物质代谢与能量代谢
- 格式:doc
- 大小:368.50 KB
- 文档页数:26
第十六章细胞代谢和基因表达的调控细胞代谢包括物质代谢和能量代谢。
细胞代谢是一个完整统一的网络,并且存在复杂的调节机制,这些调节机制都是在基因表达产物(蛋白质或RNA)的作用下进行的。
重点:物质代谢途径的相互联系,酶活性的调节。
第一节物质代谢途径的相互联系细胞代谢的基本原则是将各类物质分别纳入各自的共同代谢途径,以少数种类的反应转化种类繁多的分子。
不同代谢途径可以通过交叉点上关键的中间物而相互转化,其中三个关键的中间物是G-6-P、丙酮酸、乙酰CoA。
一、糖代谢与脂代谢的联系1、糖转变成脂图糖经过酵解,生成磷酸二羟丙酮及丙酮酸。
磷酸二羟丙酮还原为甘油,丙酮酸氧化脱羧转变成乙酰CoA,合成脂肪酸。
2、脂转变成糖图甘油经磷酸化为3-磷酸甘油,转变为磷酸二羟丙酮,异生为糖。
在植物、细菌中,脂肪酸转化成乙酰CoA,后者经乙醛酸循环生成琥珀酸,进入TCA,由草酰乙酸脱羧生成丙酮酸,生糖。
动物体内,无乙醛酸循环,乙酰CoA进入TCA氧化,生成CO2和H2O。
脂肪酸在动物体内也可以转变成糖,但此时必需要有其他来源的物质补充TCA中消耗的有机酸(草酰乙酸)。
糖利用受阻,依靠脂类物质供能量,脂肪动员,在肝中产生大量酮体(丙酮、乙酰乙酸、β-羟基丁酸)。
二、糖代谢与氨基酸代谢的关系1、糖的分解代谢为氨基酸合成提供碳架图糖→丙酮酸→α-酮戊二酸+ 草酰乙酸这三种酮酸,经过转氨作用分别生成Ala、Glu和Asp。
2、生糖氨基酸的碳架可以转变成糖凡是能生成丙酮酸、α—酮戊二酸、琥珀酸、草酰乙酸的a.a,称为生糖a.a。
Phe、Tyr、Ilr、L ys、Trp等可生成乙酰乙酰CoA,从而生成酮体。
Phe、Tyr等生糖及生酮。
三、氨基酸代谢与脂代谢的关系氨基酸的碳架都可以最终转变成乙酰CoA,可以用于脂肪酸和胆甾醇的合成。
生糖a.a的碳架可以转变成甘油。
Ser可以转变成胆胺和胆碱,合成脑磷脂和卵磷脂。
动物体内脂肪酸的降解产物乙酰CoA,不能为a.a合成提供净碳架。
人体解剖新陈代谢名词解释一、人体解剖新陈代谢的概念人体解剖新陈代谢是指人体内部发生的一系列化学反应,以维持生命活动所需的能量和物质。
这些化学反应涉及到多个身体系统,包括消化系统、呼吸系统、循环系统等。
人体解剖新陈代谢不仅包括了能量的生产和消耗,还涉及到物质的合成和分解过程。
二、人体解剖新陈代谢的深度探讨1. 能量代谢能量代谢是指人体消耗和产生能量的过程。
人体内的能量主要来自食物的摄入和氧气的吸入。
食物中的碳水化合物、脂肪和蛋白质被消化吸收后,会通过各种化学反应产生能量。
这些化学反应包括糖的分解、脂肪酸的β氧化和蛋白质的氨基酸分解等。
能量代谢的产物为三磷酸腺苷(ATP),它是维持细胞生命活动所必需的能量分子。
2. 物质代谢物质代谢是指人体对物质的合成和分解过程。
人体的生长、修复和代谢需要大量的物质。
通过消化系统吸收到的营养物质会在体内经过多个化学反应,合成成为人体所需的物质,如蛋白质、核酸、碳水化合物和脂质等。
旧的细胞和组织也会被分解,产生废物和代谢产物,如二氧化碳、尿素和尿酸等。
3. 调节代谢人体解剖新陈代谢还受到一系列调节机制的控制,确保各种代谢过程的平衡和协调。
内分泌系统中的激素起着重要的作用,如胰岛素、甲状腺激素和肾上腺素等。
它们能够调节葡萄糖的利用和合成、脂肪酸的分解和合成,以及蛋白质的分解和合成等。
神经系统也能通过神经递质的释放来调节新陈代谢。
三、人体解剖新陈代谢的广度探讨1. 营养素的消化和吸收人体解剖新陈代谢的第一步是食物的消化和吸收。
消化系统通过分泌各种消化酶,将食物中的碳水化合物、脂肪和蛋白质分解为可吸收的小分子。
这些小分子能够通过肠壁进入血液循环,并被运输到各个细胞中进行进一步的代谢。
2. ATP的产生和利用能量的产生和利用是人体解剖新陈代谢的核心过程。
通过线粒体内的三磷酸腺苷合成酶,ADP和磷酸根结合生成ATP,从而储存和传递能量。
这些能量可以用于各种生命活动,如肌肉的收缩、神经的传导和细胞的合成等。
第二单元物质代谢和能量代谢第四章糖代谢二、生化术语1.中间代谢:通常指消化吸收的营养物质和体内原有的物质在一切组织和细胞中进行的各种化学变化。
2.糖原(glycogen):动物细胞中葡萄糖的贮存形式。
肌糖原主要供给肌肉收缩时能量的需要,肝糖原主要维持血糖的稳定。
3.血糖:血液中的葡萄糖。
其水平的稳定对确保细胞执行正常功能具有重要意义(正常人的血糖值为每100ml血含有80~120mg葡萄糖)。
4.糖酵解(glycolysis):在无氧条件下,由葡萄糖氧化分解转化为丙酮酸的过程。
5.发酵(fermentation):指葡萄糖及其他有机物的厌氧降解过程,生成乳酸称乳酸发酵,生成乙醇称生醇发酵。
6.丙酮酸脱氢酶系(pyruvate dehydrogenase complex):一种多酶复合体,分布在线粒体内膜上,催化丙酮酸氧化脱羧,生成乙酰辅酶A。
在大肠杆菌中,这种复合体包括3种酶(丙酮酸脱氢酶E1、和6种辅因子(TPP+、硫辛酸、辅酶A、FAD、NAD 二氢硫辛酸转乙酰基酶E2、二氢硫辛酸脱氢酶E3)+、Mg2+)。
7.三羧酸循环(tricarboxylic acid cycle 简称TCA循环):以乙酰CoA和草酰乙酸缩合成柠檬酸后再经一系列反应又重新生成草酰乙酸的环状途径。
该途径的第一个代谢物是柠檬酸,所以又称柠檬酸循环;柠檬酸含有三个羧基,故称三羧酸循环;德国科学家H.Krebs发现,又称Krebs循环。
8.回补反应(anaplerotic reaction):三羧酸循环的中间代谢物也是其他物质生物合成的前体,当它们为了同化的目的而被移去时,必须进行“补充”或“填充”,才能维持TCA循环的正常进行。
如丙酮酸在丙酮酸羧化酶的催化下生成草酰乙酸反应。
9.乙醛酸循环(glyoxylate cycle):存在于植物和微生物中,是将2个乙酰CoA转变成一分子草酰乙酸的环状途径。
循环中有乙醛酸,所以称乙醛酸循环。
能量代谢与物质代谢的关系
能量代谢与物质代谢之间存在密切的关系。
能量代谢是指人体在进行各种生理活动时所需的能量消耗,而物质代谢则是指人体对营养物质进行分解、吸收、利用和排泄的过程。
在物质代谢过程中,营养物质首先被分解为较小的分子,如葡萄糖、氨基酸、脂肪酸等,这些分子进一步参与能量代谢过程。
例如,葡萄糖是细胞内主要的能量来源之一,通过糖酵解和三羧酸循环途径,最终产生三磷酸腺苷(ATP)供细胞使用。
脂肪酸也可以在有氧条件下被氧化为ATP,提供能量。
另一方面,能量代谢过程也受物质代谢的调节。
例如,当身体需要能量时,血糖水平降低,胰岛素水平下降,脂肪酸和胆固醇会进入血液,供能量使用。
而当人体处于饥饿状态时,能量代谢会降低,以减少能量的消耗,同时物质代谢也会相应减慢,降低对营养物质的需求量。
因此,能量代谢和物质代谢是相互依存、相互影响的过程,二者密切相关。
能量代谢提供人体生命活动所需的能量,而物质代谢则为能量代谢提供所需的营养物质。
只有两者协调平衡,人体才能保持正常的代谢状态。
名词解释能量代谢能量代谢是机体内部各种能量物质的转移和交换,它包括物质代谢、基本生命活动、内分泌功能以及生理性功能变化。
在能量代谢中,体温调节、水代谢、二氧化碳和无机盐代谢、糖类代谢和脂肪代谢等都属于机体内能量代谢。
能量代谢的主要特点有:1、能量代谢是由多个器官系统协调完成的,代谢产物主要经肾脏排出体外; 2、机体的能量来源为机体摄取的食物; 3、机体的能量消耗主要为非工作状态下的基础代谢和在运动状态下的有氧代谢,机体在生长发育期间,新陈代谢旺盛,基础代谢也较高,因此机体能量代谢强度大。
4、机体的能量来源与能量消耗相互之间具有平衡关系。
一、热能代谢二、水代谢:三、二氧化碳和无机盐代谢:指机体内与物质代谢有关的呼吸过程[gPARAGRAPH3]。
机体在进行物质代谢时产生的二氧化碳,可以由呼吸系统排出体外。
水代谢包括了体内液体的代谢,即体内水分的分布,吸收,排出,运输和利用。
通常情况下,水代谢在机体代谢中占很大比例,因为这种代谢是机体进行其他生命活动所必需的。
四、氧代谢:机体与外界环境进行物质交换,实现机体新陈代谢的过程称为呼吸,呼吸过程包括有氧呼吸和无氧呼吸两个阶段。
在有氧呼吸过程中,细胞在线粒体内将葡萄糖彻底氧化,并且放出大量能量,供给生命活动的需要。
而无氧呼吸过程则不同,它是在细胞质基质中,葡萄糖在酵解过程中被彻底氧化分解释放少量能量,以维持正常的生命活动。
在体内氧气不足或缺氧的情况下,线粒体内的一些细胞器能将部分氧气转变成二氧化碳,而其他细胞器如内质网和高尔基体能够直接将氧气转变成二氧化碳。
氧代谢主要为机体提供能量,一般情况下,人体能量代谢与氧代谢的速率保持一定比例。
但在运动中,机体对氧气的需求增加,这会导致氧代谢速率超过有氧代谢速率,从而使机体处于无氧状态。
能量的功能能量在我们日常生活中起到非常重要的作用,它不仅可以驱动我们的身体运动和思维活动,还可以保持身体的健康和维持各种生命活动。
以下是能量的主要功能:1. 提供运动能力:能量是我们进行各种运动活动的动力源。
它提供给肌肉和骨骼所需的能量,使我们能够进行步行、跑步、举重等身体活动。
通过运动,我们可以保持身体健康,增加肌肉力量和耐力,并提高心血管健康。
2. 维持新陈代谢:能量在身体中参与新陈代谢过程,包括物质代谢和能量代谢。
物质代谢是指身体利用能量将食物中的营养物质转化为组织和细胞所需的物质。
能量代谢是指我们身体中对食物摄入的能量进行利用,维持身体正常的代谢活动。
3. 保持体温:能量可以帮助我们维持适当的体温。
人体的新陈代谢过程会产生热量,能量可以帮助调节体温,使其在适当的范围内保持稳定。
当体温过高时,能量可以用于散热,让身体降温;当体温过低时,能量可以用于产生热量,使身体保持温暖。
4. 支持脑功能:能量对于维持脑功能至关重要。
大脑是我们思考、学习和记忆的中心,它需要大量的能量来维持其正常功能。
能量提供给脑细胞所需的营养物质,供应氧气和葡萄糖,以提供足够的能量供脑细胞使用。
足够的能量供应可以提高注意力和思维能力,改善学习和记忆能力。
5. 促进免疫系统:能量有助于促进免疫系统的正常功能。
免疫系统是我们身体的防线,能够帮助身体抵御疾病和感染。
能量为免疫系统提供了所需的营养物质和能量,使其能够顺利运作,保护身体免受外界的病原体侵害。
6. 维持内分泌平衡:能量对于维持内分泌系统的正常功能至关重要。
内分泌系统通过分泌激素来调节身体各个器官和系统的功能。
能量提供给内分泌系统所需的营养物质和能量,使其能够正常分泌激素,维持身体各个器官和系统的平衡运作。
总之,能量在人体中具有多种重要功能,包括提供运动能力、维持新陈代谢、保持体温、支持脑功能、促进免疫系统和维持内分泌平衡。
合理摄取和利用能量对于维持身体健康和正常生理功能至关重要。
泉州医学高等专科学校教案(续页)
第 1 页
泉州医学高等专科学校教案(续页)
第 2 页
泉州医学高等专科学校教案(续页)
第 3 页
泉州医学高等专科学校教案(续页)
第 4 页
泉州医学高等专科学校教案(续页)
第 5 页
泉州医学高等专科学校教案(续页)
第 6 页
泉州医学高等专科学校教案(续页)
第7 页
泉州医学高等专科学校教案(续页)
第8 页
泉州医学高等专科学校教案(续页)
第9 页
泉州医学高等专科学校教案(续页)
第10 页
泉州医学高等专科学校教案(续页)
第11 页
泉州医学高等专科学校教案(续页)
第12 页
泉州医学高等专科学校教案(续页)
第13 页
泉州医学高等专科学校教案(续页)
第14 页
泉州医学高等专科学校教案(续页)
第15 页
泉州医学高等专科学校教案(续页)
第16 页
泉州医学高等专科学校教案(续页)
第17 页
泉州医学高等专科学校教案(续页)
第18 页
泉州医学高等专科学校教案(续页)
第19 页
泉州医学高等专科学校教案(续页)
第20 页
泉州医学高等专科学校教案(续页)
第21 页
泉州医学高等专科学校教案(续页)
第22 页
泉州医学高等专科学校教案(续页)
第23 页
泉州医学高等专科学校教案(续页)
第24 页
泉州医学高等专科学校教案(续页)
第25 页
泉州医学高等专科学校教案(续页)
第26 页。