2020高考数学 考前解题基本方法六 参数法
- 格式:doc
- 大小:533.50 KB
- 文档页数:5
高考数学六种解题技巧一、三角函数题注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、数列题1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题1、证明线面位置关系,一般不需要去建系,更简单;2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2、搞清是什么概率模型,套用哪个公式;3、记准均值、方差、标准差公式;4、求概率时,正难则反(根据p1+p2+...+pn=1);5、注意计数时利用列举、树图等基本方法;6、注意放回抽样,不放回抽样;7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8、注意条件概率公式;9、注意平均分组、不完全平均分组问题。
五、圆锥曲线问题1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;3、战术上整体思路要保7分,争9分,想12分。
2020年高考数学答题实用技巧大汇总1、解决绝对值问题主要包括化简、求值、方程、不等式、函数等题,基本思路是:把含绝对值的问题转化为不含绝对值的问题。
具体转化方法有:①分类讨论法:根据绝对值符号中的数或式子的正、零、负分情况去掉绝对值。
②零点分段讨论法:适用于含一个字母的多个绝对值的情况。
③两边平方法:适用于两边非负的方程或不等式。
④几何意义法:适用于有明显几何意义的情况。
2、因式分解根据项数选择方法和按照一般步骤是顺利进行因式分解的重要技巧。
因式分解的一般步骤是:提取公因式选择用公式十字相乘法分组分解法拆项添项法3、配方法利用完全平方公式把一个式子或部分化为完全平方式就是配方法,它是数学中的重要方法和技巧。
配方法的主要根据有:高中数学21种解题方法与技巧4、换元法解某些复杂的特型方程要用到“换元法”。
换元法解方程的一般步骤是:设元→换元→解元→还元5、待定系数法待定系数法是在已知对象形式的条件下求对象的一种方法。
适用于求点的坐标、函数解析式、曲线方程等重要问题的解决。
其解题步骤是:①设②列③解④写6、复杂代数等式复杂代数等式型条件的使用技巧:左边化零,右边变形。
①因式分解型:(-----)(----)=0 两种情况为或型②配成平方型:(----)2+(----)2=0 两种情况为且型7、数学中两个最伟大的解题思路(1)求值的思路列欲求值字母的方程或方程组(2)求取值范围的思路列欲求范围字母的不等式或不等式组8、化简二次根式基本思路是:把√m化成完全平方式。
即:9、观察法10、代数式求值方法有:(1)直接代入法(2)化简代入法(3)适当变形法(和积代入法)注意:当求值的代数式是字母的“对称式”时,通常可以化为字母“和与积”的形式,从而用“和积代入法”求值。
11、解含参方程方程中除过未知数以外,含有的其它字母叫参数,这种方程叫含参方程。
解含参方程一般要用‘分类讨论法’,其原则是:(1)按照类型求解(2)根据需要讨论(3)分类写出结论12、恒相等成立的有用条件(1)ax+b=0对于任意x都成立关于x的方程ax+b=0有无数个解a=0且b=0。
2020高考数学6大解答题技巧1·三角函数题注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
2·数列题1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
3·立体几何题1.证明线面位置关系,一般不需要去建系,更简单;2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
4·概率问题1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2.搞清是什么概率模型,套用哪个公式;3.记准均值、方差、标准差公式;4.求概率时,正难则反(根据p1+p2+...+pn=1);5.注意计数时利用列举、树图等基本方法;6.注意放回抽样,不放回抽样;7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8.注意条件概率公式;9.注意平均分组、不完全平均分组问题。
5·圆锥曲线问题1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;2.注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;3.战术上整体思路要保7分,争9分,想12分。
圆锥曲线八种解题方法、七种常规题型和性质(有相应例题详解) 总论:常用的八种方法1、定义法2、韦达定理法3、设而不求点差法4、弦长公式法5、数形结合法6、参数法(点参数、K 参数、角参数)7、代入法中的顺序8、充分利用曲线系方程法七种常规题型(1)中点弦问题(2)焦点三角形问题(3)直线与圆锥曲线位置关系问题(4)圆锥曲线的有关最值(范围)问题 (5)求曲线的方程问题1.曲线的形状已知--------这类问题一般可用待定系数法解决。
2.曲线的形状未知-----求轨迹方程(6) 存在两点关于直线对称问题 (7)两线段垂直问题常用的八种方法1、定义法(1)椭圆有两种定义。
第一定义中,r 1+r 2=2a 。
第二定义中,r 1=ed 1 r 2=ed 2。
(2)双曲线有两种定义。
第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。
(3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。
2、韦达定理法因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。
3、设而不求法解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。
设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有:(1))0(12222>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02020=+k b y a x 。
2020高考数学17个必考题型各类题型解题技巧高考数学难度比例为7:2:1,也就是说80%都是基础题。
然而数学却是高考中最拉分的。
90%的学生都缺少一套科学,高效的提分方法,特为大家整理了高考数学17个必考题型+各类题型解题技巧,附带真题解析,希望能给大家带来帮助。
17个必考题型01题型一运用同三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。
02题型二运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。
03题型三解三角函数问题、判断三角形形状、正余弦定理的应用。
04题型四数列的通项公式求法05题型五数列的前n项求和的求法。
06题型六利用导数研究函数的极值、最值。
07题型七利用导数几何意义求切线方程08题型八利用导数研究函数的单调性,极值、最值09题型九利用导数研究函数的图像。
10题型十求参数取值范围、恒成立及存在性问题。
11题型十一数形结合确定直线和圆锥曲线的位置关系。
12题型十二焦点三角函数、焦半径、焦点弦问题。
13题型十三动点轨迹方程问题。
14题型十四共线问题。
15题型十五定点问题。
16题型十六存在性问题。
存在直线y=kx+m,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆17题型十七最值问题。
2选择填空答题技巧选择题01.排除法、代入法当从正面解答不能很快得出答案或者确定答案是否正确时,可以通过排除法,排除其他选项,得到正确答案。
排除法可以与代入法相互结合,将4个选项的答案,逐一带入到题目中验证答案。
例题已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围为()A、(2,+∞)B、(-∞,-2)C、(1,+∞)D、(-∞,-1)解析:取a=3,f(x)=3x3-3x2+1,不合题意,可以排除A与C;取a=-4/3,f(x)=-4x3/3-3x2+1,不合题意,可以排除D;故只能选B(2014年高考全国卷Ⅰ理数第11题)02.特例法有些选择题涉及的数学问题具有一般性,这类选择题要严格推证比较困难,此时不妨从一般性问题转化到特殊性问题上来,通过取适合条件的特殊值、特殊图形、特殊位置等进行分析,往往能简缩思维过程、降低难度而迅速得解。
【数学备考】高考数学六类解答题应试技巧下面,小编为大家整理了高考数学六类解答题应试技巧,一起来看看吧。
更多内容尽请关注学习方法网!【数学备考】高考数学六类解答题应试技巧一、三角函数题注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
二、数列题1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;3、证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
三、立体几何题1、证明线面位置关系,一般不需要去建系,更简单;2、求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;3、注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
四、概率问题1、搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;2、搞清是什么概率模型,套用哪个公式;3、记准均值、方差、标准差公式;4、求概率时,正难则反(根据p1+p2+……+pn=1);5、注意计数时利用列举、树图等基本方法;6、注意放回抽样,不放回抽样;7、注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;8、注意条件概率公式;9、注意平均分组、不完全平均分组问题。
五、圆锥曲线问题1、注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;2、注意直线的设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;3、战术上整体思路要保7分,争9分,想12分。
高考数学六大解题方法(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用范文,如演讲致辞、合同协议、条据文书、策划方案、总结报告、简历模板、心得体会、工作材料、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this store provides various types of practical sample essays, such as speeches, contracts, agreements, documents, planning plans, summary reports, resume templates, experience, work materials, teaching materials, other sample essays, etc. Please pay attention to the different formats and writing methods of the model essay!高考数学六大解题方法高考数学六大解题方法是什么数学中解题方法有很多,例如有特殊值检验法,对于具有一般性的选择题,在答题过程中,可以将问题具体特殊化,利用问题在特殊情况下不真,则利用一般情况下不真这一原理,从而达到去伪存真的目的。
高考数学解题六种方法
1.直接法:这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。
2.特殊化法:当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以把题中变化的不定量用特殊值代替,即可以得到正确结果。
3.数形结合法:对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。
4.等价转化法:通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,从而得出正确的结果。
5.图像法:借助图形的直观形,通过数形结合,迅速作出判断的方法称为图像法。
文氏图、三角函数线、函数的图像及方程的曲线等,都是常用的图形。
6.构造法:在解题时有时需要根据题目的具体情况,来设计
新的模式解题,这种设计工作,通常称之为构造模式解法,简称构造法。
高考数学考试做题技巧一、“六先六后”,因人因卷制宜。
考生可依自己的解题适应和差不多功,选择执行“六先六后”的战术原则。
1.先易后难。
2.先熟后生。
3.先同后异。
先做同科同类型的题目。
4.先小后大。
先做信息量少、运算量小的题目,为解决大题赢得时刻。
5.先点后面。
高考数学解答题多出现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,步步为营,由点到面。
6.先高后低。
即在考试的后半段时刻,如估量两题都会做,则先做高分题;估量两题都不易,则先就高分题实施“分段得分”。
二、一慢一快,相得益彰,规范书写,确保准确,力争对全。
审题要慢,解答要快。
在以快为上的前提下,要稳扎稳打,步步准确。
假如速度与准确不可兼得的话,就只好舍快求对了。
三、面对难题,以退求进,立足专门,发散一样,讲究策略,争取得分。
关于一个较一样的问题,若一时不能取得一样思路,能够采取化一样为专门,化抽象为具体。
对不能全面完成的题目有两种常用方法:1.缺步解答。
将疑难的问题划分为一个个子问题或一系列的步骤,每进行一步就可得到一步的分数。
2.跳步解答。
若题目有两问,第一问做不上,能够第一问为“已知”,完成第二问。
单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
让学生把一周看到或听到的新奇事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积存的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。
如此,即巩固了所学的材料,又锤炼了学生的写作能力,同时还培养了学生的观看能力、思维能力等等,达到“一石多鸟”的成效。
四、执果索因,逆向摸索,正难则反,回避结论的确信与否定。
死记硬背是一种传统的教学方式,在我国有悠久的历史。
但随着素养教育的开展,死记硬背被作为一种僵化的、阻碍学生能力进展的教学方式,慢慢为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。
事实上,只要应用得当,“死记硬背”与提高学生素养并不矛盾。
六、参数法参数法是指在解题过程中,通过适当引入一些与题目研究的数学对象发生联系的新变量(参数),以此作为媒介,再进行分析和综合,从而解决问题。
直线与二次曲线的参数方程都是用参数法解题的例证。
换元法也是引入参数的典型例子。
辨证唯物论肯定了事物之间的联系是无穷的,联系的方式是丰富多采的,科学的任务就是要揭示事物之间的内在联系,从而发现事物的变化规律。
参数的作用就是刻画事物的变化状态,揭示变化因素之间的内在联系。
参数体现了近代数学中运动与变化的思想,其观点已经渗透到中学数学的各个分支。
运用参数法解题已经比较普遍。
参数法解题的关键是恰到好处地引进参数,沟通已知和未知之间的内在联系,利用参数提供的信息,顺利地解答问题。
Ⅰ、再现性题组:1. 设2x=3y=5z>1,则2x、3y、5z从小到大排列是________________。
2. (理)直线x ty t=--=+⎧⎨⎪⎩⎪2232上与点A(-2,3)的距离等于2的点的坐标是________。
(文)若k<-1,则圆锥曲线x2-ky2=1的离心率是_________。
3. 点Z的虚轴上移动,则复数C=z2+1+2i在复平面上对应的轨迹图像为____________________。
4. 三棱锥的三个侧面互相垂直,它们的面积分别是6、4、3,则其体积为______。
5. 设函数f(x)对任意的x、y∈R,都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,则f(x)的R上是______函数。
(填“增”或“减”)6. 椭圆x216+y24=1上的点到直线x+2y-2=0的最大距离是_____。
A. 3B. 11C. 10D. 22【简解】1小题:设2x=3y=5z=t,分别取2、3、5为底的对数,解出x、y、z,再用“比较法”比较2x、3y、5z,得出3y<2x<5z;2小题:(理)A(-2,3)为t=0时,所求点为t=±2时,即(-4,5)或(0,1);(文)已知曲线为椭圆,a=1,c=11+k,所以e=-1kk k2+;3小题:设z=bi,则C=1-b2+2i,所以图像为:从(1,2)出发平行于x轴向右的射线;4小题:设三条侧棱x、y、z,则12xy=6、12yz=4、12xz=3,所以xyz=24,体积为4。
5小题:f(0)=0,f(0)=f(x)+f(-x),所以f(x)是奇函数,答案:减;6小题:设x=4sinα、y=2cosα,再求d=|sin cos|4425αα+-的最大值,选C。
Ⅱ、示范性题组:例1. 实数a、b、c满足a+b+c=1,求a2+b2+c2的最小值。
【分析】由a+b+c=1 想到“均值换元法”,于是引入了新的参数,即设a=13+t1,b=13+t2,c=13+t3,代入a2+b2+c2可求。
【解】由a+b+c=1,设a=13+t1,b=13+t2,c=13+t3,其中t1+t2+t3=0,∴ a2+b2+c2=(13+t1)2+(13+t2)2+(13+t3)2=13+23(t1+t2+t3)+t 12+t22+t32=13+t12+t22+t32≥13所以a2+b2+c2的最小值是13。
【注】由“均值换元法”引入了三个参数,却将代数式的研究进行了简化,是本题此种解法的一个技巧。
本题另一种解题思路是利用均值不等式和“配方法”进行求解,解法是:a2+b2+c2=(a+b+c)2-2(ab+bc+ac)≥1-2(a2+b2+c2),即a2+b2+c2≥13。
两种解法都要求代数变形的技巧性强,多次练习,可以提高我们的代数变形能力。
例2. 椭圆x216+y24=1上有两点P、Q,O为原点。
连OP、OQ,若kOP·kOQ=-14,①.求证:|OP|2+|OQ|2等于定值;②.求线段PQ中点M的轨迹方程。
【分析】由“换元法”引入新的参数,即设xy==⎧⎨⎩42cossinθθ(椭圆参数方程),参数θ1、θ2为P、Q两点,先计算kOP·kOQ得出一个结论,再计算|OP|2+|OQ|2,并运用“参数法”求中点M的坐标,消参而得。
【解】由x216+y24=1,设xy==⎧⎨⎩42cossinθθ,P(4cosθ1,2sinθ1),Q(4cosθ2,2sinθ2),则kOP ·kOQ=2411sincosθθ•2422sincosθθ=-14,整理得到:cosθ1 cosθ2+sinθ1sinθ2=0,即cos(θ1-θ2)=0。
∴ |OP|2+|OQ|2=16cos 2θ1+4sin 2θ1+16cos 2θ2+4sin 2θ2=8+12(cos 2θ1+cos 2θ2)=20+6(cos2θ1+cos2θ2)=20+12cos (θ1+θ2)cos (θ1-θ2)=20,即|OP|2+|OQ|2等于定值20。
由中点坐标公式得到线段PQ 的中点M 的坐标为x y M M=+=+⎧⎨⎩21212(cos cos )sin sin θθθθ,所以有(x 2)2+y 2=2+2(cos θ1 cos θ2+sin θ1 sin θ2)=2, 即所求线段PQ 的中点M 的轨迹方程为x 28+y 22=1。
【注】由椭圆方程,联想到a 2+b 2=1,于是进行“三角换元”,通过换元引入新的参数,转化成为三角问题进行研究。
本题还要求能够熟练使用三角公式和“平方法”,在由中点坐标公式求出M 点的坐标后,将所得方程组稍作变形,再平方相加,即(cos θ1+ cos θ2)2+(sin θ1+sin θ2)2,这是求点M 轨迹方程“消参法”的关键一步。
一般地,求动点的轨迹方程运用“参数法”时,我们可以将点的x 、y 坐标分别表示成为一个或几个参数的函数,再运用“消去法”消去所含的参数,即得到了所求的轨迹方程。
本题的第一问,另一种思路是设直线斜率k ,解出P 、Q 两点坐标再求:设直线OP 的斜率k ,则OQ 的斜率为-14k,由椭圆与直线OP 、OQ 相交于PQ 两点有: x y y kx 224160+-==⎧⎨⎩,消y 得(1+4k 2)x 2=16,即|x P |=4142+k ; x y y k x22416014+-==-⎧⎨⎪⎩⎪,消y 得(1+142k )x 2=16,即|x Q |=||8142k k +; 所以|OP|2+|OQ|2=(12+k •4142+k )2+(11162+k •||8142k k +)2=20801422++k k=20。
即|OP|2+|OQ|2等于定值20。
在此解法中,利用了直线上两点之间的距离公式|AB|=12+k AB •|x A -x B |求|OP|和|OQ|的长。
例 3.已知正四棱锥S —ABCD 的侧面与底面的夹角为β,相邻两侧面的夹角为α,求证:cos α=-cos 2β。
【分析】要证明cos α=-cos 2β,考虑求出α、β的余弦,则在α和β所在的三角形中利用有关定理求解。
【解】连AC 、BD 交于O ,连SO ;取B C 中点F ,连SF 、OF ;作BE ⊥SC 于E ,连DE 。
则∠SFO =β,∠DEB =α。
设BC =a (为参数), 则SF =OF cos β=a 2cos β,SC =SF FC 22+=(cos )()a a2222β+=a2cos β12+cos β 又 ∵BE =SF BC SC ·=a 22cos β⨯1212acos cos ββ+=a 12+cos β在△DEB 中,由余弦定理有:cos α=22222BE BD BE-=2122122222⨯+-⨯+a a a cos cos ββ=-cos 2β。
所以cos α=-cos 2β。
【注】 设参数a 而不求参数a ,只是利用其作为中间变量辅助计算,这也是在参数法中参数可以起的一个作用,即设参数辅助解决有关问题。
Ⅲ、巩固性题组:1. 已知复数z 满足|z|≤1,则复数z +2i在复平面上表示的点的轨迹是________________。
2. 函数y =x +2+142--x x 的值域是________________。
3. 抛物线y =x 2-10xc os θ+25+3sin θ-25sin 2θ与x 轴两个交点距离的最大值为_____A. 5B. 10C. 23D. 34. 过点M(0,1)作直线L ,使它与两已知直线L 1:x -3y +10=0及L 2:2x +y -8=0所截得的线段被点P 平分,求直线L 方程。
5. 求半径为R 的球的内接圆锥的最大体积。
SED CO FA B6. f(x)=(1-a 2cos 2x)sinx ,x ∈[0,2π),求使f(x)≤1的实数a 的取值范围。
7. 若关于x 的方程2x 2+xlg ()a a 23318-+lg 2(a a 212-)+lg 212a a -=0有模为1的虚根,求实数a 的值及方程的根。
8. 给定的抛物线y 2=2px (p>0),证明:在x 轴的正向上一定存在一点M ,使得对于抛物线的任意一条过点M 的弦PQ ,有12||MP +12||MQ 为定值。