初中一次函数分段函数知识
- 格式:doc
- 大小:66.50 KB
- 文档页数:3
分段函数及函数的性质分段函数概念 在自变量的不同取值范围内,有不同的对应法则,需要用不同的解析式来表示的函数叫做分段表示的函数,简称分段函数.定义域 分段函数的定义域是自变量的各个不同取值范围的并集 函数值 求分段函数的函数值()0f x 时,应该首先判断0x 所属的取值范围,然后再把0x 代入到相应的解析式中进行计算.注意 分段函数在整个定义域上仍然是一个函数,而不是几个函数,只不过这个函数在定义域的不同范围内有不同的对应法则,需要用相应的解析式来表示.分段函数的作图 因为分段函数在自变量的不同取值范围内,有着不同的对应法则,所以作分段函数的图像时,需要在同一个直角坐标系中,要依次作出自变量的各个不同的取值范围内相应的图像,从而得到函数的图像. 例1 设函数()221,0,,0.x x y f x x x -⎧⎪==⎨>⎪⎩„(1)求函数的定义域; (2)求()()()2,0,1f f f -的值.(3)作出函数图像.1.设函数 ()221,20,1,0 3.x x y f x x x +-<⎧⎪==⎨-<<⎪⎩„(1)求函数的定义域; (2)求()()()2,0,1f f f -的值. (3)作出函数图像.2.设函数()41,20,1,0 3.x x f x x --<⎧=⎨-<<⎩„(1)求函数的定义域; (2)求()2(0)(1)f f f -,,; (3)作出函数图像.3 .()⎩⎨⎧>-≤+=,0,2,0,12x x x x x f 若()2f f ⎡⎤⎣⎦= . 4.已知⎩⎨⎧<+≥-=)6()2()6(5)(x x f x x x f ,则f(3)为( ) A 2 B 3 C 4 D 5函数的性质 1 单调性概念 函数值随着自变量的增大而增大(或减小)的性质叫做函数的单调性.1 即对于任意的()12,,x x a b ∈,当12x x <时,都有()()12f x f x <成立.这时把函数()f x叫做区间(),a b 内的增函数,区间(),a b 叫做函数()f x 的增区间.2 即对于任意的()12,,x x a b ∈,当12x x <时,都有()()12f x f x >成立.这时函数()f x 叫做区间(),a b 内的减函数,区间(),a b 叫做函数()f x 的减区间.3 如果函数()f x 在区间(),a b 内是增函数(或减函数),那么,就称函数()f x 在区间(),a b 内具有单调性,区间(),a b 叫做函数()f x 的单调区间.例 判断函数42y x =-的单调性1. 已知函数f ( x )=x 2+ax +b ,且对任意的实数x 都有f (1+x )=f (1-x ) 成立。
中考知识点分段函数一、定义域和值域分段函数的定义域和值域是由各个分段的定义域和值域确定的。
以函数f(x) = { x+3, x<0 2x, x>=0 } 为例,其定义域为整个实数集,值域为 (-∞, +∞)。
二、分段函数的图像对于分段函数,要根据每个分段的函数表达式来绘制图像。
以函数f(x) = { x+3, x<0 2x, x>=0} 为例,在x<0时,图像是一条斜率为1的直线,过原点,并且在x=0处有一个开口向上的拐点。
三、分段函数的连续性分段函数在分段点处可能不连续,需要通过计算极限来确定。
以函数f(x) = { x+3, x<0 2x, x>=0} 为例,分段点x=0处的左极限等于0,右极限等于0,与f(0)=0相符,因此该分段函数在x=0处连续。
四、分段函数的性质1. 分段函数的奇偶性由各个分段的奇偶性决定。
以函数f(x) = { x+3, x<0 2x, x>=0 } 为例,第一段函数x+3是奇函数,第二段函数2x是偶函数,所以整个分段函数为奇函数。
2. 分段函数的单调性由各个分段的单调性决定。
以函数f(x) = { x+3, x<0 2x, x>=0 } 为例,第一段函数x+3是递增函数,第二段函数2x也是递增函数,所以整个分段函数是递增函数。
3. 分段函数的最大值和最小值在每个分段函数的最大值和最小值中取得。
以函数f(x) = { x+3, x<0 2x, x>=0 } 为例,在第一段函数中,最小值为3,最大值不存在;在第二段函数中,最小值不存在,最大值也不存在。
四、分段函数的应用1. 分段函数可以描述现实生活中的一些问题,如电话费计费等。
以电话费计费为例,某通信公司的计费标准为:前50分钟,每分钟0.5元;超过50分钟,每分钟0.3元。
假设通话时长为x分钟,对应的通话费用为函数f(x) = { 0.5x,x<=50 0.3(x-50)+25, x>50 }。
认清分段函数,解决收费问题定义:一般地,如果有实数a1,a2,a3……k1,k,2k3……b1,b2,b3……且a1≤a2≤a3……函数Y与自变量X之间存在k1x+b1 x≤a1y = k2x+b2 a1≤x≤a2 ①的函数解析式,则称该函数解析式为X的分段函数。
K3x+b3 a2≤x≤a3…………应该指出:(一), 函数解析式①这个整体只是一个函数,并非是Y=K1X+b1 Y=K2X+b2……等几个不同函数的简单组合,而k1x+b1,k2x+b2……是函数Y的几种不同的表达式.。
所以上例中Y={这个整体只是一个函数,不能认为它是两个不同的函数,只能说110X和110×80%X是同一函数中的自变量X在两种不同取值范围内的不同表达式。
(二),由于k1,k2,k3……b1,b2,b3是实数,所以函数Y在X的某个范围内的特殊函数,如正比例函数和常数函数。
(三),由于问题的不同,当然分段函数也可能在自变量某范围内不是一次函数而是其他形式的函数,在这里我们不予讨论。
(四), 一次函数的分段函数是简单的分段函数。
分段函数应用题分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论。
在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型。
收费问题与我们的生活息息相关,如水费问题、电费问题、话费问题等,这些收费问题往往根据不同的用量,采用不同的收费方式.以收费为题材的数学问题多以分段函数的形式出现在中考试题中,下面请看几例.一、话费中的分段函数例1 (四川广元)某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图1所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?图1分析:本题是一道和话费有关的分段函数问题,通过图象可观察到,在0到100分钟之间月话费y(元)是月通话时间x(分钟)的正比例函数,当x≥100时, 月话费y(元)是月通话时间x(分钟)的一次函数.解:(1)观察图象可知月通话为100分钟时,应交话费40元;(2)设y与x之间的函数关系式为y=kx+b由图上知:x=100时,y=40;x=200时,时,y=60则有4010060200k bk b=+⎧⎨=+⎩,解之得1520kb⎧=⎪⎨⎪=⎩所求函数关系式为1205y x=+..(3)把x=280代入关系式1205y x=+,得128020765y∴=⨯+=即月通话为280分钟时,应交话费76元.二、水费中的分段函数例2(广东)某自来水公司为了鼓励居民节约用水,采取了按月用水量分段收费办法,某户居民应交水费y(元)与用水量x(吨)的函数关系如图2.(1)分别写出当0≤x≤15和x≥15时,y与x的函数关系式;(2)若某户该月用水21吨,则应交水费多少元?分析:本题是一道与收水费有关的分段函数问题.观察图象可知, 0≤x≤15时y是x 的正比例函数; x≥15时,y是x的一次函数.解: (1)当0≤x ≤15时,设y =kx ,把x =15,y =27代入,得27=15k ,所以k =591527=,所以y =59x ;当x ≥15时,设y =ax +b ,将x =15,y =27和x =20,y =39.5代入,得⎩⎨⎧=+=+5.3920,2715b a b a 解得a =2.5,b =-10.5所以y =2.5x -10.5 图2 (2) 当该用户该月用21吨水时, 三、电费中分段函数例3 (广东)今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y (元)与用电量x (度)的函数图象是一条折线(如图3所示),根据图象解下列问题:(1)分别写出当0≤x ≤100和x ≥100时,y 与x 的函数关系式; (2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?图3分析:从函数图象上看图象分为两段,当0≤x ≤100时,电费y 是电量x 的正比例函数,当x ≥100时,y 是x 的一次函数,且函数图象经过点(100,65)和(130,89),设出相应的函数关系式,将点的坐标代入即可确定函数关系式,根据函数关系式可解决问题.解: (1)设当0≤x ≤100时,函数关系式为y =kx ,将x =100,y =65代入,得k =0.65,所以y =0.65x ;设当x ≥100时,函数关系式为y =a x +b,将x =100,y =65和x =130,y =89代入,得⎩⎨⎧=+=+.89130,65100b a b a 解得a=0.8,b=-15.所以y =0.8x -15综上可得0.65(0100)0.815(100)xx y x x ⎧=⎨-⎩≤≤≥(2)用户月用电量在0度到100度之间时,每度电的收费的标准是0.65元;超出100度时,每度电的收费标准是0.80元.(3)用户月用电62度时,用户应缴费40.3元,若用户月缴费105元时,该户该月用了150度电.谈谈中考中的分段函数分段函数,是近几年中考数学中经常遇到的题型。
八年级数学一次函数应用知识点归纳八年级数学一次函数的应用知识点归纳1一、分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际。
二、函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数三、概括整合(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
(2)理清题意是采用分段函数解决问题的关键。
常用公式1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴*行线段的中点:(x1+x2)/23.求与y轴*行线段的中点:(y1+y2)/24.求任意线段的长:√[(x1-x2)^2+(y1-y2)^2]5.求两个一次函数式图像交点坐标:解两函数式两个一次函数y1=k1x+b1y2=k2x+b2令y1=y2得k1x+b1=k2x+b2将解得的x=x0值代回y1=k1x+b1y2=k2x+b2两式任一式得到y=y0则(x0,y0)即为y1=k1x+b1与y2=k2x+b2交点坐标6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]八年级数学一次函数的应用知识点归纳2一.常量、变量:在一个变化过程中,数值发生变化的量叫做变量;数值始终不变的量叫做常量。
二、函数的概念:函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.三、函数中自变量取值范围的求法:(1)用整式表示的函数,自变量的取值范围是全体实数。
(2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
(3)用寄次根式表示的函数,自变量的取值范围是全体实数。
用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
(4)若解析式由上述几种形式综合而成,须先求出各部分的取值范围,然后再求其公共范围,即为自变量的取值范围。
初中所有函数知识点归纳函数是数学中的一种基本概念,也是初中数学中非常重要的内容。
在初中阶段,学生主要学习了一次函数、二次函数和分段函数等几种常见类型的函数,下面对这些内容进行归纳。
一、一次函数:1. 函数的定义:一次函数是指函数表达式为 y = kx + b 的函数,其中 k 和 b 是常数,且k ≠ 0。
2.函数图像:一次函数的图像是一条直线,通过其中两个点就能确定这条直线。
3.函数性质:一次函数是一个线性函数,特点是斜率恒定,即直线的倾斜度保持一致。
4.斜率:斜率是一次函数的重要特征,用来描述函数图像的倾斜程度。
二、二次函数:1. 函数的定义:二次函数是指函数表达式为 y = ax^2 + bx + c 的函数,其中 a、b 和 c 是常数,且a ≠ 0。
2.函数图像:二次函数的图像是一个抛物线,开口方向由a的正负确定。
3.函数性质:二次函数的最高次项是二次的,代表抛物线的弯曲程度。
4.零点和顶点:二次函数的零点即方程的根,顶点是抛物线的顶点,二次函数的顶点坐标为(-b/2a,f(-b/2a))。
三、分段函数:1.函数的定义:分段函数是指在不同的区间采用不同的函数表达式来定义的函数。
2.函数图像:分段函数的图像是由不同的线段或抛物线拼接而成。
3.区间和定义域:分段函数的定义域是所有给定函数的定义域的并集,区间是定义域的数据范围。
四、函数的运算:1.函数的加减法:两个函数的加减法运算规则是将对应的x值代入函数表达式后进行运算得到对应的y值,即(f+g)(x)=f(x)±g(x)。
2.函数的乘法:两个函数的乘法运算是将对应的x值代入函数表达式后进行运算得到对应的y值,即(f*g)(x)=f(x)*g(x)。
3.函数的除法:两个函数的除法运算是将对应的x值代入函数表达式后进行运算得到对应的y值,即(f/g)(x)=f(x)/g(x)。
五、函数的应用:1.函数的问题解决:函数在数学中有很多实际应用,如利用函数关系解决实际问题,通过函数图像分析问题等。
分段函数1、二段型分段函数1、1正比例函数与一次函数构成得分段函数解答这类分段函数问题得关键,就就是分别确定好正比例函数得解析式与一次函数得解析式。
例1某家庭装修房屋,由甲、乙两个装修公司合作完成,选由甲装修公司单独装修3天,剩下得工作由甲、乙两个装修公司合作完成.工程进度满足如图1所示得函数关系,该家庭共支付工资8000元.(1)完成此房屋装修共需多少天?(2)若按完成工作量得多少支付工资,甲装修公司应得多少元?例2、一名考生步行前往考场, 10分钟走了总路程得,估计步行不能准时到达,于就是她改乘出租车赶往考场,她得行程与时间关系如图2所示(假定总路程为1),则她到达考场所花得时间比一直步行提前了( )A.20分钟B.22分钟C.24分钟 D.26分钟例3、某公司专销产品A,第一批产品A上市40天内全部售完.该公司对第一批产品A上市后得市场销售情况进行了跟踪调查,调查结果如图所示,其中图(3)中得折线表示得就是市场日销售量与上市时间得关系;图(4)中得折线表示得就是每件产品A得销售利润与上市时间得关系.(1)试写出第一批产品A得市场日销售量y与上市时间t得关系式;(2)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润就是多少万元?1、2一次函数与一次函数构成得分段函数例4、为了鼓励小强做家务,小强每月得费用都就是根据上月她得家务劳动时间所得奖励加上基本生活费从父母那里获取得.若设小强每月得家务劳动时间为x小时,该月可得(即下月她可获得)得总费用为y元,则y(元)与x(小时)之间得函数图像如图5所示.(1)根据图像,请您写出小强每月得基本生活费;父母就是如何奖励小强家务劳动得?(2)若小强5月份希望有250元费用,则小强4月份需做家务多少时间?1、3常数函数与一次函数构成得分段函数例5、有甲、乙两家通迅公司,甲公司每月通话得收费标准如图6所示;乙公司每月通话收费标准如表1所示.(1)观察图6,甲公司用户月通话时间不超过100分钟时应付话费金额就是元;甲公司用户通话100分钟以后,每分钟得通话费为元;(2)李女士买了一部手机,如果她得月通话时间不超过100分钟,她选择哪家通迅公司更合算?如果她得月通话时间超过100分钟,又将如何选择?2、三段型分段函数例6 如图7,矩形ABCD中,AB=1,AD=2,M就是CD得中点,点P在矩形得边上沿A→B →C→M运动,则△APM得面积y与点P经过得路程x之间得函数关系用图象表示大致就是下图中得( )3、四段型分段函数例7、星期天,小强骑自行车到郊外与同学一起游玩,从家出发2小时到达目得地,游玩3小时后按原路以原速返回,小强离家4小时40分钟后,妈妈驾车沿相同路线迎接小强,如图11,就是她们离家得路程y(千米)与时间x(时)得函数图像。
分段函数的知识点总结一、分段函数的定义1.1 分段函数的基本形式分段函数的基本形式可以表示为:\[ f(x)=\begin{cases}f_{1}(x), & x\in D_{1}\\f_{2}(x), & x\in D_{2}\\… \\f_{n}(x), & x\in D_{n}\\\end{cases} \]其中,\( D_{1}, D_{2},..., D_{n} \)表示函数的定义域的不相交区间,\( f_{1}(x), f_{2}(x),...,f_{n}(x) \)分别表示在不同区间内的函数表达式。
1.2 分段函数的定义域和值域分段函数的定义域由各个子函数的定义域合并而成,而值域则由各个子函数的值域的并集组成。
1.3 分段函数的解析性质对于分段函数,通常要考虑其在各个定义域内的解析表达式。
在定义分段函数时,要考虑到各个分段的连续性、一致性等性质,以确保分段函数在各个区间内的函数表达式具有良好的连续性和可导性。
1.4 分段函数的特殊形式分段函数的特殊形式包括绝对值函数、符号函数、取整函数、阶梯函数等。
这些特殊形式的分段函数在实际问题中具有广泛的应用,例如在信号处理、控制系统等领域中均有重要的作用。
二、分段函数的性质2.1 分段函数的奇偶性对于分段函数,其奇偶性通常由各个子函数的奇偶性来确定。
如果各个子函数均为偶函数,则分段函数也为偶函数;若各个子函数均为奇函数,则分段函数也为奇函数;若各个子函数均为非奇非偶函数,则分段函数既不是奇函数也不是偶函数。
2.2 分段函数的周期性对于分段函数,其周期性通常由各个子函数的周期性来确定。
如果各个子函数均具有相同的周期,则分段函数也具有这一周期;若各个子函数的周期不同,则分段函数通常不具有周期性。
2.3 分段函数的单调性对于分段函数,其单调性通常由各个子函数的单调性来确定。
如果各个子函数均为单调递增或单调递减函数,则分段函数也为单调递增或单调递减函数;若各个子函数既不是单调递增也不是单调递减函数,则分段函数通常不具有单调性。
分段函数定义:一般地,如果有实数a1,a2,a3……k1,k,2k3……b1,b2,b3……且a1≤a2≤a3……函数Y与自变量X之间存在k1x+b1 x≤a1y = k2x+b2 a1≤x≤a2 ①的函数解析式,则称该函数解析式为X的分K3x+b3 a2≤x≤a3 段函数。
…………应该指出:(一), 函数解析式①这个整体只是一个函数,并非是Y=K1X+b1 Y=K2X+b2……等几个不同函数的简单组合,而k1x+b1,k2x+b2……是函数Y的几种不同的表达式.。
所以上例中Y={这个整体只是一个函数,不能认为它是两个不同的函数,只能说110X和110×80%X是同一函数中的自变量X在两种不同取值范围内的不同表达式。
(二),由于k1,k2,k3……b1,b2,b3是实数,所以函数Y在X的某个范围内的特殊函数,如正比例函数和常数函数。
(三),由于问题的不同,当然分段函数也可能在自变量某范围内不是一次函数而是其他形式的函数,在这里我们不予讨论。
(四), 一次函数的分段函数是简单的分段函数。
分段函数应用题分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论。
在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型。
收费问题与我们的生活息息相关,如水费问题、电费问题、话费问题等,这些收费问题往往根据不同的用量,采用不同的收费方式.以收费为题材的数学问题多以分段函数的形式出现在中考试题中,下面请看几例.一、水费、电费、话费中的分段函数例1 某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图1所示:(1)月通话为100分钟时,应交话费元;(2)当x≥100时,求y与x之间的函数关系式;(3)月通话为280分钟时,应交话费多少元?例2 今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图3所示),根据图象解下列问题:(1)分别写出当0≤x≤100和x≥100时,y与x的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?分析:从函数图象上看图象分为两段,当0≤x≤100时,电费y是电量x的正比例函数,当x≥100时,y是x的一次函数,且函数图象经过点(100,65)和(130,89),设出相应的函数关系式,将点的坐标代入即可确定函数关系式,根据函数关系式可解决问题.图3中考中的分段函数分段函数,是近几年中考数学中经常遇到的题型。
分段函数
定义:一般地,如果有实数a1,a2,a3……k1,k,2k3……b1,b2,b3……且a1≤a2≤a3……函数Y与自变量X之间存在
k1x+b1 x≤a1
y = k2x+b2 a1≤x≤a2 ①的函数解析式,则称该函数解析式为X的分K3x+b3 a2≤x≤a3 段函数。
…………
应该指出:(一), 函数解析式①这个整体只是一个函数,并非是Y=K1X+b1 Y=K2X+b2……等几个不同函数的简单组合,而k1x+b1,k2x+b2……是函数Y的几种不同的表达式.。
所以上例中Y={这个整体只是一个函数,不能认为它是两个不同的函数,只能说110X和110×80%X是同一函数中的自变量X在两种不同取值范围内的不同表达式。
(二),由于k1,k2,k3……b1,b2,b3是实数,所以函数Y在X的某个范围内的特殊函数,如正比例
函数和常数函数。
(三),由于问题的不同,当然分段函数也可能在自变量某范围内不是一次函数而是其他形式的函数,在这里我们不予讨论。
(四), 一次函数的分段函数是简单的分段函数。
分段函数应用题
分段函数是指自变量在不同的取值范围内,其关系式(或图象)也不同的函数,分段函数的应用题多设计成两种情况以上,解答时需分段讨论。
在现实生活中存在着很多需分段计费的实际问题,因此,分段计算的应用题成了近几年中考应用题的一种重要题型。
收费问题与我们的生活息息相关,如水费问题、电费问题、话费问题等,这些收费问题往往根据不同的用量,采用不同的收费方式.以收费为题材的数学问题多以分段函数的形式出现在中考试题中,下面请看几例.
一、水费、电费、话费中的分段函数
例1 某移动公司采用分段计费的方法来计算话费,月通话时间x(分钟)与相应话费y(元)之间的函数图象如图1所示:
(1)月通话为100分钟时,应交话费元;
(2)当x≥100时,求y与x之间的函数关系式;
(3)月通话为280分钟时,应交话费多少元?
例2 今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法,若某户居民每月应交电费y(元)与用电量x(度)的函数图象是一条折线(如图3所示),根据图象解下列问题:
(1)分别写出当0≤x≤100和x≥100时,y与x的函数关系式;
(2)利用函数关系式,说明电力公司采取的收费标准;
(3)若该用户某月用电62度,则应缴费多少元?若该用户某月缴费105元时,则该用户该月用了多少度电?
分析:从函数图象上看图象分为两段,当0≤x≤100时,电费y是
电量x的正比例函数,当x≥100时,y是x的一次函数,且函数图象
经过点(100,65)和(130,89),设出相应的函数关系式,将点的坐标代
入即可确定函数关系式,根据函数关系式可解决问题.
图3
中考中的分段函数
分段函数,是近几年中考数学中经常遇到的题型。
它是考查分类思想,读取、搜集、处理图像信息等综合能力的综合题。
这些分段函数都是直线型。
通常是正比例函数的图像和一次函数的图像构成。
下面我们归纳分析如下,供学习时参考。
1、二段型分段函数
1.1正比例函数与一次函数构成的分段函数
解答这类分段函数问题的关键,就是分别确定好正比例函数的解析式和一次函数的解析式。
例1某家庭装修房屋,由甲、乙两个装修公司合作完成,选由甲装修公司单独装修3天,剩下的工作由甲、乙两个装修公司合作完成.工程进度满足如图1所示的函数关系,该家庭共支付工资8000元.
(1)完成此房屋装修共需多少天?
(2)若按完成工作量的多少支付工资,甲装修公司应得多少
元?
例2 、某公司专销产品A,第一批产品A上市40天内全部售完.该公司对第一批产品A上市后的市场销售情况进行了跟踪调查,调查结果如图所示,其中图(3)中的折线表示的是市场日销售量与上市时间的关系;图(4)中的折线表示的是每件产品A 的销售利润与上市时间的关系.
(1)试写出第一批产品A的市场日销售量y与上市时间t的关系式;
(2)第一批产品A上市后,哪一天这家公司市场日销售利润最大?最大利润是多少万元?
1.2一次函数与一次函数构成的分段函数
例4、为了鼓励小强做家务,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x小时,该月可得(即下月他可获得)的总费用为y元,则y(元)和x
(小时)之间的函数图像如图5所示.
(1)根据图像,请你写出小强每月的基本生活费;父母是如何奖
励小强家务劳动的?
(2)若小强5月份希望有250元费用,则小强4月份需做家务多
少时间?
2、多段型分段函数
例8、小明同学骑自行车去郊外春游,下图表示他离家的距离y(千米)与所用的时间x(小时)之间关系的函数图象.
(1)根据图象回答:小明到达离家最远的
地方需几小时?此时离家多远?
(2)求小明出发两个半小时离家多远?
(3)求小明出发多长时间距家12千米?
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注!)。