一次函数中分段函数的分析
- 格式:doc
- 大小:87.50 KB
- 文档页数:4
某医药研究所开发了一种新药,在试验药效时发现,如果成人按规定剂量服用,那么服药2后血液中的含药量最高,达每升6,接着逐步衰减,10后血液中的含药量为每升3,每升血液中的含药量随时间的变化情况如图所示.当成人按规定剂量服药后:(1)分别求出≤2和≥2时,与之间的函数关系式;(2)如果每升血液中的含药量为4或4以上时,治疗疾病是有效的,那么这个有效时间是多长?【思路点拨】(1)根据题意由待定系数法求函数的解析式.(2)令≥4,分别求出的取值范围,便可得出这个药的有效时间. 【答案与解析】解:(1)由图知,≤2时是正比例函数,≥2时是一次函数.设≤2时,,把(2,6)代入,解得=3, ∴ 当0≤≤2时,.设≥2时,,把(2,6),(10,3)代入中,得,解得,即.当=0时,有,. ∴ 当2≤≤18时,.(2)由于≥4时在治疗疾病是有效的,∴ ,解得. 即服药后得到为治病的有效时间, 这段时间为.【总结升华】分段函数中,自变量在不同的取值范围内函数的解析式也不相同,因此注意根据自变量或函数的取值确定某段函数来解决问题.h mg h mg y mg x h x x y x mg mg y x x x x y kx =y kx =k x 3y x =x y k x b '=+y k x b '=+26103k b k b '+=⎧⎨'+=⎩38274k b ⎧'=-⎪⎪⎨⎪=⎪⎩32784y x =-+y 327084x =-+18x =x 32784y x =-+y 34327484x x ≥⎧⎪⎨-+≥⎪⎩42233x ≤≤43h 223h 224186()333h -==24.(2013•荆州)如图,某个体户购进一批时令水果,20天销售完毕.他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图甲所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图乙所示.(1)直接写出y与x之间的函数关系式;(2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元?考点:一次函数的应用分析:(1)分两种情况进行讨论:①0≤x≤15;②15<x≤20,针对每一种情况,都可以先设出函数的解析式,再将已知点的坐标代入,利用待定系数法求解;(2)日销售金额=日销售单价×日销售量.由于第10天和第15天在第10天和第20天之间,当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数关系式为p=mx+n,由点(10,10),(20,8)在p=mx+n的图象上,利用待定系数法求得p与x的函数解析式,继而求得10天与第15天的销售金额;(3)日销售量不低于24千克,即y≥24.先解不等式2x≥24,得x≥12,再解不等式﹣6x+120≥24,得x≤16,则求出“最佳销售期”共有5天;然后根据p=﹣x+12(10≤x≤20),利用一次函数的性质,即可求出在此期间销售时单价的最高值.解答:解:(1)分两种情况:①当0≤x≤15时,设日销售量y与销售时间x的函数解析式为y=k1x,∵直线y=k1x过点(15,30),∴15k1=30,解得k1=2,∴y=2x(0≤x≤15);②当15<x≤20时,设日销售量y与销售时间x的函数解析式为y=k2x+b,∵点(15,30),(20,0)在y=k2x+b的图象上,∴,解得:,∴y=﹣6x+120(15<x≤20);综上,可知y与x之间的函数关系式为:y=;(2)∵第10天和第15天在第10天和第20天之间,∴当10≤x≤20时,设销售单价p(元/千克)与销售时间x(天)之间的函数解析式为p=mx+n,∵点(10,10),(20,8)在z=mx+n的图象上,∴,解得:,∴p=﹣x+12(10≤x≤20),当x=10时,p=10,y=2×10=20,销售金额为:10×20=200(元),当x=15时,p=﹣×15+12=9,y=30,销售金额为:9×30=270(元).故第10天和第15天的销售金额分别为200元,270元;(3)若日销售量不低于24千克,则y≥24.当0≤x≤15时,y=2x,解不等式2x≥24,得x≥12;当15<x≤20时,y=﹣6x+120,解不等式﹣6x+120≥24,得x≤16,∴12≤x≤16,∴“最佳销售期”共有:16﹣12+1=5(天);∵p=﹣x+12(10≤x≤20),﹣<0,∴p随x的增大而减小,∴当12≤x≤16时,x取12时,p有最大值,此时p=﹣×12+12=9.6(元/千克).故此次销售过程中“最佳销售期”共有5天,在此期间销售单价最高为9.6元.点评:此题考查了一次函数的应用,有一定难度.解题的关键是理解题意,利用待定系数法求得函数解析式,注意数形结合思想与函数思想的应用.23.(本小题满分8分)某楼盘一楼是车库(暂不出售),二楼至二十三楼均为商品房(对外销售).商品房售价方案如下:第八层售价为3000元/米2,从第八层起每上升一层,每平方米的售价增加40元;反之,楼层每下降一层,每平方米的售价减少20元.已知商品房每套面积均为120平方米.开发商为购买者制定了两种购房方案:方案一:购买者先交纳首付金额(商品房总价的30%),再办理分期付款(即贷款).方案二:购买者若一次付清所有房款,则享受8%的优惠,并免收五年物业管理费(已知每月物业管理费为a元)⑴请写出每平方米售价y(元/米2)与楼层x(2≤x≤23,x是正整数)之间的函数解析式.⑵小张已筹到120000元,若用方案一购房,他可以购买哪些楼层的商品房呢?⑶有人建议老王使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9%的优惠划算.你认为老王的说法一定正确吗?请用具体数据阐明你的看法.23.(8分)解:(1)1o当2≤x≤8时,每平方米的售价应为:3000-(8-x)×20=20x+2840 (元/平方米)2O当9≤x≤23时,每平方米的售价应为:3000+(x-8)·40=40x+2680(元/平方米) ∴{8)x (22840,20x 23)x (92680,40x ≤≤+≤≤+=y , x 为正整数 ………………………2分(2)由(1)知:1o 当2≤x ≤8时,小张首付款为 (20x +2840)·120·30%=36(20x +2840)≤36(20·8+2840)=108000元<120000元∴2~8层可任选 …………………………1分 2o当9≤x ≤23时,小张首付款为(40x +2680)·120·30%=36(40x +2680)元36(40x +2680)≤120000,解得:x ≤3116349= ∵x 为正整数,∴9≤x ≤16 …………………………1分综上得:小张用方案一可以购买二至十六层的任何一层。
一次函数中的分段函数分段函数的根本模型1. 分段记费问题〔如收取水费、电费、通信费等类型〕:我国是世界上严重缺水的国家之一。
为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费方法收费,即一月用水10吨以内〔包括10吨〕的用户,每吨收水费a 元;一月用水超过10吨的用户,10吨水仍按每吨元收费,超过10吨的局部,按每吨b 元〔b >a 〕收费。
设一户居民月用水x 吨,应收水费y 元,y 与x 之间的函数关系如下图。
求出a 和b 值。
解析:根据图中的相关数据利用解析式分析求值,解题关键是弄清函数图象的意义。
答案: 1.5a =,b =2。
2. 行程中的分段计算问题:由速度或时间的不同而产生的不同计算。
如图是小明从学校到家里行进的路程s 〔米〕与时间t 〔分〕的函数图象,观察图象,从图中能得到什么信息呢?〔结合背景对图象含义进行理解〕解析:考查函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论。
答案:小明行进总路程为1000米,行进时间为20分钟,前10分钟的行进速度比后10分钟的行进速度慢。
3. 与几何图形有关的分段函数:由图形的运动变化所产生的线段、面积等的不同产生的分段计算。
如图1,在矩形ABCD 中,AB =3,BC =4,动点P 从点A 开始按A →B→C→D 的方向运动到D 。
如图2,设动点P 所经过的路程为x ,△APD 的面积为y 。
〔当点P 与A 或D 重合时,y =0〕,写出y 与x 的函数关系式并画出图象。
解析:利用点运动到不同位置产生对应值解决问题。
图象如图。
203637220710x x y x x x ≤≤⎧⎪=<<⎨⎪-+≤≤⎩。
4. 商品销售中的分段计算:根据数量将商品进行分段销售。
如:某书定价25元,如果一次购置20本以上,超过20本的局部打八折,试写出付款金额y 〔单位:元〕与购书数量x 〔单位:本〕之间的函数关系。
识别分段函数,解决收费问题(学案)定义:一般地,如果有实数a1,a2,a3……k1,k,2k3……b1,b2,b3……且a1≤a2≤a3……函数Y与自变量X之间存在k1x+b1 x≤a1y = k2x+b2 a1≤x≤a2 ①的函数解析式,则称该函数解析式为X的分段函数。
K3x+b3 a2≤x≤a3…………应该指出: 函数解析式①这个整体只是一个函数,并非是Y=K1X+b1 Y=K2X+b2……等几个不同函数的简单组合,而k1x+b1, k2x+b2……是函数Y的几种不同的表达式.。
所以上例中Y={这个整体只是一个函数,不能认为它是两个不同的函数,只能说110X和110×80%X是同一函数中的自变量X在两种不同取值范围内的不同表达式。
一次函数的分段函数是简单的分段函数。
分段函数应用题分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论。
在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型。
收费问题与我们的生活息息相关,如水费问题、电费问题、话费问题等,这些收费问题往往根据不同的用量,采用不同的收费方式.以收费为题材的数学问题多以分段函数的形式出现在中考试题中,下面请看几例.一、话费中的分段函数例1 (四川广元)某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图1所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?二、水费中的分段函数例2(广东)某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图(1) 分别写出当0≤x ≤15和x ≥15时,y 与x 的函数关系式;(2)若某户该月用水21吨,则应交水费多少元?三、电费中分段函数例3 (广东)今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y (元)与用电量x (度)的函数图象是一条折线(如图3所示),根据图象解下列问题:(1)分别写出当0≤x ≤100和x ≥100时,y 与x 的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?谈谈中考中的分段函数分段函数,是近几年中考数学中经常遇到的题型。
例析一次函数中的分段函数题
一次函数 (线性函数) 是一种特殊的函数,它关于原点对称,并且它的图像是一条直线。
一次函数可以表示为 y = ax + b 的形式,其中 a 和 b 是常数,x 是自变量,y 是因变量。
在一次函数中,分段函数是指当自变量 x 的取值发生变化时,因变量的取值也随之变化的函数。
分段函数的分段点一般是一个表达式的终点,也是下一个表达式的起点。
它会反映在函数表达式或函数图像上。
分段函数的定义域是每个分段函数定义域的并集,值域也是每个分段函数值域的并集。
在判断分段函数的奇偶性时,需要先查看定义域是否关于原点对称,然后分别代入各段函数式计算 f(x) 和 f(-x) 的值,若有 f(x) - f(-x),当 x0 有定义时 f(0) 0,则 f(x) 是奇函数;若有 f(x) f(-x),则 f(x) 是偶函数。
在求解一次函数中的分段函数时,需要先确定分段点,然后根据分段点周围的数学表达式来确定分段函数的表达式。
同时,需要查看分段函数的定义域和值域,并判断其奇偶性。
认清分段函数,解决收费问题定义:一般地,如果有实数a1,a2,a3……k1,k,2k3……b1,b2,b3……且a1≤a2≤a3……函数Y与自变量X之间存在k1x+b1 x≤a1y = k2x+b2 a1≤x≤a2 ①的函数解析式,则称该函数解析式为X的分段函数。
K3x+b3 a2≤x≤a3…………应该指出:(一), 函数解析式①这个整体只是一个函数,并非是Y=K1X+b1 Y=K2X+b2……等几个不同函数的简单组合,而k1x+b1,k2x+b2……是函数Y的几种不同的表达式.。
所以上例中Y={这个整体只是一个函数,不能认为它是两个不同的函数,只能说110X和110×80%X是同一函数中的自变量X在两种不同取值范围内的不同表达式。
(二),由于k1,k2,k3……b1,b2,b3是实数,所以函数Y在X的某个范围内的特殊函数,如正比例函数和常数函数。
(三),由于问题的不同,当然分段函数也可能在自变量某范围内不是一次函数而是其他形式的函数,在这里我们不予讨论。
(四), 一次函数的分段函数是简单的分段函数。
分段函数应用题分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论。
在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型。
收费问题与我们的生活息息相关,如水费问题、电费问题、话费问题等,这些收费问题往往根据不同的用量,采用不同的收费方式.以收费为题材的数学问题多以分段函数的形式出现在中考试题中,下面请看几例.一、话费中的分段函数例1 (四川广元)某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图1所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?图1分析:本题是一道和话费有关的分段函数问题,通过图象可观察到,在0到100分钟之间月话费y(元)是月通话时间x(分钟)的正比例函数,当x≥100时, 月话费y(元)是月通话时间x(分钟)的一次函数.解:(1)观察图象可知月通话为100分钟时,应交话费40元;(2)设y与x之间的函数关系式为y=kx+b由图上知:x=100时,y=40;x=200时,时,y=60则有4010060200k bk b=+⎧⎨=+⎩,解之得1520kb⎧=⎪⎨⎪=⎩所求函数关系式为1205y x=+..(3)把x=280代入关系式1205y x=+,得128020765y∴=⨯+=即月通话为280分钟时,应交话费76元.二、水费中的分段函数例2(广东)某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图2.(1)分别写出当0≤x≤15和x≥15时,y与x的函数关系式;(2)若某户该月用水21吨,则应交水费多少元?分析:本题是一道与收水费有关的分段函数问题.观察图象可知, 0≤x≤15时y是x 的正比例函数; x≥15时,y是x的一次函数.解: (1)当0≤x ≤15时,设y =kx ,把x =15,y =27代入,得27=15k ,所以k =591527=,所以y =59x ;当x ≥15时,设y =ax +b ,将x =15,y =27和x =20,y =39.5代入,得⎩⎨⎧=+=+5.3920,2715b a b a 解得a =2.5,b =-10.5所以y =2.5x -10.5 图2(2) 当该用户该月用21吨水时,三、电费中分段函数例3 (广东)今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y (元)与用电量x (度)的函数图象是一条折线(如图3所示),根据图象解下列问题:(1)分别写出当0≤x ≤100和x ≥100时,y 与x 的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?图3分析:从函数图象上看图象分为两段,当0≤x ≤100时,电费y 是电量x 的正比例函数,当x ≥100时,y 是x 的一次函数,且函数图象经过点(100,65)和(130,89),设出相应的函数关系式,将点的坐标代入即可确定函数关系式,根据函数关系式可解决问题.解: (1)设当0≤x ≤100时,函数关系式为y =kx ,将x =100,y =65代入,得k =0.65,所以y =0.65x ;设当x ≥100时,函数关系式为y =a x +b,将x =100,y =65和x =130,y =89代入,得⎩⎨⎧=+=+.89130,65100b a b a 解得a=0.8,b=-15.所以y =0.8x -15综上可得0.65(0100)0.815(100)x x y x x ⎧=⎨-⎩≤≤≥ (2)用户月用电量在0度到100度之间时,每度电的收费的标准是0.65元;超出100度时,每度电的收费标准是0.80元.(3)用户月用电62度时,用户应缴费40.3元,若用户月缴费105元时,该户该月用了150度电.谈谈中考中的分段函数分段函数,是近几年中考数学中经常遇到的题型。
一次函数中分段函数的解题思路
解决一次函数中分段函数问题的基本思路需要运用恰当的数学分析和理解能力。
首先,我们要明确理解分段函数的定义和性质,它与一次函数的关系,以及在解
决此类型问题时应如何运用这些知识。
其次,我们需要了解如何判断相应的函数区间,以便在应用分段函数时能做出正确的选择。
要解决分段函数问题,首先要确定分段点,这个分段点就是函数图像突变的地方,同时也是我们主要考虑问题的地方。
然后根据函数分段的定义,分别计算出
每个区间的函数值。
这就相当于我们把一个大问题分解成了几个小问题,每个小问题都是一个一次函数问题。
在这个过程中,我们需要精确运用代数,确保各个部分的函数值的精确度。
然后对比这几个函数值,找出问题所求的答案。
解决一次函数的分段函数问题,最重要的是注意问题设定的条件,这将决定了函数图像的具体形状。
有了这个,我们就能根据这些特征来分解问题,从而找到问题的解答。
总的来说,一次函数的分段函数问题需要我们运用各种数学知识,通过一次次的分解和整合,最终找出问题的解。
在解题过程中,一定要保持清晰的思路,正确理解并运用知识,灵活运用分析,整合,判断等能力。
只有这样,我们才能进行有效的解题,找出正确的答案。
分段函数1、二段型分段函数1、1正比例函数与一次函数构成得分段函数解答这类分段函数问题得关键,就就是分别确定好正比例函数得解析式与一次函数得解析式。
例1某家庭装修房屋,由甲、乙两个装修公司合作完成,选由甲装修公司单独装修3天,剩下得工作由甲、乙两个装修公司合作完成.工程进度满足如图1所示得函数关系,该家庭共支付工资8000元.(1)完成此房屋装修共需多少天?(2)若按完成工作量得多少支付工资,甲装修公司应得多少元?例2、一名考生步行前往考场, 10分钟走了总路程得,估计步行不能准时到达,于就是她改乘出租车赶往考场,她得行程与时间关系如图2所示(假定总路程为1),则她到达考场所花得时间比一直步行提前了( )A.20分钟B.22分钟C.24分钟 D.26分钟例3、某公司专销产品A,第一批产品A上市40天内全部售完.该公司对第一批产品A上市后得市场销售情况进行了跟踪调查,调查结果如图所示,其中图(3)中得折线表示得就是市场日销售量与上市时间得关系;图(4)中得折线表示得就是每件产品A得销售利润与上市时间得关系.(1)试写出第一批产品A得市场日销售量y与上市时间t得关系式;(2)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润就是多少万元?1、2一次函数与一次函数构成得分段函数例4、为了鼓励小强做家务,小强每月得费用都就是根据上月她得家务劳动时间所得奖励加上基本生活费从父母那里获取得.若设小强每月得家务劳动时间为x小时,该月可得(即下月她可获得)得总费用为y元,则y(元)与x(小时)之间得函数图像如图5所示.(1)根据图像,请您写出小强每月得基本生活费;父母就是如何奖励小强家务劳动得?(2)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?1、3常数函数与一次函数构成得分段函数例5、有甲、乙两家通迅公司,甲公司每月通话得收费标准如图6所示;乙公司每月通话收费标准如表1所示.(1)观察图6,甲公司用户月通话时间不超过100分钟时应付话费金额就是元;甲公司用户通话100分钟以后,每分钟得通话费为元;(2)李女士买了一部手机,如果她得月通话时间不超过100分钟,她选择哪家通迅公司更合算?如果她得月通话时间超过100分钟,又将如何选择?2、三段型分段函数例6 如图7,矩形ABCD中,AB=1,AD=2,M就是CD得中点,点P在矩形得边上沿A→B →C→M运动,则△APM得面积y与点P经过得路程x之间得函数关系用图象表示大致就是下图中得( )3、四段型分段函数例7、星期天,小强骑自行车到郊外与同学一起游玩,从家出发2小时到达目得地,游玩3小时后按原路以原速返回,小强离家4小时40分钟后,妈妈驾车沿相同路线迎接小强,如图11,就是她们离家得路程y(千米)与时间x(时)得函数图像。
一次函数分段函数在数学中,一次函数是指最高次项为一次的函数,也称为一次多项式函数,一般表达式为y=kx+b,其中k和b都为常数。
而分段函数则是一种函数,其定义域被分为几个不相交的区间,每个区间内有不同的函数表达式。
因此,一次函数分段函数就是将一次函数在不同的区间内用不同的函数表达式来描述的函数。
一次函数分段函数的定义一次函数分段函数的定义如下:设I为实数集上的一个区间,f(x)为一次函数,g(x)为定义在I上的另一个函数,若存在实数a1,a2,…,an-1(n>1),使得I被这些实数分成了n个互不相交的区间I1=[a1,a2),I2=[a2,a3),…,In-1=[an-1,an),且在每个区间内f(x)和g(x)的表达式不同,则称定义在I上的函数h(x)为一次函数分段函数。
一次函数分段函数的图像特征由于一次函数的图像是一条直线,因此一次函数分段函数的图像也是由若干条直线段组成的。
每个区间内的直线段斜率和截距都不同,因此直线段的形状和位置也不同。
在每个区间的交界处,一次函数分段函数的图像是一个开口向下或开口向上的折线。
一次函数分段函数的性质一次函数分段函数具有以下性质:1.一次函数分段函数在每个区间上都是连续的。
2.一次函数分段函数在每个区间的端点上都是左右极限存在的。
3.一次函数分段函数在每个区间内都是可导的,但在每个区间交界处可能不可导。
4.一次函数分段函数是一个分段函数,因此其定义域是由若干个不相交的区间组成的。
5.一次函数分段函数的图像是由若干条直线段组成的,直线段的斜率和截距都不同。
6.一次函数分段函数的图像在每个区间的交界处是一个开口向下或开口向上的折线。
一次函数分段函数的应用一次函数分段函数在实际应用中有广泛的应用,如:1.电费计算:电费的计算采用阶梯电价的方式,即电力部门将电费标准分为若干个阶梯,每个阶梯内的电价不同。
因此,电费的计算可以采用一次函数分段函数的方式来描述。
2.税收计算:税收的计算采用分段征税的方式,即将纳税人的收入分为若干个阶段,每个阶段内的税率不同。
分段函数的理解分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数。
1、它是一个函数,不是几个不同函数的组合,是同一函数在自变量X的不同取值范围内的不同表达式。
2、最简单的分段函数是一次函数的分段函数。
分段函数也可能在自变量某范围内不是一次函数而是其他形式的函数,在这里我们不予讨论。
谈谈中考中的分段函数在现实生活中存在着很多需分段计费的实际问题,分段函数是近几年中考数学中一种重要的题型。
分段函数的应用题多设计成两种(段)情况以上,解答时需分段讨论。
它是考查分类思想,读取、搜集、处理图像信息等综合能力的综合题。
这些分段函数都是直线型,通常是由正比例函数的图像和一次函数的图像构成。
下面我们归纳分析如下,供学习时参考。
一、两段型分段函数1.1正比例函数与一次函数构成的分段函数解答这类分段函数问题的关键,就是分别确定好正比例函数的解析式和一次函数的解析式。
例1、某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图1所示:(1)月通话为100分钟时,应交话费______元;(2)分别写出当0≤x≤100 , x≥100时,x与y之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?分析:本题是一道和话费有关的分段函数问题,通过图象可观察到,在0到100分钟之间月话费y(元)是月通话时间x(分钟)的正比例函数,当x≥100时, 月话费y(元)是月通话时间x(分钟)的一次函数.解:(1)观察图象可知月通话为100分钟时,应交话费40元;(2)当0≤x≤100时,设y与x之间的函数关系式为y=kx,x=100时,y=40 所以y=2/5xx≥100时, 设y与x之间的函数关系式为y=kx+b由图知:x=100时,y=40;x=200时,y=60则有 ,解之得 k=1/5,b=20所求函数关系式为y=1/5x+20(3)把x=280代入y=1/5x+20,得y=1/5x280+20=76,即月通话为280分钟时,应交话费76元.【巩固练习】1、水费中的分段函数某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图(1)分别写出当0≤x≤15和x≥15时, y与x的函数关系式;(2)若某户该月用水21吨, 则应交水费多少元?2、电费中分段函数今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图3所示),根据图象解下列问题:(1)分别写出当0≤x≤100和x≥100时, y与x的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?1.2一次函数与一次函数构成的分段函数1、为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x小时,该月可得(即下月他可获得)的总费用为y元,则y(元)和x(小时)之间的函数图像如图5所示.(1)根据图像,请你写出小强每月的基本生活费;父母是如何奖励小强家务劳动的?(2)分别写出当0≤x≤20和x≥20时, y与x的函数关系式;(3)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?1.3常数函数与一次函数构成的分段函数例1、有甲、乙公司,甲公司每月通话的收费标准如图6所示;乙公司每月通话收费标准如表1所示.(1)观察图6,甲公司用户月通话时间不超过100分钟时应付话费金额是元;甲公司用户通话100分钟以后,每分钟的通话费为元;(2)分别写出当0≤x≤100和x≥100时, y与x的函数关系式(3)李女士买了一部手机,如果她的月通话时间不超过100分钟,她选择哪家通迅公司更合算?如果她的月通话时间超过100分钟,又将如何选择?二、三段型分段函数如图7,矩形ABCD中,AB=1,AD=2,M是CD的中点,点P在矩形的边上沿A→B→C→M运动,则△APM 的面积y与点P经过的路程x之间的函数关系用图象表示大致是下图中的()三、四段型分段函数例7、星期天,小强骑自行车到郊外与同学一起游玩,从家出发2小时到达目的地,游玩3小时后按原路以原速返回,小强离家4小时40分钟后,妈妈驾车沿相同路线迎接小强,如图11,是他们离家的路程y(千米)与时间x(时)的函数图像。
一次函数中的分段函数在函数自变量不同的取值范围内所对应的函数关系也不相同,我们这样的函数称为分段函数。
学习一次函数中的分段函数,通常应注意以下几点:⑴要特别注意相应的自变量变化区间。
在解析式和图象上都要反映出自变量的相应取值范围。
⑵分段函数的图象是由几条线段(或射线)组成的折线。
其中每条线段(射线)代表某一个阶段的情况。
⑶分析分段函数的图象要结合实际问题背景对图象的意义进行认识和理解。
尤其要理解折线中横、纵坐标表示的实际意义。
一、分段计费问题例1.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费元;一月用水超过10吨的用户,10吨水仍按每吨元收费,超过10吨的部分,按每吨元(b>a)收费.设一户居民月用水吨,应收水费元,与之间的函数关系如图13所示.(1)求的值;某户居民上月用水8吨,应收水费多少元?(2)求的值,并写出当时,与之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?解析:(1)当时,有.将代入,得.∴y=1.5x当x=8时,y=8×1.5=12(元).(2)当时,有将,代入,得.∴.故当时,.(3)因,∴甲、乙两家上月用水均超过10吨.设甲、乙两家上月用水分别为吨,吨,则解之,得故居民甲上月用水16吨,居民乙上月用水12吨.二、行程中的分段函数例2。
一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为,两车之间的距离为,图中的折线表示与之间的函数关系.根据图象进行以下探究:信息读取(1)甲、乙两地之间的距离为 km;(2)请解释图中点的实际意义;图象理解(3)求慢车和快车的速度;(4)求线段所表示的与之间的函数关系式,并写出自变量的取值范围;问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?解析:(1)900;(2)图中点的实际意义是:当慢车行驶4h时,慢车和快车相遇.(3)由图象可知,慢车12h行驶的路程为900km,所以慢车的速度为;当慢车行驶4h时,慢车和快车相遇,两车行驶的路程之和为900km,所以慢车和快车行驶的速度之和为,所以快车的速度为150km/h.(4)根据题意,快车行驶900km到达乙地,所以快车行驶到达乙地,此时两车之间的距离为,所以点的坐标为.设线段所表示的与之间的函数关系式为,把,代入得解得所以,线段所表示的与之间的函数关系式为.自变量的取值范围是.(5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h.把代入,得.此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km,所以两列快车出发的间隔时间是,即第二列快车比第一列快车晚出发0.75h.三、与几何图形有关的分段函数例3。
一次函数中分段函数的分析
在函数自变量不同的取值范围内所对应的函数关系也不相同,我们这样的函数称为分段函数。
学习一次函数中的分段函数,通常应注意以下几点:⑴要特别注意相应的自变量变化区间。
在解析式和图象上都要反映出自变量的相应取值范围。
⑵分段函数的图象是由几条线段(或射线)组成的折线。
其中每条线段(射线)代表某一个阶段的情况。
⑶分析分段函数的图象要结合实际问题背景对图象的意义进行认识和理解。
尤其要理解折线中横、纵坐标表示的实际意义。
一、分段计费问题
例1. 我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费元;一月用水超过10吨的用户,10吨水仍按
每吨元收费,超过10吨的部分,按每吨元(b>a)收费.设一户居民月用水吨,应收水费元,与之间的函数关系如图13所示.
(1)求的值;某户居民上月用水8吨,应收水费多少元?
(2)求的值,并写出当时,与之间的函数关系式;
(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?
解析:(1)当时,有.将代入,得.∴y=1.5x 当x=8时,y=8×1.5=12(元).
(2)当时,有将,代入,
得.∴.故当时,.
(3)因,∴甲、乙两家上月用水均超过10吨.设甲、乙两家上月用水分别为吨,吨,
则
解之,得
故居民甲上月用水16吨,居民乙上月用水12吨.
二、行程中的分段函数
例2。
一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为,两车之间的距离为,图中的折线表示与之
间的函数关系.
根据图象进行以下探究:
信息读取
(1)甲、乙两地之间的距离为 km;
(2)请解释图中点的实际意义;
图象理解
(3)求慢车和快车的速度;
(4)求线段所表示的与之间的函数关系式,并写出自变量的取值范围;
问题解决
(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?
解析:(1)900;
(2)图中点的实际意义是:当慢车行驶4h时,慢车和快车相遇.
(3)由图象可知,慢车12h行驶的路程为900km,
所以慢车的速度为;
当慢车行驶4h时,慢车和快车相遇,两车行驶的路程之和为900km,所以慢车和快车行驶的速度之和为,所以快车的速度为150km/h.
(4)根据题意,快车行驶900km到达乙地,所以快车行驶到达乙地,
此时两车之间的距离为,所以点的坐标为.
设线段所表示的与之间的函数关系式为,把,代入得
解得
所以,线段所表示的与之间的函数关系式为.
自变量的取值范围是.
(5)慢车与第一列快车相遇30分钟后与第二列快车相遇,此时,慢车的行驶时间是4.5h.
把代入,得.
此时,慢车与第一列快车之间的距离等于两列快车之间的距离是112.5km,所以两列快车出发的间隔时间是,即第二列快车比第一列快车晚
出发0.75h.
三、与几何图形有关的分段函数
例3。
在矩形ABCD中,AB=3,BC=4,动点P从点A开始按A —B—C—D的方向运动到D。
如图3—1。
设动点P所经过的路程为x,△APD的面积为y。
(当点P与A或D重合时,y=0)
⑴写出y与x的函数关系式;
⑵画出此函数的图象。
解析:⑴P在边AB、BC、CD上所对应的函数关系不相同。
应分段求出相应的函数式
①P在边AB上,0≤x<3时, y=×4x=2x
②P在边BC上,3≤x<7时,y=×4×3=6
③P在边CD上,7≤x≤10时,y=×4(10-x)=-2x+20。