2020年高考物理备考艺体生百日突围系列专题03牛顿运动规律含解析
- 格式:doc
- 大小:500.50 KB
- 文档页数:21
高考物理新力学知识点之牛顿运动定律图文解析一、选择题1.如图所示,在小车中悬挂一小球,若偏角未知,而已知摆球的质量为,小球随小车水平向左运动的加速度为,取=10m/s2,则绳的张力为()A.B.C.D.2.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的v-t图象如图所示.取g=10m/s2,则物体与水平面间的动摩擦因数μ和水平推力F 的大小分别为()A.0.2,6NB.0.1,6NC.0.2,8ND.0.1,8N3.如图,物块a、b和c的质量相同,a和b、b和c之间用完全相同的轻弹簧S1和S2相连,通过系在a上的细线悬挂于固定点O;整个系统处于静止状态;现将细绳剪断,将物块a的加速度记为a1,S1和S2相对原长的伸长分别为∆x1和∆x2,重力加速度大小为g,在剪断瞬间()A.a1=g B.a1=3g C.∆x1=3∆x2D.∆x1=∆x24.下列对教材中的四幅图分析正确的是A.图甲:被推出的冰壶能继续前进,是因为一直受到手的推力作用B .图乙:电梯在加速上升时,电梯里的人处于失重状态C .图丙:汽车过凹形桥最低点时,速度越大,对桥面的压力越大D .图丁:汽车在水平路面转弯时,受到重力、支持力、摩擦力、向心力四个力的作用5.质量为2kg 的物体做匀变速直线运动,其位移随时间变化的规律为222(m)x t t =+。
该物体所受合力的大小为( )A .2NB .4NC .6ND .8N6.跳水运动员从10m 高的跳台上腾空跃起,先向上运动一段距离达到最高点后,再自由下落进入水池,不计空气阻力,关于运动员在空中的上升过程和下落过程,以下说法正确的有( )A .上升过程处于超重状态,下落过程处于失重状态B .上升过程处于失重状态,下落过程处于超重状态C .上升过程和下落过程均处于超重状态D .上升过程和下落过程均处于完全失重状态7.质量为M 的人站在地面上,用绳通过光滑定滑轮将质量为m 的重物从高处放下,如图所示,若重物以加速度a 下降(a g <),则人对地面的压力大小为( )A .()M m g ma +-B .()M g a ma --C .()M m g ma -+D .Mg ma -8.如图所示,一个箱子中放有一个物体,已知静止时物体对箱子的下底面压力大小等于物体的重力大小,且物体与箱子上底面刚好接触现将箱子以初速度v 0竖直向上抛出,已知运动时箱子所受空气阻力大小不变,且箱子运动过程中始终保持图示姿态,重力加速度为g 。
2020届高考物理专练牛顿运动定律及答案解析一、选择题1、在滑冰场上,甲、乙两个穿着溜冰鞋的小孩原来静止不动,在猛推一下后分别向相反方向运动。
假定两板与冰面间的动摩擦因数相同。
已知甲在冰上滑行的距离比乙远,这是由于()A.在推的过程中,甲推乙的力小于乙推甲的力B.在推的过程中,甲推乙的时间小于乙推甲的时间C.在刚分开时,甲的初速度大于乙的初速度D.在分开后,甲的加速度大小小于乙的加速度大小2、就一些实际生活中的现象,某同学试图从惯性角度加以解释,其中正确的是()A.采用了大功率的发动机后,某些一级方程式赛车的速度甚至能超过某些老式螺旋桨飞机,这表明可以通过科学进步使小质量的物体获得大惯性B.射出枪膛的子弹在运动相当长一段距离后连一件棉衣也穿不透,这表明它的惯性变小了C.货运列车运行到不同的车站时,经常要摘下或加挂一些车厢,这会改变它的惯性D.摩托车转弯时,车手一方面要控制适当的速度,另一方面要将身体稍微向里倾斜,通过调控人和车的惯性达到转弯的目的3、如图所示,一只盛水的容器固定在一个小车上,在容器中分别悬挂和拴住一只铁球和一只乒乓球.容器中的水和铁球、乒乓球都处于静止状态.当容器随小车突然向右运动时,两球的运动状况是(以小车为参考系)()A.铁球向左,乒乓球向右B .铁球向右,乒乓球向左C .铁球和乒乓球都向左D .铁球和乒乓球都向右4、(多选)如图,物块a 、b 和c 的质量相同,a 和b 、b 和c 之间用完全相同的轻弹簧S 1和S 2相连,通过系在a 上的细线悬挂于固定点O.整个系统处于静止状态.现将细线剪断,将物块a 的加速度的大小记为a 1,S 1和S 2相对于原长的伸长分别记为Δl 1和Δl 2,重力加速度大小为g.在剪断的瞬间( )A .a 1=3gB .a 1=0C .Δl 1=2Δl 2D .Δl 1=Δl 25、“儿童蹦极”中,拴在腰间左右两侧的是悬点等高、完全相同的两根橡皮绳.如图所示,质量为m 的小明静止悬挂时,两橡皮绳的夹角为60°,则( )A .每根橡皮绳的拉力为12mgB .若将悬点间距离变小,则每根橡皮绳所受拉力将变小C .若此时小明左侧橡皮绳在腰间断裂,则小明此时加速度a =gD .若拴在腰间左右两侧的是悬点等高、完全相同的两根轻绳,则小明左侧轻绳在腰间断裂时,小明的加速度a =g6、(多选)如图所示,在山体下的水平地面上有一静止长木板,某次山体滑坡,有石块从山坡上滑下后,恰好以速度v 1滑上长木板,石块与长木板、长木板与水平地面之间都存在摩擦.设最大静摩擦力大小等于滑动摩擦力的大小,且石块始终未滑出长木板.下面给出了石块在长木板上滑行的v -t 图象,其中可能正确的是()7、如图所示,质量均为m的A、B两物块置于光滑水平地面上,A、B接触面光滑,倾角为θ,现分别以水平恒力F作用于A物块上,保持A、B相对静止共同运动,则下列说法中正确的是()A.采用甲方式比采用乙方式的最大加速度大B.两种情况下获取的最大加速度相同C.两种情况下所加的最大推力相同D.采用乙方式可用的最大推力大于甲方式的最大推力8、如图所示,有两个穿着溜冰鞋的人站在冰面上,当其中一个人A从背后轻轻推另一个人B时,两个人都会向相反方向运动,这是因为A推B时()A.A与B之间有相互作用力B.A对B的作用在先,B对A的作用在后C.B对A的作用力小于A对B的作用力D.A对B的作用力和B对A的作用力是一对平衡力9、如图,在匀强电场中,悬线一端固定于地面,另一端拉住一个带电小球,使之处于静止状态.忽略空气阻力,当悬线断裂后,小球将做()A.曲线运动B.匀速直线运动C.匀加速直线运动D.变加速直线运动10、(多选)如图所示,绷紧的长为6 m的水平传送带,沿顺时针方向以恒定速率v1=2 m/s运行.一小物块从与传送带等高的光滑水平台面滑上传送带,其速度大小为v2=5 m/s.若小物块与传送带间的动摩擦因数μ=0.2,重力加速度g=10 m/s2,下列说法中正确的是()A.小物块在传送带上先向左做匀减速直线运动,然后向右做匀加速直线运动B.若传送带的速度为5 m/s,小物块将从传送带左端滑出C.若小物块的速度为4 m/s,小物块将以2 m/s的速度从传送带右端滑出D.若小物块的速度为1 m/s,小物块将以2 m/s的速度从传送带右端滑出9、解析:选C.本题考查力与运动的关系.在悬线断裂前,小球受重力、电场力二、非选择题利用阿特伍德机可以研究超重和失重现象,其研究步骤如下:如图所示,原来定滑轮左右两侧都悬挂质量为2m的物块,弹簧秤示数为2mg.若在右侧悬挂的物块上再增加质量为m的物块,左侧物块将获得向上的加速度,可观察到弹簧秤上的示数变大,左侧物块处于超重状态;若将右侧物块的质量减小到m,左侧物块将向下做加速运动,可观察到弹簧秤上的示数变小,左侧物块处于失重状态.请问:左侧物块处于超重状态时,弹簧秤的读数是多少?左侧物块处于失重状态时,弹簧秤的读数又是多少?(不计连接物块的细线和弹簧秤的质量)1、参考答案C解析在推的过程中,作用力与反作用力大小相等,相互作用时间相同,故A、B均错;分开后,两者滑动摩擦力分别为F f1=μm1g,F f2=μm2g,则各自的加速度分别为a1==μg,a2==μg,两者做匀减速直线运动的加速度大小相等,则根据v2=2ax,可知,因为x1>x2,则v1>v2,故C对、D错。
牛顿运动定律考点考纲要求专家解读牛顿运动定律及其应用Ⅱ1.从近几年的高考考点分布知道,本章主要考查考生能否准确理解牛顿运动定律的意义,能否熟练应用牛顿第二定律、牛顿第三定律和受力分析解决运动和力的问题;理解超重和失重现象,掌握牛顿第二定律的验证方法和原理。
超重与失重Ⅰ单位制Ⅰ纵观近几年高考试题,预测物理高考试题还会考:1、牛顿运动定律是中学物理的基本规律和核心知识,在整个物理学中占有非常重要的地位,,题型主要有选择题,高考试题往往综合牛顿运动定律和运动学规律进行考查,考题中注重与动量、能量、电场、磁场的渗透,并常常与生活、科技、工农业生产等实际问题相联系.考向01 牛顿运动定律1.讲高考(1)考纲要求主要考查考生能否准确理解牛顿运动定律的意义,能否熟练应用牛顿第一定律、牛顿第二定律、牛顿第三定律和受力分析解决运动和力的问题牛顿运动定律是中学物理的基本规律和核心知识,在整个物理学中占有非常重要的地位,,题型主要有选择题,高考试题往往综合牛顿运动定律和运动学规律进行考查,考题中注重与电场、磁场的渗透,并常常与生活、科技、工农业生产等实际问题相联系.案例1.如图,轻弹簧的下端固定在水平桌面上,上端放有物块P,系统处于静止状态,现用一竖直向上的力F作用在P上,使其向上做匀加速直线运动,以x表示P离开静止位置的位移,在弹簧恢复原长前,下列表示F和x之间关系的图像可能正确的是()A. B.C. D.【答案】 A【点睛】牛顿运动定律是高中物理主干知识,匀变速直线运动规律贯穿高中物理。
案例2.【·新课标Ⅱ卷】(12分)为提高冰球运动员的加速能力,教练员在冰面上与起跑线距离s0和s1(s1<s0)处分别设置一个挡板和一面小旗,如图所示。
训练时,让运动员和冰球都位于起跑线上,教练员将冰球以初速度v0击出,使冰球在冰面上沿垂直于起跑线的方向滑向挡板;冰球被击出的同时,运动员垂直于起跑线从静止出发滑向小旗。
专题03 牛顿运动定律【知识网络】【知识清单】一、理想实验法的魅力(1)伽利略的理想斜面实验如图甲所示,让小球沿一个斜面从静止滚下,小球将滚上另一个斜面,如果没有摩擦,小球将上升到原来的高度。
如果第二个斜面倾斜角度减小,如图乙,小球在这个斜面上达到原来的高度就要通过更长的路程;继续减小第二个斜面的倾斜角度,如图丙,使它最终成为水平面,小球就再也达不到原来的高度,而沿水平面以恒定的速度持续运动下去。
(2)伽利略的思想方法伽利略用“实验+科学推理”的方法推翻了亚里士多德的观点。
二、牛顿第一定律1.内容:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.2.对牛顿第一定律的理解①牛顿第一定律不是实验直接总结出来的,是牛顿以伽利略的理想实验为基础,加之高度的抽象思维概括总结出来的.②揭示了力和运动的关系:力不是维持物体运动的原因,而是改变物体运动状态的原因,即牛顿第一定律确定了力的含义.③牛顿第一定律不能看着牛顿第二定律的特殊情况,牛顿第一定律是定性描述物体运动规律的一种物理思想,而不是进行定量计算和求解的具体方法,是一条独立的基本规律.但牛顿第一定律为牛顿第二定律提供了建立的基础.明确了惯性的概念:物体保持匀速直线运动状态或静止状态的性质,揭示了物体所具有的一个重要属性——惯性.三、惯性1.定义:物体具有保持原来匀速直线运动状态或静止状态的性质.2.量度:质量是物体惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.3.普遍性:惯性是物体的固有属性,一切物体都有惯性.与物体的运动情况和受力情况无关.四、牛顿第二定律1.内容:物体加速度的大小跟作用力成正比,跟物体的质量成反比.加速度的方向与作用力方向相同.2.表达式:F=ma.3.适用范围(1)只适用于惯性参考系(相对地面静止或匀速直线运动的参考系).(2)只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.4.牛顿第二定律的“五”性五、力学单位制1.基本单位:所选定的基本物理量的单位.物理学中有七个物理量的单位被选定为基本单位,在力学中选长度、质量、和时间这三个物理量的单位为基本单位2.导出单位:根据物理公式中其他物理量和基本物理量的关系推导出的物理量的单位.3.单位制:基本单位和导出单位一起组成了单位制.4.国际单位制(SI)中的七个基本物理量和相应的基本单位.六、牛顿第三定律1.内容:两物体之间的作用力与反作用力总是大小相等,方向相反,而且作用在同一条直线上.2.特点:作用力与反作用力的关系可总结为“三同、三异、三无关”3.表达式:F=-F′【查漏补缺】一、对牛顿第一定律及惯性的理解1.牛顿第一定律不是实验直接总结出来的,是牛顿以伽利略的理想实验为基础,加之高度的抽象思维概括总结出来的.2.明确了惯性的概念牛顿第一定律揭示了一切物体所具有的一种固有属性——惯性,即物体保持原来的匀速直线运动状态或静止状态的性质。
专题03 牛顿运动定律第一部分 名师综述综合分析近几年的高考物理试题发现,试题在考查主干知识的同时,注重考查必修中的基本概念和基本规律,且更加突出考查学生运用"力和运动的观点"分析解决问题的能力。
牛顿运动定律及其应用是每年高考考查的重点和热点,应用牛顿运动定律解题的关键是对研究对象进行受力分析和运动分析,特别是牛顿运动定律与曲线运动,万有引力定律以及电磁学等相结合的题目,牛顿定律中一般考查牛顿第二定律较多,一般涉及一下几个方面:一是牛顿第二定律的瞬时性,根据力求加速度或者根据加速度求力,二是动力学的两类问题,三是连接体问题,四是牛顿第二定律在生活生产和科技中的应用。
第二部分 精选试题1. 【2017·广东省佛山市第一中学高三上学期第二次段考】2015年11月30日,蹦床世锦赛在丹麦落下帷幕,中国代表团获得8金3银2铜,领跑世锦赛的奖牌榜.一位运动员从高处落到蹦床上后又被弹起到原高度,利用仪器测得该运动员从高处开始下落到弹回的整个过程中,运动速度随时间变化的图象如图所示,图中Oa 段和cd 段为直线.由图可知,运动员发生超重的时间段为: ( )A .0~t 1B .t 1~t 2C .t 2~t 4D .t 4~t 5【答案】C2. 【2017·西藏自治区拉萨中学高三上学期期末】如图所示,物体沿斜面由静止滑下,在水平面上滑行一段距离后停止,物体与斜面和水平面间的动摩擦因数相同,斜面与水平面平滑连接.下图中v 、a 、f 和s 分别表示物体速度大小、加速度大小、摩擦力大小和路程.下图中正确的是: ( )【答案】C【解析】根据物体的受力情况,可以判断出物体先是在斜面上做匀加速直线运动,到达水平面上之后,做匀减速运动,所以物体运动的速度时间的图象应该是倾斜的直线,不能是曲线,所以A错误;由于物体的运动先是匀加速运动,后是匀减速运动,在每一个运动的过程中物体的加速度的大小是不变的,所以物体的加速度时间的图象应该是两段水平的直线,不能是倾斜的直线,所以B错误;在整个运动的过程中,物体受到的都是滑动摩擦力,所以摩擦力的大小是不变的,并且由于在斜面上时的压力比在水平面上时的压力小,所以滑动摩擦力也比在水平面上的小,所以C正确;物体做的是匀加速直线运动,物体的位移为x=12at2,所以物体的路程和时间的关系应该是抛物线,不会是正比例的倾斜的直线,所以D错误.故选C。
2020年高考一轮复习知识考点专题03 《牛顿运动定律》第一节牛顿第一、第三定律【基本概念、规律】一、牛顿第一定律1.内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.2.意义(1)揭示了物体的固有属性:一切物体都有惯性,因此牛顿第一定律又叫惯性定律.(2)揭示了力与运动的关系:力不是维持物体运动状态的原因,而是改变物体运动状态的原因,即产生加速度的原因.二、惯性1.定义:物体具有保持原来匀速直线运动状态或静止状态的性质.3.量度:质量是惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.3.普遍性:惯性是物体的本质属性,一切物体都有惯性.与物体的运动情况和受力情况无关.三、牛顿第三定律1.内容:两物体之间的作用力与反作用力总是大小相等、方向相反,而且在一条直线上.2.表达式:F=-F′.特别提示:(1)作用力和反作用力同时产生,同时消失,同种性质,作用在不同的物体上,各自产生的效果,不会相互抵消.(2)作用力和反作用力的关系与物体的运动状态无关.【重要考点归纳】考点一牛顿第一定律1.明确了惯性的概念.2.揭示了力的本质.3.揭示了不受力作用时物体的运动状态.4.(1)牛顿第一定律并非实验定律.它是以伽利略的“理想实验”为基础,经过科学抽象,归纳推理而总结出来的.(2)惯性是物体保持原有运动状态不变的一种固有属性,与物体是否受力、受力的大小无关,与物体是否运动、运动速度的大小也无关.考点二牛顿第三定律的理解与应用1.作用力与反作用力的“三同、三异、三无关”(1)“三同”:①大小相同;②性质相同;③变化情况相同.(2)“三异”:①方向不同;②受力物体不同;③产生效果不同.(3)“三无关”:①与物体的种类无关;②与物体的运动状态无关;③与物体是否和其他物体存在相互作用无关.2.相互作用力与平衡力的比较【思想方法与技巧】用牛顿第三定律转换研究对象作用力与反作用力,二者一定等大反向,分别作用在两个物体上.当待求的某个力不容易求时,可先求它的反作用力,再反过来求待求力.如求压力时,可先求支持力.在许多问题中,摩擦力的求解亦是如此.第二节牛顿第二定律两类动力学问题【基本概念、规律】一、牛顿第二定律1.内容:物体加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同.2.表达式:F=ma.3.适用范围(1)牛顿第二定律只适用于惯性参考系,即相对于地面静止或匀速直线运动的参考系.(2)牛顿第二定律只适用于宏观物体(相对于分子、原子等)、低速运动(远小于光速)的情况.二、两类动力学问题1.已知物体的受力情况,求物体的运动情况.2.已知物体的运动情况,求物体的受力情况.特别提示:利用牛顿第二定律解决动力学问题的关键是利用加速度的“桥梁”作用,将运动学规律和牛顿第二定律相结合,寻找加速度和未知量的关系,是解决这类问题的思考方向.三、力学单位制1.单位制:由基本单位和导出单位一起组成了单位制.2.基本单位:基本物理量的单位,基本物理量共七个,其中力学有三个,它们是长度、质量、时间,它们的单位分别是米、千克、秒.3.导出单位:由基本物理量根据物理关系推导出来的其他物理量的单位.【重要考点归纳】考点一用牛顿第二定律求解瞬时加速度1.求解思路求解物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速度.2.牛顿第二定律瞬时性的“两种”模型(1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.3.在求解瞬时加速度时应注意的问题(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变.4.解决瞬时加速度问题的关键是弄清哪些力发生了突变,哪些力瞬间不变,正确画出变化前后的受力图.考点二动力学两类基本问题1.求解两类问题的思路,可用下面的框图来表示:分析解决这两类问题的关键:应抓住受力情况和运动情况之间联系的桥梁——加速度.2.(1)解决两类动力学基本问题应把握的关键①一个桥梁——加速度是联系运动和力的桥梁.②两类分析——受力分析和运动过程分析.(2)解决动力学基本问题时对力的两种处理方法①合成法:物体受2个或3个力时,一般采用“合成法”.②正交分解法:物体受3个或3个以上的力时,则采用“正交分解法”.(3)解答动力学两类问题的基本程序①明确题目中给出的物理现象和物理过程的特点.②根据问题的要求和计算方法,确定研究对象,进行受力分析和运动过程分析,并画出示意图.③应用牛顿运动定律和运动学公式求解.考点三动力学图象问题1.图象类型(1)已知物体在一过程中所受的某个力随时间变化的图象,要求分析物体的运动情况.(2)已知物体在一运动过程中位移、速度、加速度随时间变化的图象,要求分析物体的受力情况.(3)已知物体在物理图景中的运动初始条件,分析物体位移、速度、加速度随时间的变化情况.2.问题的实质:是力与运动的关系问题,求解这类问题的关键是理解图象的物理意义,理解图象的轴、点、线、截、斜、面六大功能.3.数形结合解决动力学问题(1)物理公式与物理图象的结合是一种重要题型.对于已知图象求解相关物理量的问题,往往是结合物理过程从分析图象的横、纵坐标轴所对应的物理量的函数入手,分析图线的斜率、截距所代表的物理意义得出所求结果.(2)解决这类问题必须把物体的实际运动过程与图象结合,相互对应起来.【思想方法与技巧】传送带模型中的动力学问题1.模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图甲、乙、丙所示.2.建模指导传送带模型问题包括水平传送带问题和倾斜传送带问题.(1)水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.根据物体与传送带的相对速度方向判断摩擦力方向.两者速度相等是摩擦力突变的临界条件.(2)倾斜传送带问题:求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用.如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变.3.解答传送带问题应注意的事项(1)水平传送带上物体的运动情况取决于物体的受力情况,即物体所受摩擦力的情况.(2)倾斜传送带问题,一定要比较斜面倾角与动摩擦因数的大小关系.(3)传送带上物体的运动情况可按下列思路判定:相对运动→摩擦力方向→加速度方向→速度变化情况→共速,并且明确摩擦力发生突变的时刻是v物=v传.第三节牛顿运动定律的综合应用【基本概念、规律】一、超重和失重1.超重(1)定义:物体对水平支持物的压力(或对竖直悬挂物的拉力)大于物体所受重力的情况称为超重现象.(2)产生条件:物体具有向上的加速度.2.失重(1)定义:物体对水平支持物的压力(或对竖直悬挂物的拉力)小于物体所受重力的情况称为失重现象.(2)产生条件:物体具有向下的加速度.3.完全失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)为零的情况称为完全失重现象.(2)产生条件:物体的加速度a=g,方向竖直向下.二、解答连接体问题的常用方法1.整体法当系统中各物体的加速度相同时,我们可以把系统内的所有物体看成一个整体,这个整体的质量等于各物体的质量之和,当整体受到的外力已知时,可用牛顿第二定律求出整体的加速度.2.隔离法当求解系统内物体间相互作用力时,常把物体从系统中“隔离”出来进行分析,依据牛顿第二定律列方程.3.外力和内力(1)外力:系统外的物体对研究对象的作用力;(2)内力:系统内物体之间的作用力.【重要考点归纳】考点一超重和失重现象1.超重并不是重力增加了,失重并不是重力减小了,完全失重也不是重力完全消失了.在发生这些现象时,物体的重力依然存在,且不发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化(即“视重”发生变化).2.只要物体有向上或向下的加速度,物体就处于超重或失重状态,与物体向上运动还是向下运动无关.3.尽管物体的加速度不是在竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.4.物体超重或失重的多少是由物体的质量和竖直加速度共同决定的,其大小等于ma.5.超重和失重现象的判断方法(1)从受力的大小判断,当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时处于失重状态,等于零时处于完全失重状态.(2)从加速度的方向判断,当物体具有向上的加速度时处于超重状态,具有向下的加速度时处于失重状态,向下的加速度为重力加速度时处于完全失重状态.考点二整体法和隔离法解决连接体问题1.整体法的选取原则若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合外力,应用牛顿第二定律求出加速度(或其他未知量).2.隔离法的选取原则若连接体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.3.整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.4.正确地选取研究对象是解题的首要环节,弄清各物体之间哪些属于连接体,哪些物体应该单独分析,并分别确定出它们的加速度,然后根据牛顿运动定律列方程求解.考点三分解加速度求解受力问题在应用牛顿第二定律解题时,通常不分解加速度而分解力,但有一些题目要分解加速度.最常见的情况是与斜面模型结合,物体所受的作用力是相互垂直的,而加速度的方向与任一方向的力不同向.此时,首先分析物体受力,然后建立直角坐标系,将加速度a分解为a x和a y,根据牛顿第二定律得F x=ma x,F y=ma y,使求解更加便捷、简单.【思想方法与技巧】“滑块——滑板”模型的分析1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.2.模型分析解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.3.(1)滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.(2)滑块是否会从滑板上掉下的临界条件是:滑块到达滑板一端时两者共速.(3)滑块不能从滑板上滑下的情况下,当两者共速时,两者受力、加速度发生突变.动力学中的临界条件及应用一、临界状态物体在运动状态变化的过程中,相关的一些物理量也随之发生变化.当物体的运动变化到某个特定状态时,相关的物理量将发生突变,该物理量的值叫临界值,这个特定状态称之为临界状态.二、临界状态的判断1.若题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程存在着临界点.2.若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应临界状态.3.临界状态的问题经常和最大值、最小值联系在一起,因此,若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点.4.若题目中有“最终”、“稳定”等文字,即是求收尾速度或加速度. 三、处理临界问题的思路 1.会分析出临界状态的存在.2.要抓住物体处于临界状态时的受力和运动特征,找出临界条件,这是解决问题的关键. 3.能判断物体在不满足临界条件时的受力和运动情况. 4.利用牛顿第二定律结合其他规律列方程求解. 四、力学中常见的几种临界条件 1.接触物体脱离的临界条件: 接触面间的弹力为零,即F N =0. 2.绳子松弛的临界条件: 绳中张力为0,即F T =0. 3.相对滑动的临界条件: 静摩擦力达到最大值,即f 静=f m . 4.滑块在滑板上不滑下的临界条件: 滑块滑到滑板一端时,两者速度相同.实验四 验证牛顿运动定律一、实验目的1.学会用控制变量法研究物理规律. 2.探究加速度与力、质量的关系. 3.掌握灵活运用图象处理问题的方法. 二、实验原理(见实验原理图)1.保持质量不变,探究加速度跟合外力的关系. 2.保持合外力不变,探究加速度与质量的关系. 3.作出a -F 图象和a -1m图象,确定其关系.三、实验器材小车、砝码、小盘、细绳、附有定滑轮的长木板、垫木、打点计时器、低压交流电源、导线两根、纸带、天平、米尺.四、实验步骤 1.测量:用天平测量小盘和砝码的质量m ′和小车的质量m . 2.安装:按照如实验原理图所示装置把实验器材安装好,只是不把悬挂小盘的细绳系在小车上(即不给小车牵引力)3.平衡摩擦力:在长木板的不带定滑轮的一端下面垫上一块薄木块,使小车能匀速下滑. 4.操作:(1)小盘通过细绳绕过定滑轮系于小车上,先接通电源后放开小车,取下纸带编号码. (2)保持小车的质量m 不变,改变砝码和小盘的质量m ′,重复步骤(1). (3)在每条纸带上选取一段比较理想的部分,测加速度a . (4)描点作图,作a -F 的图象.(5)保持砝码和小盘的质量m ′不变,改变小车质量m ,重复步骤(1)和(3),作a -1m图象.一、数据处理1.保持小车质量不变时,计算各次小盘和砝码的重力(作为小车的合力)及对应纸带的加速度,填入表(一)中.表(一)2.入表(二)中.表(二)3.4.以a为纵坐标,F为横坐标,根据各组数据描点,如果这些点在一条过原点的直线上,说明a与F成正比.5.以a为纵坐标,1m为横坐标,描点、连线,如果该线过原点,就能判定a与m成反比.二、注意事项1.平衡摩擦力:适当垫高木板的右端,使小车的重力沿斜面方向的分力正好平衡小车和纸带受到的阻力.在平衡摩擦力时,不要把悬挂小盘的细绳系在小车上,让小车拉着打点的纸带匀速运动.2.不重复平衡摩擦力.3.实验条件:m≫m′.4.一先一后一按:改变拉力和小车质量后,每次开始时小车应尽量靠近打点计时器,并应先接通电源,后释放小车,且应在小车到达定滑轮前按住小车.5.作图象时,要使尽可能多的点在所作直线上.不在直线上的点应尽可能对称分布在所作直线两侧.6.作图时两轴标度比例要选择适当.各量需采用国际单位.三、误差分析1.系统误差:本实验用小盘和砝码的总重力m′g代替小车的拉力,而实际上小车所受的拉力要小于小盘和砝码的总重力.2.偶然误差:摩擦力平衡不准确、质量测量不准确、计数点间距测量不准确、纸带和细绳不严格与木板平行都会引起误差.。
核心考点考纲要求牛顿运动定律及其应用超重和失重ⅡⅠ考点1 动力学中的图象问题物理公式与物理图象的结合是一种重要题型,也是高考的重点及热点。
1.常见的图象有:v –t 图象,a –t 图象,F –t 图象,F –x 图象,F –a 图象等。
2.图象间的联系:加速度是联系v –t 图象与F –t 图象的桥梁。
3.图象的应用(1)已知物体在一过程中所受的某个力随时间变化的图线,要求分析物体的运动情况。
(2)已知物体在一运动过程中速度、加速度随时间变化的图线,要求分析物体的受力情况。
(3)通过图象对物体的受力与运动情况进行分析。
4.解题策略(1)弄清图象斜率、截距、交点、拐点的物理意义。
(2)应用物理规律列出与图象对应的函数方程式,进而明确“图象与公式”、“图象与物体”间的关系,以便对有关物理问题作出准确判断。
5.分析图象问题时常见的误区(1)没有看清纵、横坐标所表示的物理量及单位。
(2)不注意坐标原点是否从零开始。
(3)不清楚图线的点、斜率、面积等的物理意义。
(4)忽视对物体的受力情况和运动情况的分析。
(2018·四川绵阳中学)水平地面上质量为m =6 kg 的物体,在大小为12 N 的水平拉力F 的作用下做匀速直线运动,从x =2.5 m 位置处拉力逐渐减小,力F 随位移x 变化规律如图所示,当x =7 m 时拉力减为零,物体也恰好停下,取210m/s g ,下列结论正确的是A.物体与水平面间的动摩擦因数为0.5B.合外力对物体所做的功为57 JC.物体在减速阶段所受合外力的冲量为12 N•SD.物体匀速运动时的速度为3 m/s【参考答案】D【试题解析】匀速时应有:F=f=μmg,解得动摩擦因数μ=0.2,故A错误;根据W=Fs可知,F–s图象与s轴所夹图形的面积即为F做的功,可求出力F对物体所做的功为,摩擦力做功为,所以合外力做的功为:,故B错误;对全v ,故D正确;根据动量定理可得物体在减速阶过程由动能定理应有:,解得:03m/s段所受合外力的冲量为,故C错误。
热点3 牛顿运动定律1.(2019·吉林长春市第二次监测)如图1所示,水平面上的小车内固定一个倾角为30°的光滑斜面,平行于斜面的细绳一端固定在车上,另一端系着一个质量为m 的小球,小球和小车均处于静止状态.如果小车在水平面上向左加速且加速度大小不超过a 1时,小球仍能够和小车保持相对静止;如果小车在水平面上向右加速且加速度大小不超过a 2时,小球仍能够和小车保持相对静止.则a 1和a 2的大小之比为( )图1A.∶1 B.∶333C .3∶1D .1∶3答案 D 解析 由题意可知:a 1=g tan30°,a 2=,得a 1∶a 2=1∶3,故选项D 正确.gtan30°2.(2019·江苏扬州中学下学期开学考)如图2所示,小球A 质量为m ,木块B 质量为2m ,两物体通过竖直轻弹簧连接放置在水平面上静止.现对A 施加一个竖直向上的恒力F ,使小球A 在竖直方向上运动,经弹簧原长时小球A 的速度恰好最大,已知重力加速度为g ,则在木块B 对地面压力为零时,小球A 的加速度大小为( )图2A .3gB .2.5gC .2gD .1.5g答案 C解析 经弹簧原长时小球A 速度恰好最大,此时小球加速度为零,则恒力F =mg ;木块B 对地面压力为零时,由平衡条件知弹簧的弹力为2mg ,又由牛顿第二定律得:F -mg -2mg =ma ,解得小球A 的加速度a =-2g ,方向竖直向下,故C 正确.3.(2019·河南示范性高中上学期期终)如图3所示,A 、B 两相同的木箱(质量不计)用水平细绳连接放在水平地面上,当两木箱内均装有质量为m 的沙子时,用水平力F 拉A 木箱,使两木箱一起做匀加速直线运动,细绳恰好不被拉断.在不改变拉力的情况下,为使两木箱一次能运送更多的沙子,下列方法可行的是(加沙子后两木箱均能被拉动)( )图3A .只在A 木箱内加沙子B .只在B 木箱内加沙子C .A 木箱内加入质量为m 的沙子,B 木箱内加入质量为2m 的沙子D .A 木箱内加入质量为2m 的沙子,B 木箱内加入质量为3m 的沙子答案 A解析 对整体由牛顿第二定律:F -μ(m A +m B )g =(m A +m B )a ;对木箱B :F T -μm B g =m B a ;解得F T =F ,可知当A 木箱内加入沙子的质量大于B 木箱内加入沙子的质量时,细绳的拉m Bm A +m B 力减小,故选项A 正确,B 、C 、D 错误.4.(多选)如图4所示,质量为3kg 的物体A 静止在竖直的轻弹簧上面,质量为2kg 的物体B 用细线悬挂,A 、B 间相互接触但无压力.取g =10m/s 2.某时刻将细线剪断,则细线剪断瞬间( )图4A .B 对A 的压力大小为12NB .弹簧弹力大小为20NC .B 的加速度大小为4m/s 2D .A 的加速度为零答案 AC解析 剪断细线前,A 、B 间无压力,则弹簧的弹力F =m A g =30N ,剪断细线的瞬间,弹簧弹力不变,对A 、B 整体分析,整体加速度:a ==m/s 2=4 m/s 2(m A +m B )g -F m A +m B (3+2)×10-303+2隔离对B 分析有:m B g -F N =m B a ,解得:F N =(20-2×4) N =12N ,由牛顿第三定律知B 对A 的压力大小为12N ,故A 、C 正确,B 、D 错误.5.(多选)(2019·江西南昌市二模)如图5所示,细绳AB 和BC 连接着一质量为m 的物体P ,其中绳子的A 端固定,C 端通过小光滑定滑轮连接着一质量也为m 的物体Q ,开始时,用手抓住物体Q ,使物体P 、Q 均静止,此时AB 和BC 两绳中拉力大小分别为F T1、F T2,把手放开瞬间,AB 和BC 两绳中拉力大小分别为F T1′、F T2′.已知P 、Q 均可看成质点,A 、B 、C 处于同一竖直平面内,绳子间连接的夹角如图.则( )图5A.F T1∶F T1′=1∶1B.F T1∶F T2=1∶23C.F T2∶F T2′=2∶3D.F T1′∶F T2′=∶1答案 AC解析 用手抓住物体Q时,以物体P为研究对象,物体P受力平衡,有:F T1=mg cos30°①F T2=mg sin30°②把手放开瞬间,设Q加速度为a,则P在瞬间沿BC方向加速度也为a,根据牛顿第二定律,对Q:mg-F T2′=ma③对P,在BC方向:F T2′-mg cos60°=ma④在AB方向:F T1′=mg sin60°⑤3联立①②③④⑤得:F T1∶F T1′=1∶1,F T1∶F T2=∶1F T2∶F T2′=2∶3,F T1′∶F T2′=2∶.36.如图6所示为质量m=75kg的滑雪运动员在倾角θ=37°的直滑道上由静止开始向下滑行的v-t图象,图中的OA直线是t=0时刻速度图线的切线,速度图线末段BC平行于时间轴,运动员与滑道间的动摩擦因数为μ,所受空气阻力与速度成正比,比例系数为k.设最大静摩擦力等于滑动摩擦力,取重力加速度g=10m/s2,sin37°=0.6,cos37°=0.8,则( )图6A .滑雪运动员开始时做加速度增大的加速直线运动,最后做匀速直线运动B .t =0时刻运动员的加速度大小为2m/s 2C .动摩擦因数μ为0.25D .比例系数k 为15kg/s答案 C解析 由v -t 图象可知,滑雪运动员开始时做加速度减小的加速直线运动,最后做匀速直线运动,故A 错误;在t =0时刻,图线切线的斜率即为该时刻的加速度,故有a 0=m/s 2=4 12-03-0m/s 2,故B 错误;在t =0时刻开始加速时,v 0=0,由牛顿第二定律可得mg sin θ-kv 0-μmg cos θ=ma 0,最后匀速时有:v m =10 m/s ,a =0,由平衡条件可得mg sin θ-kv m -μmg cos θ=0,联立解得:μ=0.25,k =30 kg/s ,故C 正确,D 错误.7.(多选)(2019·江西上饶市重点中学六校第一次联考)如图7所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间的动摩擦因数为,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度μ4为g ,现对物块施加一水平向右的拉力F ,则木板加速度a 大小可能是( )图7A .a =0B .a =2μg 3C .a =D .a =-μg 2F 2m μg 4答案 ACD解析 若F 较小时,木板和物块均静止,则木板的加速度为零,选项A 正确;若物块和木板一起运动且不发生相对滑动,对木板和物块的整体,根据牛顿第二定律可得:F -μ·2mg =142ma ,解得:a =-μg ,选项D 正确;若物块和木板之间发生相对滑动,对木板,水平方F 2m 14向受两个摩擦力的作用,根据牛顿第二定律,有:μmg -μ·2mg =ma ,解得:a =μg ,故1412选项B 错误,C 正确.8.(多选)(2019·天一大联考上学期期末)如图8甲所示,一滑块置于长木板左端,木板放置在水平地面上.已知滑块和木板的质量均为2kg ,现在滑块上施加一个F =0.5t (N)的变力作用,从t =0时刻开始计时,滑块所受摩擦力随时间变化的关系如图乙所示,设最大静摩擦力与滑动摩擦力相等,重力加速度g 取10m/s 2,则下列说法正确的是( )图8A .滑块与木板间的动摩擦因数为0.4B .木板与水平地面间的动摩擦因数为0.2C .图乙中t 2=24sD .木板的最大加速度为2m/s 2答案 ACD解析 由题图知,滑块与木板之间的滑动摩擦力为8N ,则滑块与木板间的动摩擦因数为μ==F fm mg =0.4,选项A 正确;由题图可知t 1时刻木板相对地面开始滑动,此时滑块与木板相对静820止,则木板与水平地面间的动摩擦因数为μ′===0.1,选项B 错误;t 2时刻,滑块F f ′2mg 440与木板将要产生相对滑动,滑块与木板间的摩擦力达到最大静摩擦力F fm=8N,此时两物体的加速度相等,且木板的加速度达到最大,则对木板:F fm-μ′·2mg=ma m,解得a m=2m/s2,对滑块:F-F fm=ma m,解得F=12N,则由F=0.5t(N)可知,t2=24s,选项C、D正确.。
2020年高考一轮复习知识考点归纳专题03牛顿运动定律目录第一节牛顿第一、第三定律 (1)【基本概念、规律】 (1)【重要考点归纳】 (2)考点一牛顿第一定律............................................................................................................................2考点二牛顿第三定律的理解与应用........................................................................................................2【思想方法与技巧】.............................................................................................................................................3用牛顿第三定律转换研究对象.. (3)第二节牛顿第二定律两类动力学问题 (3)【基本概念、规律】.............................................................................................................................................3【重要考点归纳】.................................................................................................................................................4考点一用牛顿第二定律求解瞬时加速度................................................................................................4考点二动力学两类基本问题....................................................................................................................4考点三动力学图象问题..........................................................................................................................5【思想方法与技巧】.............................................................................................................................................5传送带模型中的动力学问题........................................................................................................................5第三节牛顿运动定律的综合应用............................................................................................................................6【基本概念、规律】.............................................................................................................................................6【重要考点归纳】.................................................................................................................................................6考点一超重和失重现象........................................................................................................................6考点二整体法和隔离法解决连接体问题................................................................................................7考点三分解加速度求解受力问题............................................................................................................7【思想方法与技巧】.............................................................................................................................................8“滑块——滑板”模型的分析.........................................................................................................................8动力学中的临界条件及应用........................................................................................................................8实验四验证牛顿运动定律........................................................................................................................................9第一节牛顿第一、第三定律【基本概念、规律】一、牛顿第一定律1.内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.2.意义微信公众号:免(1)揭示了物体的固有属性:一切物体都有惯性,因此牛顿第一定律又叫惯性定律.(2)揭示了力与运动的关系:力不是维持物体运动状态的原因,而是改变物体运动状态的原因,即产生加速度的原因.二、惯性1.定义:物体具有保持原来匀速直线运动状态或静止状态的性质.3.量度:质量是惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.3.普遍性:惯性是物体的本质属性,一切物体都有惯性.与物体的运动情况和受力情况无关.三、牛顿第三定律1.内容:两物体之间的作用力与反作用力总是大小相等、方向相反,而且在一条直线上.2.表达式:F =-F′.特别提示:(1)作用力和反作用力同时产生,同时消失,同种性质,作用在不同的物体上,各自产生的效果,不会相互抵消.(2)作用力和反作用力的关系与物体的运动状态无关.【重要考点归纳】考点一牛顿第一定律1.明确了惯性的概念.2.揭示了力的本质.3.揭示了不受力作用时物体的运动状态.4.(1)牛顿第一定律并非实验定律.它是以伽利略的“理想实验”为基础,经过科学抽象,归纳推理而总结出来的.(2)惯性是物体保持原有运动状态不变的一种固有属性,与物体是否受力、受力的大小无关,与物体是否运动、运动速度的大小也无关.考点二牛顿第三定律的理解与应用1.作用力与反作用力的“三同、三异、三无关”(1)“三同”:①大小相同;②性质相同;③变化情况相同.(2)“三异”:①方向不同;②受力物体不同;③产生效果不同.(3)“三无关”:①与物体的种类无关;②与物体的运动状态无关;③与物体是否和其他物体存在相互作用无关.2.相互作用力与平衡力的比较作用力和反作用力一对平衡力不同受力物体作用在两个相互作用的作用在同一物体上微信公众号:免点物体上依赖关系同时产生、同时消失不一定同时产生、同时消失叠加性两力作用效果不可抵消,不可叠加,不可求合力两力作用效果可相互抵消,可叠加,可求合力,合力为零力的性质一定是同性质的力性质不一定相同相同点大小、方向大小相等、方向相反、作用在同一条直线上【思想方法与技巧】用牛顿第三定律转换研究对象作用力与反作用力,二者一定等大反向,分别作用在两个物体上.当待求的某个力不容易求时,可先求它的反作用力,再反过来求待求力.如求压力时,可先求支持力.在许多问题中,摩擦力的求解亦是如此.第二节牛顿第二定律两类动力学问题【基本概念、规律】一、牛顿第二定律1.内容:物体加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同.2.表达式:F =m a .3.适用范围(1)牛顿第二定律只适用于惯性参考系,即相对于地面静止或匀速直线运动的参考系.(2)牛顿第二定律只适用于宏观物体(相对于分子、原子等)、低速运动(远小于光速)的情况.二、两类动力学问题1.已知物体的受力情况,求物体的运动情况.2.已知物体的运动情况,求物体的受力情况.特别提示:利用牛顿第二定律解决动力学问题的关键是利用加速度的“桥梁”作用,将运动学规律和牛顿第二定律相结合,寻找加速度和未知量的关系,是解决这类问题的思考方向.三、力学单位制1.单位制:由基本单位和导出单位一起组成了单位制.2.基本单位:基本物理量的单位,基本物理量共七个,其中力学有三个,它们是长度、质量、时微信公众号:免间,它们的单位分别是米、千克、秒.3.导出单位:由基本物理量根据物理关系推导出来的其他物理量的单位.【重要考点归纳】考点一用牛顿第二定律求解瞬时加速度1.求解思路求解物体在某一时刻的瞬时加速度,关键是明确该时刻物体的受力情况或运动状态,再由牛顿第二定律求出瞬时加速度.2.牛顿第二定律瞬时性的“两种”模型(1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.3.在求解瞬时加速度时应注意的问题(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个积累的过程,不会发生突变.4.解决瞬时加速度问题的关键是弄清哪些力发生了突变,哪些力瞬间不变,正确画出变化前后的受力图.考点二动力学两类基本问题1.求解两类问题的思路,可用下面的框图来表示:分析解决这两类问题的关键:应抓住受力情况和运动情况之间联系的桥梁——加速度.2.(1)解决两类动力学基本问题应把握的关键①一个桥梁——加速度是联系运动和力的桥梁.②两类分析——受力分析和运动过程分析.(2)解决动力学基本问题时对力的两种处理方法①合成法:物体受2个或3个力时,一般采用“合成法”.②正交分解法:微信公众号:免物体受3个或3个以上的力时,则采用“正交分解法”.(3)解答动力学两类问题的基本程序①明确题目中给出的物理现象和物理过程的特点.②根据问题的要求和计算方法,确定研究对象,进行受力分析和运动过程分析,并画出示意图.③应用牛顿运动定律和运动学公式求解.考点三动力学图象问题1.图象类型(1)已知物体在一过程中所受的某个力随时间变化的图象,要求分析物体的运动情况.(2)已知物体在一运动过程中位移、速度、加速度随时间变化的图象,要求分析物体的受力情况.(3)已知物体在物理图景中的运动初始条件,分析物体位移、速度、加速度随时间的变化情况.2.问题的实质:是力与运动的关系问题,求解这类问题的关键是理解图象的物理意义,理解图象的轴、点、线、截、斜、面六大功能.3.数形结合解决动力学问题(1)物理公式与物理图象的结合是一种重要题型.对于已知图象求解相关物理量的问题,往往是结合物理过程从分析图象的横、纵坐标轴所对应的物理量的函数入手,分析图线的斜率、截距所代表的物理意义得出所求结果.(2)解决这类问题必须把物体的实际运动过程与图象结合,相互对应起来.【思想方法与技巧】传送带模型中的动力学问题1.模型特征一个物体以速度v 0(v 0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图甲、乙、丙所示.2.建模指导传送带模型问题包括水平传送带问题和倾斜传送带问题.(1)水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.根据物体与传送带的相对速度方向判断摩擦力方向.两者速度相等是摩擦力突变的临界条件.(2)倾斜传送带问题:求解的关键在于认真分析物体与传送带的相对运动情况,从而确定其是否受到滑动摩擦力作用.如果受到滑动摩擦力作用应进一步确定其大小和方向,然后根据物体的受力情况确定物体的运动情况.当物体速度与传送带速度相等时,物体所受的摩擦力有可能发生突变.微信公众号:免3.解答传送带问题应注意的事项(1)水平传送带上物体的运动情况取决于物体的受力情况,即物体所受摩擦力的情况.(2)倾斜传送带问题,一定要比较斜面倾角与动摩擦因数的大小关系.(3)传送带上物体的运动情况可按下列思路判定:相对运动→摩擦力方向→加速度方向→速度变化情况→共速,并且明确摩擦力发生突变的时刻是v 物=v 传第三节牛顿运动定律的综合应用【基本概念、规律】一、超重和失重1.超重(1)定义:物体对水平支持物的压力(或对竖直悬挂物的拉力)大于物体所受重力的情况称为超重现象.(2)产生条件:物体具有向上的加速度.2.失重(1)定义:物体对水平支持物的压力(或对竖直悬挂物的拉力)小于物体所受重力的情况称为失重现象.(2)产生条件:物体具有向下的加速度.3.完全失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)为零的情况称为完全失重现象.(2)产生条件:物体的加速度a =g ,方向竖直向下.二、解答连接体问题的常用方法1.整体法当系统中各物体的加速度相同时,我们可以把系统内的所有物体看成一个整体,这个整体的质量等于各物体的质量之和,当整体受到的外力已知时,可用牛顿第二定律求出整体的加速度.2.隔离法当求解系统内物体间相互作用力时,常把物体从系统中“隔离”出来进行分析,依据牛顿第二定律列方程.3.外力和内力(1)外力:系统外的物体对研究对象的作用力;(2)内力:系统内物体之间的作用力.【重要考点归纳】考点一超重和失重现象微信公众号:免1.超重并不是重力增加了,失重并不是重力减小了,完全失重也不是重力完全消失了.在发生这些现象时,物体的重力依然存在,且不发生变化,只是物体对支持物的压力(或对悬挂物的拉力)发生了变化(即“视重”发生变化).2.只要物体有向上或向下的加速度,物体就处于超重或失重状态,与物体向上运动还是向下运动无关.3.尽管物体的加速度不是在竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.4.物体超重或失重的多少是由物体的质量和竖直加速度共同决定的,其大小等于m a .5.超重和失重现象的判断方法(1)从受力的大小判断,当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时处于失重状态,等于零时处于完全失重状态.(2)从加速度的方向判断,当物体具有向上的加速度时处于超重状态,具有向下的加速度时处于失重状态,向下的加速度为重力加速度时处于完全失重状态.考点二整体法和隔离法解决连接体问题1.整体法的选取原则若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合外力,应用牛顿第二定律求出加速度(或其他未知量).2.隔离法的选取原则若连接体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解.3.整体法、隔离法的交替运用若连接体内各物体具有相同的加速度,且要求物体之间的作用力时,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.4.正确地选取研究对象是解题的首要环节,弄清各物体之间哪些属于连接体,哪些物体应该单独分析,并分别确定出它们的加速度,然后根据牛顿运动定律列方程求解.考点三分解加速度求解受力问题在应用牛顿第二定律解题时,通常不分解加速度而分解力,但有一些题目要分解加速度.最常见的情况是与斜面模型结合,物体所受的作用力是相互垂直的,而加速度的方向与任一方向的力不同向.此时,首先分析物体受力,然后建立直角坐标系,将加速度a 分解为a x 和a y ,根据牛顿第二定律得F x =m a x ,F y =m a y ,使求解更加便捷、简单.微信公众号:免【思想方法与技巧】“滑块——滑板”模型的分析1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.2.模型分析解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.3.(1)滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.(2)滑块是否会从滑板上掉下的临界条件是:滑块到达滑板一端时两者共速.(3)滑块不能从滑板上滑下的情况下,当两者共速时,两者受力、加速度发生突变.动力学中的临界条件及应用一、临界状态物体在运动状态变化的过程中,相关的一些物理量也随之发生变化.当物体的运动变化到某个特定状态时,相关的物理量将发生突变,该物理量的值叫临界值,这个特定状态称之为临界状态.二、临界状态的判断1.若题目中有“刚好”、“恰好”、“正好”等字眼,明显表明题述的过程存在着临界点.2.若题目中有“取值范围”、“多长时间”、“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应临界状态.3.临界状态的问题经常和最大值、最小值联系在一起,因此,若题目中有“最大”、“最小”、“至多”、“至少”等字眼,表明题述的过程存在着极值,这个极值点往往是临界点.4.若题目中有“最终”、“稳定”等文字,即是求收尾速度或加速度.三、处理临界问题的思路1.会分析出临界状态的存在.2.要抓住物体处于临界状态时的受力和运动特征,找出临界条件,这是解决问题的关键.3.能判断物体在不满足临界条件时的受力和运动情况.4.利用牛顿第二定律结合其他规律列方程求解.四、力学中常见的几种临界条件1.接触物体脱离的临界条件:接触面间的弹力为零,即F N =0.微信公众号:免2.绳子松弛的临界条件:绳中张力为0,即F T =0.3.相对滑动的临界条件:静摩擦力达到最大值,即f 静=f m .4.滑块在滑板上不滑下的临界条件:滑块滑到滑板一端时,两者速度相同实验四验证牛顿运动定律一、实验目的1.学会用控制变量法研究物理规律.2.探究加速度与力、质量的关系.3.掌握灵活运用图象处理问题的方法.二、实验原理(见实验原理图)1.保持质量不变,探究加速度跟合外力的关系.2.保持合外力不变,探究加速度与质量的关系.3.作出a -F 图象和a -1m图象,确定其关系.三、实验器材小车、砝码、小盘、细绳、附有定滑轮的长木板、垫木、打点计时器、低压交流电源、导线两根、纸带、天平、米尺.四、实验步骤1.测量:用天平测量小盘和砝码的质量m′和小车的质量m.2.安装:按照如实验原理图所示装置把实验器材安装好,只是不把悬挂小盘的细绳系在小车上(即不给小车牵引力)3.平衡摩擦力:在长木板的不带定滑轮的一端下面垫上一块薄木块,使小车能匀速下滑.4.操作:(1)小盘通过细绳绕过定滑轮系于小车上,先接通电源后放开小车,取下纸带编号码.(2)保持小车的质量m 不变,改变砝码和小盘的质量m′,重复步骤(1).微信公众号:免(3)在每条纸带上选取一段比较理想的部分,测加速度a .(4)描点作图,作a -F 的图象.(5)保持砝码和小盘的质量m′不变,改变小车质量m ,重复步骤(1)和(3),作a -1m图象.一、数据处理1.保持小车质量不变时,计算各次小盘和砝码的重力(作为小车的合力)及对应纸带的加速度,填入表(一)中.表(一)实验次数加速度a /(m·s -2)小车受力F/N 12342.保持小盘内的砝码个数不变时,计算各次小车和砝码的总质量及对应纸带的加速度,填入表(二)中.表(二)实验次数加速度a /(m·s -2)小车和砝码的总质量m/kg 12343.利用Δx =aT 2及逐差法求a .4.以a 为纵坐标,F 为横坐标,根据各组数据描点,如果这些点在一条过原点的直线上,说明a 与F 成正比.5.以a 为纵坐标,1m为横坐标,描点、连线,如果该线过原点,就能判定a 与m 成反比.二、注意事项1.平衡摩擦力:适当垫高木板的右端,使小车的重力沿斜面方向的分力正好平衡小车和纸带受到的阻力.在平衡摩擦力时,不要把悬挂小盘的细绳系在小车上,让小车拉着打点的纸带匀速运动.2.不重复平衡摩擦力.3.实验条件:m ≫m′.4.一先一后一按:改变拉力和小车质量后,每次开始时小车应尽量靠近打点计时器,并应先接通微信公众号:免微信公众号:免费下载站电源,后释放小车,且应在小车到达定滑轮前按住小车.5.作图象时,要使尽可能多的点在所作直线上.不在直线上的点应尽可能对称分布在所作直线两侧.6.作图时两轴标度比例要选择适当.各量需采用国际单位.三、误差分析1.系统误差:本实验用小盘和砝码的总重力m′g 代替小车的拉力,而实际上小车所受的拉力要小于小盘和砝码的总重力.2.偶然误差:摩擦力平衡不准确、质量测量不准确、计数点间距测量不准确、纸带和细绳不严格与木板平行都会引起误差.微信公众号:免。
专题03 牛顿运动规律第一部分牛顿运动规律特点描述综合分析近几年的高考物理试题发现,试题在考查主干知识的同时,注重考查必修中的基本概念和基本规律,且更加突出考查学生运用"力和运动的观点"分析解决问题的能力。
牛顿运动定律及其应用是每年高考考查的重点和热点,应用牛顿运动定律解题的关键是对研究对象进行受力分析和运动分析,特别是牛顿运动定律与曲线运动,万有引力定律以及电磁学等相结合的题目,牛顿定律中一般考查牛顿第二定律较多,一般涉及一下几个方面:一是牛顿第二定律的瞬时性,根据力求加速度或者根据加速度求力,二是动力学的两类问题,三是连接体问题,四是牛顿第二定律在生活生产和科技中的应用。
第一部分知识背一背1.牛顿第一定律(1)内容:一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种状态.(2)牛顿第一定律的意义①指出了一切物体都有惯性,因此牛顿第一定律又称惯性定律。
②指出力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是产生加速度的原因。
(3)惯性①定义:物体具有保持原来匀速直线运动状态或静止状态的性质.②量度:质量是物体惯性大小的唯一量度,质量大的物体惯性大,质量小的物体惯性小.③普遍性:惯性是物体的固有属性,一切物体都有惯性。
2.牛顿第二定律(1)内容:物体的加速度与所受合外力成正比,跟物体的质量成反比。
(2)表达式:F=ma.(3)力的单位:当质量m的单位是kg、加速度a的单位是m/s2时,力F的单位就是N,即1 kg•m/s2=1 N.(4)物理意义:反映物体运动的加速度大小、方向与所受合外力的关系,且这种关系是瞬时的.(5)适用范围:①牛顿第二定律只适用于惯性参考系(相对地面静止或匀速直线运动的参考系).②牛顿第二定律只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.3单位制(1)单位制:由基本单位和导出单位一起组成了单位制.①基本单位:基本物理量的单位.力学中的基本物理量有三个,它们是长度、质量、时间;它们的国际单位分别是米、千克、秒.②导出单位:由基本量根据物理关系推导出来的其他物理量的单位.(2)国际单位制中的基本物理量和基本单位4.(1)作用力和反作用力:两个物体之间的作用总是相互的,一个物体对另一个物体施加了力,另一个物体一定同时对这个物体也施加了力.(2)内容:两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上.(3)物理意义:建立了相互作用的物体之间的联系及作用力与反作用力的相互依赖关系.5.作用力与反作用力的“四同”和“三不同”四同: (1) 大小相同(2) 方向在同一直线上(3) 性质相同(4) 出现、存在、消失的时间相同三不同:(1) 方向不同(2) 作用对象不同(3) 作用效果不同6.超重与失重和完全失重(1)实重和视重①实重:物体实际所受的重力,它与物体的运动状态无关.②视重:当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力.此时弹簧测力计的示数或台秤的示数即为视重.(2)超重、失重和完全失重的比较第二部分技能+方法一、如何理解牛顿第一定律1.建立惯性的概念,即一切物体都具有保持原来的匀速直线运动状态或静止状态的性质,叫做惯性.是物体固有的一种属性,与物体是否受力及物体的运动状态无关.2.对力的概念更加明确.力不是维持物体运动的原因,而是改变物体运动状态的原因,即力是物体产生加速度的原因.3.牛顿第一定律不是实验定律,即不能由实验直接加以验证,它是在可靠的实验事实基础上采用科学的抽象思维而推理和总结出来的.二、牛顿第一定律、惯性、牛顿第二定律的比较1.力不是维持物体运动的原因,牛顿第一定律指出“一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止”.因此物体在不受力时仍可以匀速运动,并不需要力来维持,力是改变这种状态的原因,也就是力是产生加速度的原因.2.惯性是一切物体保持原来运动状态的性质,而力是物体间的相互作用.因此惯性不是一种力,力是使物体运动状态发生改变的外部因素,惯性则是维持物体运动状态,阻碍物体运动状态发生改变的内部因素.3.惯性的表现:物体的惯性总是以保持“原状”或反抗“改变”两种形式表现出来,物体不受外力时,惯性表现在维持原运动状态不变,即反抗加速度产生,且在外力一定时,质量越大的物体运动状态越难改变,加速度越小.4.牛顿第一定律不是牛顿第二定律的特例,而是牛顿第二定律的基础,牛顿第一定律不是由实验直接总结出来的,是以伽利略的理想实验为基础,通过对大量实验现象的思维抽象、推理而总结出来的.牛顿第一定律定性地给出了物体在不受力的理想情况下的运动规律,在此基础上牛顿第二定律定量地指出了力和运动的关系:F=ma.【例1】某人用绳子将一桶水从井内加速向上提的过程中,下列说法正确的是:()A.这桶水处于超重状态,所以绳子对桶的拉力大于桶对绳子的拉力B.这桶水处于超重状态,绳子对桶的拉力大于桶的重力C.人对绳子的拉力与绳子对桶的拉力是一对作用力与反作用力D.这桶水能加速上升,是因为人对绳子的拉力大于桶对绳子的拉力【答案】B【解析】这桶水加速上升,说明加速度的方向是向上的,桶处于超重状态,所以桶受到的合外力的方向向上,即桶受到的向上的力大于桶的重力,所以选项B正确;A中绳子对桶的拉力等于桶对绳子的拉力,这是作用力与反作用力,大小相等,选项A错误;C中人对绳子的拉力与绳子对桶的拉力不是一对作用力与反作用力,选项C错误;D中这桶水能加速上升,不是因为人对绳子的拉力大于桶对绳子的拉力,而是桶受到的拉力大于重力,所以选项D错误。
【名师点晴】在力的概念中,力的相互性是指发生相互作用的物体间发生的作用力与反作用力大小相等,方向相反的问题;而研究某个物体的加速时,就要看该物体的受力情况,该题中就是桶受到的力有哪些,这些力间的关系如何。
【例2】(多选)如图,质量相同的木块A、B用轻弹簧相连,静止在光滑水平面上.弹簧处于自然状态,现用水平恒力F向右推A,则从开始推A到弹簧第一次被压缩到最短的过程中,下列说法中正确的是:()A.两木块速度相同时,加速度a A=a B B.两木块速度相同时,加速度a A<a BC.两木块加速度相同时,速度v A>v B D.两木块加速度相同时,速度v A<v BBC【答案】三、牛顿第二定律的理解牛顿第二定律明确了物体的受力情况和运动情况之间的定量关系.联系物体的受力情况和运动情况的桥梁是加速度.可以从以下角度进一步理解牛顿第二定律.合不管速度是大还是小,或是零,都有加速度,只有合力为零时,加速度才能为零,一般情况下,合力与速度无必然的联系,只有速度变化才与合力有必然的联系.2.合力与速度同向时,物体加速,反之则减速.3.物体的运动情况取决于物体受的力和物体的初始条件(即初速度),尤其是初始条件是很多同学最容易忽视的,从而导致不能正确地分析物体的运动过程【例3】如图所示,小球A、B、C的质量均为m,A、B间用细线相连,B、C间用轻质弹簧相连,然后用轻质弹簧悬挂而精致,则在剪断A、B间细线的瞬间,A、B、C的加速度分别是:()A 、B 、C 、 C 、C【答案】四、作用力和反作用力与平衡力1.作用力和反作用力与平衡力的比较2.(1)看作用点,作用力与反作用力应作用在两个物体上.(2)看产生的原因,作用力和反作用力是由于相互作用而产生的.(3)作用力与反作用力具有相互性和异体性,与物体运动状态无关.【例4】关于作用力和反作用力,以下说法正确的是:()A.作用力与它的反作用力总是一对平衡力B.地球对物体的作用力比物体对地球的作用力大C.作用力与反作用力一定是性质相同的力D.凡是大小相等,方向相反,作用在同一条直线上的,并且分别作用在不同物体上的两个力一定是一对作用力和反作用力【答案】C【名师点晴】相互作用力是指相互作用的物体之间产生的一种作用力,它们的大小相等、方向相反,作用在同一直线上,且作用在不同的物体上;如果只是满足大小相等、方向相反,作用在同一直线上,不同的物体上,则它们不一定是相互作用力。
五、整体法和隔离法的应用1.解答问题时,不能把整体法和隔离法对立起来,而应该把这两种方法结合起来,从具体问题的实际情况出发,灵活选取对象,恰当地选择使用隔离法和整体法.2.在使用隔离法解题时,所选取的隔离对象可以是连接体中的某一个物体,也可以是连接体中的某部分物体(包含两个或两个以上的单个物体),而这“某一部分”的选取,也应根据问题的实际情况,灵活处理.3.在选用整体法和隔离法时,可依据所求的力进行选择,若为外力则应用整体法;若所求力为内力则用隔离法.但在具体应用时,绝大多数的题目要求两种方法结合应用,且应用顺序也较为固定,即求外力时,先隔离后整体;求内力时,先整体后隔离.先整体或先隔离的目的都是为了求解共同的加速度.应用牛顿第二定律时,若研究对象为一物体系统,可将系统的所有外力及系统内每一物体的加速度均沿互相垂直的两个方向分解,则牛顿第二定律的系统表达式为:ΣF x=m1a1x+m2a2x+…+m n a nxΣF y=m1a1y+m2a2y+…+m n a ny应用牛顿第二定律的系统表达式解题时,可不考虑系统内物体间的相互作用力(即内力),这样能达到简化求解的目的,但需把握三个关键点:(1)正确分析系统受到的外力;(2)正确分析系统内各物体加速度的大小和方向;(3)确定正方向,建立直角坐标系,并列方程进行求解.【例5】如图所示,图乙中用力F取代图甲中的m,且F=mg,其余器材完全相同,不计摩擦,图甲中小车的加速度为,图乙中小车的加速度为,则:()A、 B、 C、 D、无法判断【答案】C【名师点睛】关键是物体受力分析,然后根据牛顿第二定律列式求解,本题也可以根据失重超重角度解题,甲图中m加速下降,处于失重状态,拉力小于重力,故加速度小于乙图中的加速度六、牛顿运动定律应用规律(一)、动力学两类基本问题的求解思路两类基本问题中,受力分析是关键,求解加速度是桥梁和枢纽,思维过程如下:(二)、用牛顿定律处理临界问题的方法1.临界问题的分析思路解决临界问题的关键是:认真分析题中的物理情景,将各个过程划分阶段,找出各阶段中物理量发生突变或转折的“临界点”,然后分析出这些“临界点”应符合的临界条件,并将其转化为物理条件.2.临界、极值问题的求解方法(1)极限法:在题目中如出现“最大”、“最小”、“刚好”等词语时,一般隐含着临界问题,处理此类问题时,应把物理问题(或过程)推向极端,从而使临界现象(或状态)暴露出来,达到尽快求解的目的.(2)假设法:有些物理过程中没有明显出现临界问题的线索,但在变化过程中可能出现临界问题,也可能不出现临界问题,解答此类题目,一般采用假设法.此外,我们还可以应用图象法等进行求解.(三)、复杂过程的处理方法——程序法按时间的先后顺序对题目给出的物体运动过程(或不同的状态)进行分析(包括列式计算)的解题方法可称为程序法.用程序法解题的基本思路是:1.划分出题目中有多少个不同的过程或多少个不同的状态.2.对各个过程或各个状态进行具体分析,得出正确的结果.3.前一个过程的结束就是后一个过程的开始,两个过程的分界点是关键【例6】质量为m的木块位于粗糙水平桌面上,若用大小为F的水平恒力拉木块,其加速度为a.当拉力方向不变,大小变为2F时,木块的加速度为a′,则:()A.a′=a B.a′<2 a C.a′>2a D.a′=2a【答案】C【例7】某同学为了测定木块与斜面间的动摩擦因数,他用测速仪研究木块在斜面上的运动情况,装置如图所示。