说,其装机容量大,进而严重影响电力系统运行,主要体现在以下几个方面:(一)电能质量方面电网电能质量因风力发电的间歇性与波动性而受到影响,以电压波动和闪变为主要表现,谐波的影响也应当高度重视。
在电力系统运行中,风电接入的情况下会给电网带来谐波,主要来源于两个方面,一是风力发电机自身存在电力电子装置,在并联电容或者电抗元件谐振的情况下会导致谐波效应加大。
其二是基于无功补偿装置特性出发,并联电容器极易与线路电抗出现谐振情况,进而影响电能质量。
(二)电网稳定性方面风电接入后电力系统的运行受到了一定影响,就传统配电网来看,功率方向主要是自配电变压器流向用户,但在风电接入后,功率可能与原有流向相反,因而电力系统设计存在一定难度。
风电并网对电力系统的影响摘要:由于风速具有波动性和间歇性,风力发电具有较强的不确定性。
为了确保电力系统的安全、稳定运行,研究风电并网对电力系统的影响是非常必要的。
本文分析了风电并网对电力系统的影响,之后提出了解决问题的措施,以供参考。
关键词:风电并网;电力系统;影响;措施随着现代工业的飞速发展和化石能源的日趋枯竭,能源和环境问题日益严峻,风电作为一种可再生的绿色能源,已成为世界上发展最快的可再生能源。
我国风力发电建设进入了一个快速发展的时期,大规模的风力发电必须要实现并网运行。
风电场接入电力系统的分析是风电场规划设计和运行中不可缺少的内容,是风力发电技术的三大课题之一。
随着风电场容量在系统中所占比例的增加,风电场对系统的影响越来越显著。
因此,必须深入研究这些影响,确保电力系统的安全、稳定运行。
1 风电并网对电力系统的影响1.1 风电并网对系统稳定性的影响一方面,风电并网引起的稳定问题主要是电压稳定问题。
风力发电随风速大小等因素而变化,同时由于风能资源分布的限制,风电厂大多建设在电网的末端,网架结构比较薄弱,所以在风电并网运行时必然会影响电网的电压质量和电网的电压稳定性。
同时大型风电厂的风力发电机几乎都是异步发电机,在其并网运行时需从电力系统吸收大量无功功率,增加电网的无功负担,有可能导致小型电网的电压失稳。
另一方面,风电并网改变了配电网的功率流向和潮流分布,这是既有的电网在规划和设计时未曾考虑的。
因此,随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将超出安全运行范围,影响系统的稳定性。
随着各地风力发电的蓬勃发展,风电场的规模不断扩大,风电装机容量在系统中所占的比例不断增加,风电输出的不稳定性对电网的功率冲击效应也不断增大,对系统稳定性的影响就更加明显。
情况严重时,将会使系统失去动态稳定性,导致整个系统瓦解。
1.2 风电并网对系统运行成本的影响风力发电的运行成本与火电机组相比很低,甚至可以忽略不计。
探讨风电接入对电力系统的影响【摘要】随着世界能源危机的加深,开发与利用新能源已经成为了国家发展战略性的产业。
风电由于其自身具有多种优势,因而越来越受到广泛关注。
本文首先阐述了风电接入发展现状,指出了风电接入对电力系统的影响,并结合我国当前电力行业的实际发展情况,分析了降低风电接入对电力系统产生干扰的措施,希望对相关研究领域提供帮助。
【关键词】风电接入;新能源;电能质量;系统稳定性在当今节能减排大环境背景下,增加新性能源的利用具有重要意义。
当前,风电接入方式在电力系统中得到了广泛应用,并且在电力发电中发挥了重要作用。
但是由于电能自身具有其特殊性,在电力发电中接入新能源也存在一定挑战。
如果风电接入处理方式不够合理,将会对电力系统的稳定性造成影响。
为了更好的对风电接入进行控制,发挥其最大价值,加强风电接入对电力系统影响的研究意义重大。
一、风电接入发展现状随着社会经济快速发展,近些年来我国的电力事业在发展中取得了丰硕成果,据相关资料显示,在2010年时,我国风电的累计并网装机就已经达到了3107万千瓦,从而使我国的装机规模在全球排名第二。
由此也可以看出我国电力行业的发展速度。
从整体上看,我国风电建设中主要有如下几个方面的特点。
首先,风电装机的总容量增长速度比较快,而且在电网中的所占比重持续增加。
其次,风电接入不仅整体情况较好,而且具有独立性的风电场的装机容量也在不断增加,同时电网中电压的的等级也在逐步提高。
另外,风电机组形式多样,种类繁多。
上述发展状况可以预见出风电接入在未来社会中的发展具有广阔的前景。
但是我们也要清晰的看见其弊端。
由于风能具有间歇性、随机性及稳定性较差的特点,因而对电网的日常平稳运行造成干扰,导致电网的安全性降低。
因而我们要对该现象有高度重视,加强对风能的研究,采取有效应对措施,保证电力系统平稳运行。
二、风电接入对电力系统的影响当前,风能在电力系统中的应用比例逐渐增加,促进了我国电力事业的发展。
风电接入对电力系统的影响摘要:随着世界各国的快速发展,能源危机已经成为当前急需解决的问题,因此,很多国家为了寻求长远发展,将开发与利用新能源作为一个工作重点。
由于风电自身的优势极为明显,所以备受人们的关注和认可。
在我们使用电力系统时,如果接入风电,能够减少系统的损害和故障率,保障电网的正常运行,提高电力使用的效率。
笔者通过对风电接入的发展现状,对电力系统产生的影响和面对故障应该如何解决做了重点的阐述和分析,旨在借助科学的手段促进电力行业的科学化发展。
关键词:风电接入;新能源;电力系统;科学发展在可持续发展、节能减排的大形势下,各个国家都在积极探索切实可行的方法来解决这一问题。
在当前,各个国家都将节能减排落实到实处。
在这种情况下,增加新能源的利用具有一定的现实意义。
在今天,风电接入方式在电力系统中有了极其广泛的运用,但是这个过程也并不是一帆风顺的,由于地区的多元性,在不发达地区,网架的结构相对单一,如果接入风电,可能会导致电能的质量和传输效率。
我们在此大背景下,研究风电接入对电力系统的影响是十分有必要的,通过细致的分析,让电力系统能够更好的发挥作用,通过切实可行的方法,促进电力行业的良性可持续发展。
一、风电接入发展现状改革开放以来,我国的电力事业也取得了极大的突破和发展。
对于每一个中国人来说,这是可喜可贺的好消息。
从整体来看,我国的风电建设具有明显特点,主要表现在以下几个方面:首先,风电装机的总容量增长速度非常快,在整个电网中的占比非常高。
其次,风电接入的整体态势呈现良好状态,风电场的装机容量也处于不断增加的状态。
并且,电网中的电压等级也在不断提高。
除此之外,风电机组的形式也是多种多样的。
从这里我们就可以看出,风电接入的发展态势十分可观,其发展前景也非常广阔。
但好坏参半,它存在的局限和不足也需要我们密切关注,比如,风能的稳定性和随机性都不容乐观,这势必会对电网的运行造成极大干扰,从而降低电网的安全性,影响人们的日常生活。
风电对电力系统的影响1、引言风力发电技术的快速发展以及国家在政策上对风电的扶持,使得我国风力发电建设进入了快速发展时期。
我国风资源较丰富,但适合大规模开发风电的地区一般都处于电网末端,由于此处电网网架结构较薄弱,因此大规模风电接入电网后可能会出现电网电压水平下降、线路传输功率超出热极限、系统短路容量增加和系统暂态稳定性改变等一系列问题。
另外,风力发电作为电源具有间歇性和难以调度的特性,是风电场电能质量不稳定的根本原因。
风电机组由于风的随机性、运行时对无功的需求以及无功只能就地平衡等原因将对电网电压造成一定的影响;风电机组在连续运行或者切换操作的过程中还可能引起电压波动和闪变问题;由于采用了大功率的电力电子装置,变速风电机组在运行的过程中还将产生高次谐波注入电网。
随着风电场装机容量的增加,以及风电装机在某个地区电网中所占比例的增加,风电并网等电气工程问题已经成为亟待解决的技术问题。
因此当大规模的风电并入电网后,风电与电网间的相互影响及相互作用需要进一步研究。
总体说来,风电对电力系统的稳定性会产生影响,对系统运行成本和电网调度会产生影响,对电能质量会产生影响,还有例如继电保护、网损等其他方面的影响。
本文将从风电对电能质量影响的方面论述风电对电力系统的影响。
2、风电对电能质量的影响2.1谐波及频率偏差对于风电机组来说,发电机本身产生的谐波是可以忽略的,谐波电压是由电能转换系统、电力电子控制元件和电容器产生的。
一台风机在运行期间产生的各种扰动的程度,主要依赖于其装备的电能转换系统的形式。
对于定速风电机组来说,在连续运行过程中没有电力电子器件参与,因而也基本没有谐波产生。
当机组进行投入操作时,软并网装置处于工作状态,将产生谐波电流,但由于投入的过程较短,这时的谐波注入可以忽略。
变速风电机组则采用大容量的电力电子元件,直驱永磁同步风力发电机组的交直交变频器采用整流后接DC/DC 变换,在电网侧采用逆变器输出恒定频率和电压的三相交流电;双馈式异步风力发电机组定子绕组直接接入交流电网,转子绕组端接线由三只滑环引出接至一台双向功率变换器,电网侧同样采用逆变器,定子绕组端口并网后始终发出电功率,转子绕组端口电功率的流向则取决于转差率。
风电接入对电力系统的影响摘要:我国国土面积广阔,部分山区、平原地区人口稀少,而风能资源充足,通过建设大规模风力发电机组,能够在很大程度上满足人们工作生活及社会运转中对电能资源的需要。
不过,由于风能资源存在一定的间歇性与随机性,当风电接入电力系统中时,极易产生一定的影响,甚至会产生一些电力故障问题,为此,电力单位及有关部门需要加强对风电领域进行深入的研发创新,为风电领域整体发展奠定坚实基础。
下面主要对风电接入对电力系统的影响进行分析探究。
关键词:风电接入;电力系统;影响一、风电系统常见的设备设施(一)异步风力发电机通常情况下,异步发电机属于常见风力发电设备之一,其主要是借助定速恒频机组为核心,确保设备运行时,其转速保持恒定,同时,异步发电机的结构较为简单,且相比于新型机组,该设备的发电能力较低,且在实际运行时,需要吸收电力系统中的无功功率。
在日常运行时,由于自然界中的风速存在随机性、不确定性,导致异步发电机要低于额定速度与频率运转[1]。
(二)双馈异步风力发电机所谓双馈异步风力发电机主要以变速恒频发电系统为核心,在实际运行时,风机可以在一定范围内进行调节,以此来保障系统及发电机的高效运转,同时,发电机还可以保持平滑的功率输出。
且当该设备与电网连接之后,电力企业单位不需要在另设无功补偿设备,确保电力系统正常稳定的运转下去。
(三)直驱式风力发电机除此之外,在现代风电系统中,直驱式风力发电机同样属于常见设备之一,经过对大型风电机组的研究分析,在日常运行时,齿轮箱极易出现故障问题,由此而影响着机组整体的正常运转,为此,技术人员可以借助无齿轮箱的结构,减少故障问题出现的概率,从而保障风电机组运行的效率、质量、稳定性及可靠性,同时还可以对风电机组的载荷进行降低,保障机组正常稳定的运转与发展下去,这就是所谓的直驱式风力发电机。
当其接入电力系统进行并网运行时,工作人员需要充分考虑谐波治理等问题,以此来对风电机组及电力系统整体运转的安全性提供保障。
一风力发电研究的意义和发展情况1.风能的发电原理。
太阳的热辐射不均匀会造成世界各地大气压力不均,这驱使空气沿着水平方向运动最后形成风。
风力发电原理是风能使发电机的风力叶轮旋转,然后通过齿轮箱使风力发电机转子高速旋转,产生感应电动势。
风力机将风能转换为机械能,然后转换成电能。
2.风力发电的历史。
1887年,第一台小型风力发电机在苏格兰的一栋别墅中安装,用于房间照明。
1888年,美国建筑师查理斯主持设计和建设一个风机转子达17米的大型风机,虽然它的功率只有12千瓦。
世界上第一座风力发电试验基地于19世纪末在丹麦建成,用于对风力发电的研究。
1931年,具有现代化身影的水平轴发电机在苏联克里米亚半岛的雅尔塔建成,它的功率为100千瓦,可以接到当地6.3千伏的电网上。
20世纪30年代的美国,风力发电机在离大城市比较远的地区,特别是西部很受欢迎。
它们不仅可以磨面和提水,还可以发电,它们对这些地区的发展和社会进程产生了非常重要的影响。
我国20世纪80年代才开始接触有关风电方面的技术。
由于风电的技术要求高,我国并未大规模发展风电,当时很多风机都需要从欧美国家进口。
1986年经政府同意,在山东建成了第一个示范性风电场,但当时的发电机组是进口的55千瓦的风电机组。
1989年新疆达阪城和广东南澳风电场成立,并于当年并网发电。
我国政府部门也认识到化石燃料日益枯竭的现状,对风力发电技术,政府也比较重视。
1996年提出大规模发展风电的《乘风计划》,主要是在鼓励发展我国自己的中型风力发电机制造技术,同时也提倡以技贸结合的形式与国外优秀企业合作。
在建设大型风电场的同时,能够吸收它们的技术并消化,从而达到自主研发、设计和制造自己的风电设施的目的。
1998年,新疆金风科技的发展在中国遥遥领先,成为当时我国最好的风力发电机厂家。
3.风力发电的意义和必要性。
由于全球温室效应、环境污染和化石燃料的日益枯竭,目前各国政府的工作之重都是如何最大效益地对各种新能源进行开发和持续利用。
风电接入对电力系统的影响摘要:在新能源发展的今天,风电接入对电力系统的影响比较大,需要采取相应的措施,实现风电发展的同时,保证电力系统的安全稳定运行。
本文通过研究分析风电接入对电力系统的一些具体影响,研究了相应的改善风电接入对电力系统影响的策略,希望为接下来的研究者提供参考。
关键词:风电接入;电力系统;影响当前经济发展面临的能源危机迫切需要引入新的能源,风力发电就是一种新能源技术,并且具有清洁性和可再生等优点,越来越多的目光投入到了风力发电上。
但是当前的风力发电虽然在技术上等已经有了比较大的突破,但是当风电要接入到电网,会对电网的稳定运行的造成一些负面影响,这就需要找到相对应的应对措施,从而提高电力系统的安全性和稳定性。
一、风电接入对电力系统的影响我国的风力发电厂分布不均匀,而且,由于我国地理地形的差异,导致各地的风力大小不一致,所以,在此前提下,我国的风电场的电网结构和它的控制方式都不一样。
一般情况下,比较小的风力发电对电网的影响很小,几乎没有。
但是规模稍大的风力发电场的风电接入到电力系统中,就会在一定程度上影响到电力系统电能的质量,也会影响网的稳定性,甚至还有对继电保护也有一定的影响。
(一)风电接入影响电能的质量风力发电由于主要是凭借自然风力来发电,而自然风的大小和时间上的不确定性,就会导致风力发电存在些许的不确定性,可能具有间歇性和波动性。
这样的前提下,风力发电必然会影响到电力系统的电能质量好坏。
比如,会使得电压不规律波动,电压也可能会出现偏差和谐波等现象。
当前,我国风力发电影响电能质量好坏主要是通过电压的不规律波动和电压闪变,但是谐波对电能质量的影响也不容小觑,值得思考。
风力发电通过谐波影响电力系统质量的方式主要分为两种,一个是部分风力发电机本身的原因,因为其本身装有电力电子设备,就会对谐波效应放大。
另一个是风力发电机的无功补偿装置,这类装置也许会发生谐振。
(二)风电接入影响电网的稳定性风力发电由于其技术的特殊性,该系统是在电网末端接入电网,这样在一定程度上,对传统的单电源的分布结构做出了改变,就让潮流的分布及其流向也发生了相应的改变。
探讨风电接入对电力系统的影响
风电是一种清洁、可持续的能源,已经成为了世界各国发展可再生能源的主要选择之一。
近年来,随着国内对可再生能源的推广和利用,风电在国内的发展也越来越迅速。
风电接入电力系统对于电力系统自身以及国家经济的发展都具有重要的意义。
那么,本文将从三个方面探讨风电接入对电力系统的影响。
一、对电网的稳定性和可靠性的影响
从技术层面上来看,风电的不可控因素对电网稳定性产生一定影响。
由于风资源的不稳定性,风电场并不能保证始终能够输出稳定的电力,而这些波动将反映到电网的负荷平衡、电压稳定等方面,特别是在高密度风电接入网络中,对电力系统的影响会更加明显。
面对这样的挑战,研究人员通过协调各类技术手段,包括电力系统调度、风电场运行控制、电力系统各层面的管理和规划等,来增强电网的稳定性和可靠性。
二、对环保的影响
风电正是因为具有良好的环保性而得到了广泛的关注和追捧。
风电作为一种利用自然能源的发电方式,没有排放污染物和温室气体,降低了对环境造成的影响。
同时,大规模建设风电项目也能促进电力行业实现减排和优化能源结构的目标,从而实现可持续发展。
所以,风电接入电力系统,对于环境保护方面的影响非常大。
三、对电力市场的影响
风电产业的发展对电力市场带来了巨大影响,其实际的贡献在于降低电力市场价格。
在中国,随着风电装机容量增加,其在全国电力供应结构中的比例也在逐年提高。
根据中国电力规划纲要,到2021年和2030年,风电装机容量分别将达到扩容到2.2亿千瓦和4.5亿千瓦。
在此背景下,大规模开发风电必然导致电力市场竞争加剧,更新换代速度加快,同时也为电力市场参与者带来了新的机会和挑战。
总而言之,风电的广泛应用以及与传统能源的搭配,有利于促进可持续能源的发展,减少对环境的破坏,助推我国向低碳经济转型,并对全球气候变化产生积极的影响。
风电接入电力系统,其正向作用显而易见,但同时也需要在合理规划、科学管理、可持续发展等方面加以强化和探索。