【精品】牛顿运动定律典型例题分析
- 格式:doc
- 大小:389.00 KB
- 文档页数:14
牛顿运动定律典型例题参考答案一、连接体问题(整体法与隔离法):1.二体连接问题例题1:F=(M+m)g F=(M+m)g F=(M+m)g F=(M+m)g例题2:例题3:2.多体连接问题:例题4:例题5:二、 超失重问题:例题1:BC例题2:A 例题3:C 例题4:A例题5:D三、 等环境问题(力的质量分配原则):例题1.例题2.D四、 临界值问题: 例题1. 解析:(1)ma sin N cos T =α-αmg cos N sin T =α+α当g 31a =时,N=68.4(N ) T=77.3(N ) (2) 若N=0,则有'm a cos T =αm g sin T =α )s /m (17g 3gctg 'a ==α=例题2.五、 瞬时值问题:例题1:解析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。
此类问题应注意两种模型的建立。
先分析剪断细线前两个物体的受力如图2,据平衡条件求出绳或弹簧上的弹力。
可知,F mg 2=,F F mg mg 122=+='。
剪断细线后再分析两个物体的受力示意图,如图2,绳中的弹力F 1立即消失,而弹簧的弹力不变,找出合外力据牛顿第二定律求出瞬时加速度,则图2剪断后m 1的加速度大小为2g ,方向向下,而m 2的加速度为零。
例题2:C例题3,D 例题4: (a=gsinθ ,a=gtanθ ) 例题5、BD 六、 分离问题:例题1:例题2:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma ,当N=0时,物体与平板分离,所以此时ka g m x )(-= 因为221at x =,所以kaa g m t )(2-= 例题3:七、 相对滑动问题:例题1:例题2:BC 例题3:ABC例题4:例题5:例题6:例题7:八、 传送带问题:例题1:D例题2:解析: 物体放上传送带以后,开始一段时间,其运动加速度2m/s 10cos sin =+=m mg mg a θμθ。
牛顿运动定律典型例题剖析例1. 如图1所示,一细线的一端固定于倾角为45°的光滑楔形滑块A的顶端P处,细线另一端拴一质量为m的小球。
当滑块以2g加速度向左运动时,线中拉力T等于多少?例2. 如图4甲、乙所示,图中细线均不可伸长,物体均处于平衡状态。
如果突然把两水平细线剪断,求剪断瞬间小球A、B的加速度各是多少?(θ角已知)小结:(1)牛顿第二定律是力的瞬时作用规律,加速度和力同时产生、同时变化、同时消失。
分析物体在某一时刻的瞬时加速度,关键是分析该瞬时前后的受力情况及其变化。
(2)明确两种基本模型的特点: A. 轻绳的形变可瞬时产生或恢复,故绳的弹力可以瞬时突变。
B. 轻弹簧(或橡皮绳)在两端均联有物体时,形变恢复需较长时间,其弹力的大小与方向均不能突变。
例3. 传送带与水平面夹角37°,皮带以10m/s的速率运动,皮带轮沿顺时针方向转动,=05.的小物块,它与传如图6所示。
今在传送带上端A处无初速地放上一个质量为m kgm s/,则物体从A 送带间的动摩擦因数为0.5,若传送带A到B的长度为16m,g取102运动到B的时间为多少?例4. 如图7,质量M kg =8的小车停放在光滑水平面上,在小车右端施加一水平恒力F=8N 。
当小车向右运动速度达到3m/s 时,在小车的右端轻放一质量m=2kg 的小物块,物块与小车间的动摩擦因数μ=02.,假定小车足够长,问:(1)经过多长时间物块停止与小车间的相对运动?(2)小物块从放在车上开始经过t s 030=.所通过的位移是多少?(g 取102m s /)例5. 将金属块m 用压缩的轻弹簧卡在一个矩形的箱中,如图9所示,在箱的上顶板和下底板装有压力传感器,箱可以沿竖直轨道运动。
当箱以a m s =202./的加速度竖直向上做匀减速运动时,上顶板的传感器显示的压力为6.0 N ,下底板的传感器显示的压力为10.0 N 。
(取g m s =102/)(1)若上顶板传感器的示数是下底板传感器的示数的一半,试判断箱的运动情况。
高考物理牛顿运动定律的应用解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律的应用1.如图所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L =1.5 m ,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g =10 m/s 2,求:(1)物块与小车共同速度; (2)物块在车面上滑行的时间t ; (3)小车运动的位移x ;(4)要使物块不从小车右端滑出,物块滑上小车左端的速度v ′0不超过多少? 【答案】(1)0.8 m/s (2)0.24 s (3)0.096 m (4)5 m/s 【解析】 【详解】(1、2)根据牛顿第二定律得,物块的加速度大小为:a 2=μg =0.5×10m/s 2=5m/s 2, 小车的加速度大小为:222110.5210m/s m/s 0.33m ga m μ⨯=== 根据v =v 0-a 2t =a 1t得则速度相等需经历的时间为:0120.24v t s a a =+=; v =0.8m/s (3)小车运动的位移22111100.24m 0.096m 223x a t ==⨯⨯= (4)物块不从小车右端滑出的临界条件为物块滑到小车右端时恰好两者达到共同速度,设此速度为v ,由水平方向动量守恒得:m 2 v 0′=(m 1+m 2)v根据能量守恒得:μm 2gL =12m 2v 0′2−12(m 1+m 2)v 2 代入数据,联立解得v 0′=5m/s 。
2.如图所示,倾角θ=30°的足够长光滑斜面底端A 固定有挡板P ,斜面上B 点与A 点的高度差为h .将质量为m 的长木板置于斜面底端,质量也为m 的小物块静止在木板上某处,整个系统处于静止状态.已知木板与物块间的动摩擦因数32μ=,且最大静摩擦力等于滑动摩擦力,重力加速度为g .(1)若对木板施加一沿斜面向上的拉力F 0,物块相对木板刚好静止,求拉力F 0的大小; (2)若对木板施加沿斜面向上的拉力F =2mg ,作用一段时间后撤去拉力,木板下端恰好能到达B 点,物块始终未脱离木板,求拉力F 做的功W . 【答案】(1) 32mg (2) 94mgh 【解析】(1)木板与物块整体:F 0−2mg sinθ=2ma 0 对物块,有:μmg cosθ−mg sinθ═ma 0 解得:F 0=32mg (2)设经拉力F 的最短时间为t 1,再经时间t 2物块与木板达到共速,再经时间t 3木板下端到达B 点,速度恰好减为零. 对木板,有:F −mg sinθ−μmg cosθ=m a 1 mg sinθ+μmg cosθ=ma 3对物块,有:μmg cosθ−mg sinθ=ma 2 对木板与物块整体,有2mg sinθ=2m a 4另有:1132212 ()a t a t a t t -=+ 21243 ()a t t a t +=222111123243111222sin h a t a t t a t a t θ+⋅-+= 21112W F a t =⋅解得W =94mgh 点睛:本题考查牛顿第二定律及机械能守恒定律及运动学公式,要注意正确分析物理过程,对所选研究对象做好受力分析,明确物理规律的正确应用即可正确求解;注意关联物理过程中的位移关系及速度关系等.3.如图所示,一质量M =40kg 、长L =2.5m 的平板车静止在光滑的水平地面上. 一质量m =10kg 可视为质点的滑块,以v 0=5m/s 的初速度从左端滑上平板车,滑块与平板车间的动摩擦因数μ=0.4,取g =10m/s 2.(1)分别求出滑块在平板车上滑行时,滑块与平板车的加速度大小;(2)计算说明滑块能否从平板车的右端滑出.【答案】(1),(2)恰好不会从平板车的右端滑出.【解析】根据牛顿第二定律得对滑块,有,解得对平板车,有,解得.设经过t时间滑块从平板车上滑出滑块的位移为:.平板车的位移为:.而且有解得:此时,所以,滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.答:滑块与平板车的加速度大小分别为和.滑块到达小车的右端时与小车速度相等,恰好不会从平板车的右端滑出.点睛:对滑块受力分析,由牛顿第二定律可求得滑块的加速度,同理可求得平板车的加速度;由位移关系可得出两物体位移间相差L时的表达式,则可解出经过的时间,由速度公式可求得两车的速度,则可判断能否滑出.4.滑雪运动中当滑雪板压在雪地时会把雪内的空气逼出来,在滑雪板和雪地之间形成暂时的“气垫”从而减小雪地对滑雪板的摩擦,然后当滑雪板的速度较小时,与雪地接触时间超过某一时间就会陷下去,使得它们间的摩擦阻力增大.假设滑雪者的速度超过4m/s时,滑雪板与雪地间的动摩擦因数就会从0.25变为0.125.一滑雪者从倾角为θ=37°斜坡雪道的某处A由静止开始自由下滑,滑至坡底B处(B处为一长度可忽略的光滑小圆弧)后又滑上一段水平雪道,最后停在水平雪道BC之间的某处.如图所示,不计空气阻力,已知AB长14.8m,取g=10m/s2,sin37°=0.6,cos37°=0.8,求:(1)滑雪者从静止开始到动摩擦因数发生变化时(即速度达到4m/s )所经历的时间; (2)滑雪者到达B 处的速度;(3)滑雪者在水平雪道上滑行的最大距离. 【答案】(1)1s ;(2)12m/s ;(3)54.4m . 【解析】 【分析】(1)根据牛顿第二定律求出滑雪者在斜坡上从静止开始加速至速度v 1=4m/s 期间的加速度,再根据速度时间公式求出运动的时间.(2)再根据牛顿第二定律求出速度大于4m/s 时的加速度,球心速度为4m/s 之前的位移,从而得出加速度变化后的位移,根据匀变速直线运动的速度位移公式求出滑雪者到达B 处的速度.(3)分析滑雪者的运动情况,根据牛顿第二定律求解每个过程的加速度,再根据位移速度关系求解. 【详解】(1)滑雪者从静止开始加速到v 1=4m/s 过程中: 由牛顿第二定律得:有:mgsin37°-μ1mgcos37°=ma 1; 解得:a 1=4m/s 2;由速度时间关系得 t 1=11v a =1s(2)滑雪者从静止加速到4m/s 的位移:x 1=12a 1t 2=12×4×12=2m 从4m/s 加速到B 点的加速度:根据牛顿第二定律可得:mgsin37°-μ2mgcos37°=ma 2; 解得:a 2=5m/s 2;根据位移速度关系:v B 2−v 12=2a 2(L −x 1) 计算得 v B =12m/s(3)在水平面上第一阶段(速度从12m/s 减速到v=4m/s ):a 3=−μ2g =−1.25m /s 222223341251.222 1.25B v v x m a --===-⨯ 在水平面上第二阶段(速度从4m/s 减速到0)a 4=−μ1g =−2.5m /s 2,2443.22v x m a -== 所以在水平面上运动的最大位移是 x=x 3+x 4=54.4m 【点睛】对于牛顿第二定律的综合应用问题,关键是弄清楚物体的运动过程和受力情况,利用牛顿第二定律或运动学的计算公式求解加速度,再根据题目要求进行解答;知道加速度是联系静力学和运动学的桥梁.5.如图所示,质量M=1kg的木板静止在粗糙的水平地面上,木板与地面间的动摩擦因数μ1=0.1,在木板的左端放置一个质量m=1kg、大小可忽略的铁块,铁块与木板间的动摩擦因数μ2=0.4,g取10m/s2,(1)若木板长L=1m,在铁块上加一个水平向右的恒力F=8N,经过多长时间铁块运动到木板的右端?(2)若在铁块右端施加一个从零开始连续增大的水平向右的力F假设木板足够长,在图中画出铁块受到木板的摩擦力f随拉力F大小变化而变化的图像.【答案】(1)1s;(2)见解析【解析】【分析】【详解】(1)铁块的加速度大小=4m/s2木板的加速度大小2m/s2设经过时间t铁块运动到木板的右端,则有解得:t=1s(2)6.如图所示,长L=2m,质量M=1kg的木板B静止在水平地面上,其正中央放置一质量m=2kg的小滑块A,现对B施加一水平向右的恒力F.已知A与B、B与地面间的动摩擦因数分别为120.20.4μμ==、,重力加速度210/g m s =,试求:(1)若A 、B 间相对滑动,F 的最小值;(2)当F =20N 时,若F 的作用时间为2s ,此时B 的速度大小; (3)当F =16N 时,若使A 从B 上滑下,F 的最短作用时间. 【答案】(1)min 18F N = (2)220/v m s = (3)2 1.73t s = 【解析】 【分析】 【详解】(1)A 、B 间恰要相对滑动的临界条件是二者间达到最大静摩擦力,对A ,由牛顿第二定律可知,加速度212/a g m s μ==;对B ,由牛顿第二定律可知,()min 21F m M g mg Ma μμ-+-=, 解得min 18F N =(2)F=20N>18N ,二者间会相对滑动,对B ,由牛顿第二定律;()211F m M g mg Ma μμ-+-=解得214/a m s =;设A 从左端滑出的时间为1t ,则22111111222L a t gt μ=-, 解得112t s s =<,此时B 的速度1114/==v a t m s故在F 作用后的1s 内,对B ,22F Mg Ma μ-=,解得2216/a m s =此时B 的速度()2121220/v v a t m s =+-=(3)若F=16N<18N ,则二者一起加速,由牛顿第二定律可知整体加速度()2204/3F M m ga m s M mμ-+==+; 当A 刚好从B 上滑下,F 的最短时间为2t ,设刚撤去F 瞬间,整体的速度为v ,则02v a t =撤去F 后,对A ,2112/a g m s μ==,对B :()21'228/m M g mga m s Mμμ+-==经分析,B 先停止运动,A 最后恰滑至B 的最右端时速度减为零,故221222'2v v La a -=联立解得23 1.73t s s ==点睛:此题是牛顿第二定律的综合应用问题;解决本题的关键是先搞清物体运动的物理过程,根据物体的受力判断出物体的运动情况,结合牛顿第二定律和运动学公式进行求解.7.如图所示,质量,的木板()f x 静止在光滑水平地面上.木板右端与竖直墙壁之间距离为,其上表面正中央放置一个质量的小滑块A .A 与B 之间动摩擦因数为0.2μ=,现用大小为18F N =的推力水平向右推B ,两者发生相对滑动,作用1s t =后撤去推力F .通过计算可知,在B 与墙壁碰撞时.A 没有滑离B .设B 与墙壁碰撞时间极短,且无机械能损失,重力加速度210m/s g =.求:(1)A 相对B 滑动的整个过程中.A 相对B 向左滑行的最大距离; (2)A 相对B 滑动的整个过程中,A 、B 系统产生的摩擦热. 【答案】(1)(2)【解析】 【详解】(1)在施加推力F 时,方向向右24/B F mga m s Mμ-==方向向右 ls 末,F 撤去时,211112A s a t m =⋅=221122B s a t m =⋅= ∴A 相对B 向左滑动的距离撤去F 至A 、B 达到共同速度的过程中,方向向右,方向向左设A 、B 速度相等经历的时间为t 222A A B B V a t V a t '==得在此时间内B 运动的位移为∵s 2+s 3<s∴B 与墙碰前速度相等,A 、B 的共同速度A 相对B 向左滑动的距离(2)与墙壁碰后:AB AB MV mV m M V -=+共() 22311mg ()()22AB s M m V M m V μ⋅=+-+V 共∴∵∴点睛:此题物理过程较复杂,解决本题的关键理清木块和木板在整个过程中的运动规律,按照物理过程发生的顺序,结合能量守恒定律、动量守恒定律、牛顿第二定律和运动学公式综合求解.8.如图所示,质量为M =2 kg 的长木板静止在光滑水平面上,现有一质量m =1 kg 的小滑块(可视为质点)以v 0=3.6 m/s 的初速度从左端沿木板上表面冲上木板,带动木板一起向前滑动.已知滑块与木板间的动摩擦因数μ=0.1,重力加速度g 取10 m/s 2.求:(1)滑块在木板上滑动过程中,长木板受到的摩擦力大小f 和方向; (2)滑块在木板上滑动过程中,滑块加速度大小;(3)若长木板长L 0=4.5m ,试判断滑块与长木板能达到的共同速度v ,若能,请求出共同速度大小和小滑块相对长木板上滑行的距离L ;若不能,请求出滑块滑离木板的速度和需要的时间.【答案】(1)f=1N ,方向向右;(2)a=1m/s 2;(3)能,v=1.2m/s 【解析】 【分析】 【详解】(1)木板所受摩擦力为滑动摩擦力: f=μmg=1N 方向向右;(2) 由牛顿第二定律得:μmg=ma 得出:a=μg=1m/s 2 ;(3) 以木板为研究对象,根据牛顿第二定律:μmg=Ma′ 可得出木板的加速度为:a′=0.5m/s 2设经过时间t ,滑块和长木板达到共同速度v ,则满足: 对滑块有:v=v 0-at对长木板有:v=a′t由以上两式得:滑块和长木板达到的共同速度:v=1.2m/s ,t=2.4s 在2.4s 内木板前进的位移为:1 1.2 2.4 1.4422v x t m m ==⨯= 木块前进的位移为:02 3.6 1.2 2.4 5.7622v v x t m m ++==⨯= 木板的长度最短为:L=x 2-x 1=4.32m<4.5m ,所以两者能达到共同速度.9.半径R =4500km 的某星球上有一倾角为30o 的固定斜面,一质量为1kg 的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行.如果物块和斜面间的摩擦因数3μ=,力F 随时间变化的规律如图所示(取沿斜面向上方向为正),2s 末物块速度恰好又为0,引力常量11226.6710/kg G N m -=⨯⋅.试求:(1)该星球的质量大约是多少?(2)要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要多大速度?(计算结果均保留二位有效数字)【答案】(1)242.410M kg =⨯ (2)6.0km/s【解析】 【详解】(1)假设星球表面的重力加速度为g ,小物块在力F 1=20N 作用过程中,有:F 1-mg sin θ-μmg cos θ=ma 1小物块在力F 2=-4N 作用过程中,有:F 2+mg sin θ+μmg cos θ=ma 2 且有1s 末速度v=a 1t 1=a 2t 2 联立解得:g=8m/s 2. 由G2MmR =mg 解得M=gR 2/G .代入数据得M=2.4×1024kg(2)要使抛出的物体不再落回到星球,物体的最小速度v 1要满足mg=m 21v R解得v 1gR =6.0×103ms=6.0km/s即要从该星球上平抛出一个物体,使该物体不再落回星球,至少需要6.0km/s 的速度.【点睛】本题是万有引力定律与牛顿定律的综合应用,重力加速度是联系这两个问题的桥梁;第二题,由重力或万有引力提供向心力,求出该星球的第一宇宙速度.10.如图所示,t =0时一质量m =1 kg 的滑块A 在大小为10 N 、方向与水平向右方向成θ=37°的恒力F 作用下由静止开始在粗糙水平地面上做匀加速直线运动,t 1=2 s 时撤去力F ; t =0时在A 右方x 0=7 m 处有一滑块B 正以v 0=7 m/s 的初速度水平向右运动.已知A 与地面间的动摩擦因数μ1=0.5,B 与地面间的动摩擦因数μ2=0.1,取重力加速度大小g =10 m/s 2,sin37°=0.6,cos37°=0.8.两滑块均视为质点,求:(1)两滑块在运动过程中速度相等的时刻; (2)两滑块间的最小距离. 【答案】(1)3.75s (2)0.875m 【解析】 【分析】(1)根据牛顿第二定律先求解撤去外力F 前后时A 的加速度以及B 的加速度;根据撤去F 之前时速度相等和撤去F 之后时速度相等列式求解;(2)第一次共速时两物块距离最大,第二次共速时两物块距离最小;根据位移公式求解最小值. 【详解】(1)对物块A ,由牛顿第二定律:()11cos sin F mg F ma θμθ--=;对物体A 撤去外力后:11mg ma μ='; 对物体B :22a g μ=A 撤去外力之前两物体速度相等时:102a t v a t =-,得t =1 sA 撤去外力之后两物体速度相等时:()111102a t a t t v a t --=-''',得t ′=3.75 s (2)第一次共速时两物块距离最大,第二次共速时两物块距离最小,则:△x =x 0+x 2-x 1;220212x v t a t =-'' ()()22111111111122x a t a t t t a t t '''=+--- 得△x =0.875 m。
牛顿运动定律例题精选与专项训练【例题精选】例1 如图所示,物体在恒力F 作用下沿曲线从A 运动到B ,这时,突然使它所受力反向,大小不变,即由F 变为-F 。
在此力作用下,物体以后运动情况,下列说法正确的是 A .物体不可能沿曲线Ba 运动; B .物体不可能沿直线Bb 运动; C .物体不可能沿曲线Bc 运动; D .物体不可能沿原曲线由B 返回A 。
解析:因为在曲线运动中,某点的速度方向是轨迹上该点的切线方向,如图所示,在恒力作用下AB 为抛物线,由其形状可以画出v A 方向和F 方向。
同样,在B 点可以做出v B 和-F 方向。
由于v B 和-F 不在一条直线上,所以以后运动轨迹不可能是直线。
又根据运动合成的知识,物体应该沿BC 轨道运动。
即物体不会沿Ba 运动,也不会沿原曲线返回。
因此,本题应选A 、B 、D 。
掌握好运动和力的关系以及物体的运动轨迹形状由什么决定是解好本题关键。
答案:A 、B 、D 。
例2 处于光滑水平面上的质量为2千克的物体,开始静止,先给它一个向东的6牛顿的力F 1,作用2秒后,撤去F 1,同时给它一个向南的8牛顿的力,又作用2秒后撤去,求此物体在这4秒内的位移是多少?解析:质量是m 的物体受到向东的F 1作用时,立即产生向东的加速度a 1,根据牛顿第二定律,得:a F m 112623===米秒/,撤去后,F a 11立即消失。
但应注意的是,力撤去了,物体速度并不会消失。
物体仍要向东运动,所以,这4秒内物体向东的位移为: s a t a t t 东··=+12112112=+=1232322182····米。
在注意力与加速度瞬时性的同时,还应注意它们的矢量性,当撤去F 1的同时就给一个向南F 2的力的作用。
此时物体的加速度也应立即变成向南的加速度a 2,根据牛顿第二定律 得:a F m 222824===米秒/所以,物体同时以向南加速度a 2,做向南初速度为零的匀加速运动,2秒末位移为:s a t 南···米===12124282222 因为位移为矢量,所以这4秒内物体的位移为:s s s =+=+=东南米。
牛顿运动定律典型例题分析基础知识回顾1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。
它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。
2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
公式F=ma.对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,F x=ma x,F y=ma y,F z=ma z;(4)牛顿第二定律F=ma定义了力的基本单位——牛顿(定义使质量为1kg的物体产生1m/s2的加速度的作用力为1N,即1N=1kg.m/s2.3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。
高中物理牛顿运动定律解题技巧分析及练习题(含答案)及解析一、高中物理精讲专题测试牛顿运动定律1.如图所示,一足够长木板在水平粗糙面上向右运动。
某时刻速度为v 0=2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v 1=4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v 2=1m/s ,方向向左。
重力加速度g =10m/s 2,试求:(1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2(3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。
【答案】(1)0.3(2)120(3)2.75m 【解析】 【分析】(1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】(1)对小滑块分析:其加速度为:2221114/3/1v v a m s m s t --===-,方向向右 对小滑块根据牛顿第二定律有:11mg ma μ-=,可以得到:10.3μ=;(2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到:1212v mg mg mt μμ+⋅= 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到:21222v mg mg mt μμ-⋅= 而且121t t t s +== 联立可以得到:2120μ=,10.5s t =,20.5t s =; (3)在10.5s t=时间内,木板向右减速运动,其向右运动的位移为:1100.52v x t m +=⋅=,方向向右; 在20.5t s =时间内,木板向左加速运动,其向左加速运动的位移为:22200.252v x t m +=⋅=,方向向左; 在整个1t s =时间内,小滑块向左减速运动,其位移为:122.52v v x t m +=⋅=,方向向左 则整个过程中滑块相对木板的位移大小为:12 2.75x x x x m ∆=+-=。
牛顿运动定律·例题分析例1 一向右运动的车厢顶上悬挂两单摆M与N,它们只能在如图3-1所示平面内摆动.某一瞬时出现如图3-1所示情景,由此可知车厢的运动及两单摆相对车厢运动的可能情况是 [ ]A.车厢作匀速直线运动,M摆动,N静止B.车厢作匀速直线运动,M摆动,N也摆动C.车厢作匀速直线运动,M静止,N摆动D.车厢作匀加速直线运动,M静止,N也静止分析作用在两个摆上的力只有摆的重力和摆线张力.当车厢作匀速直线运动时,N摆相对车厢静止或摆动中经过平衡位置的瞬间,此时摆所受重力和摆线张力在同一竖直线上,可以出现如图3-1中所示情景.M摆所受重力和摆线张力不在一直线上,不可能静止在图中所示位置,但可以是摆动中达到极端位置(最大偏角的位置)的瞬间.A、B正确,C错.当车厢作匀加速直线运动,作用在摆球上的重力和摆线张力不再平衡,它们不可能在一直线上,其合力使摆球产生水平方向的加速度.所以,M静止在图中位置是可能的,但N也静止不可能,D错.答A、B.说明M摆静止在图3-1中情景,要求摆球所受重力和摆线张力的合力F=mg·tgα=ma,因此车厢的加速度与摆线偏角间必须满足关系(图3-2),即a=gtgα.例2 电梯地板上有一个质量为200kg的物体,它对地板的压力随时间变化的图像如图3-3所示.则电梯从静止开始向上运动,在7s内上升的高度为多少?分析以物体为研究对象,在运动过程中只可能受到两个力的作用:重力mg=2000N,地板支持力F.在t=0-2s内,F>mg,电梯加速上升,t=2-5s 内,F=mg,电梯匀速上升,t=5-7s内,F<mg,电梯减速上升.解若以向上的方向为正方向,由上面的分析可知,在t=0-2s内电梯的加速度和上升高度分别为电梯在t=2s时的速度为v=a1t1=5×2m/s=10m/s,因此,t=2-5s内电梯匀速上升的高度为h2=vt2=10×3m=30m.电梯在t=5-7s内的加速度为即电梯作匀减速上升,在t=5-7s内上升的高度为所以,电梯在7s内上升的总高度为h=h1+h2+h3=(10+30+10)m=50m.例3 为了安全,在公路上行驶的汽车之间应保持必要的距离.已知某高速公路的最高限速 v=120km/h,假设前方车辆突然停下,后车司机从发现这一情况,经操纵刹车,到汽车开始减速所经历的时间(即反应时间)t=0.50s.刹车时汽车受到阻力的大小f为汽车重力的0.40倍,该高速公路上汽车间的距离s至少应为多少?取 g=10m/s2.分析后车在司机的反应时间前、后看作两种不同的运动,这两种运动的位移之和即为两车距离的最小值.解在司机的反应时间内,后车作匀速运动.其位移为s1=vt.刹车后,在阻力f作用下匀减速滑行,其加速度大小为汽车在刹车滑行过程中的位移为所以,高速公路上两车间距至少应为≈160m.例4在升降机地面上固定着一个倾角α=30°的光滑斜面,用一条平行于斜面的细绳拴住一个质量m=2kg的小球(图3-4).当升降机以加速度a=2m/s2竖直向上匀加速运动时,绳子对球的拉力和小球对斜面的压力分别为多少?(取g=10m/s2)分析以小球为研究对象,它随升降机向上加速运动过程中受到三个力作用:重力mg、绳子拉力T、斜面支持力N.由于这三个力不在一直线上,可采用正交分解法,然后列出牛顿第二定律方程,即可求解.解根据小球的受力情况(图3-5),把各个力分解到竖直、水平两方向.在竖直方向上(取向上为正方向),根据牛顿第二定律得Tsinα+Ncosα-mg=ma.(1)在水平方向上(取向右为正方向),根据力平衡条件得Tcosα-Nsinα=0.(2)将式(1)乘以sinα,式(2)乘以cosα,两式相加得绳子对球的拉力为将式(1)乘以cosα,式(2)乘以sinα,两式相减得斜面对球的支持力为根据牛顿第三定律,球对斜面的压力N′=-N=-20.8N,式中“-”号表示N′与N方向相反,即垂直斜面向下.说明本题是已知运动求力,解题中非常全面地体现了应用牛顿第二定律的解题步骤,需注意体会.需要注意的是,题中求出的N是斜面对球的支持力,还必须用牛顿第三定律,得出球对斜面的压力.例5 如图3-6所示,传送带与水平面夹角为θ=37°,以速度v=10m/s匀速运行着.现在传送带的A端轻轻放上一个小物体(可视为质点),已知小物体与传送带之间的摩擦因数μ=0.5,A、B间距离s=16m,则当皮带轮处于下列两情况时,小物体从A端运动到B端的时间分别为多少?(1)轮子顺时针方向转动;(2)轮子逆时针方向转动.已知sin37°=0.6,cos37°=0.8,取g=10m/s2.分析小物体从A到B的运动过程中,受到三个力作用:重力mg、皮带支持力N、皮带摩擦力f.由于摩擦力的方向始终与物体相对运动的方向相反,因此当轮子按不同方向转动时.或小物体与皮带的相对运动方向变化时,摩擦力方向都会不同.当判断清楚小物体的受力情况后,根据牛顿第二定律结合运动学公式即可求解.解(1)轮子顺时针方向转动轮子顺时针方向转动时,带动皮带绕轮顺时针方向转动,因此皮带作用于小物体的摩擦力沿皮带向上,物体的受力情况如图3-7所示.小物体从A端运动到B端的时间t为(2)轮子逆时针方向转动轮子逆时针方向转动时,皮带带动小物体下滑,因此皮带作用于小物体的摩擦力沿皮带向下,物体的受力情况如图3-8所示.小物体沿皮带下滑的加速度=10(0.6+0.5×0.8)m/s2=10m/s2.小物体加速到皮带运行速度 v=10m/s的时间为在这段时间内,小物体沿皮带下滑的距离此后,小物体沿皮带继续加速下滑时,它相对于皮带的运动方向向下,因此皮带对小物体的摩擦力沿皮带向上,如图3-9所示.其加速度变为a2=g(sinθ-μcosθ)=2m/s2.它从该位置起运动到B端的位移为(s-s1)=16m-5m=11m,由所以小物体从A端运动到B端的时间为t逆=t1+t2=2s.说明(1)本题求解的关键是根据相对运动方向正确判断摩擦力的方向,同时应注意整个运动中的变化情况.(2)在前半题中,严格地说,还应先从皮带运行速度测算一下小物体达到该速度的时间,即在这5s内小物体匀加速下滑的位移为可见,小物体从A到B过程中确实始终以加速度a1=2m/s2作匀加速运动.因此其运动时间为。
牛顿运动定律典型例题分析基础知识回顾1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止.对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性—-惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。
它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。
2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。
公式F=ma。
对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,Fx =max,Fy=may,Fz=maz;(4)牛顿第二定律F=ma定义了力的基本单位—-牛顿(定义使质量为1kg的物体产生1m/s2的加速度的作用力为1N,即1N=1kg.m/s2.3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。
对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力;(3)作用力和反作用力是同一性质的力;(4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。
4。
物体受力分析的基本程序: (1)确定研究对象;(2)采用隔离法分析其他物体对研究对象的作用力;(3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力;(4)画物体受力图,没有特别要求,则画示意图即可。
5。
超重和失重:(1)超重:物体有向上的加速度称物体处于超重。
处于失重的物体的物体对支持面的压力F(或对悬挂物的拉力)大于物体的重力,即F=mg+ma 。
;(2)失重:物体有向下的加速度称物体处于失重。
处于失重的物体对支持面的压力F N (或对悬挂物的拉力)小于物体的重力mg ,即F N =mg -ma ,当a=g 时,F N =0,即物体处于完全失重。
6、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题; (3)只适用于宏观物体,一般不适用微观粒子。
二、解析典型问题问题1:必须弄清牛顿第二定律的矢量性。
牛顿第二定律F=ma 是矢量式,加速度的方向与物体所受合外力的方向相同。
在解题时,可以利用正交分解法进行求解。
练习1、如图1所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?分析与解:对人受力分析,他受到重力mg 、支持力F N 和摩擦力F f 作用,如图1所示.取水平向右为x 轴正向,竖直向上为y 轴正向,此时只需分解加速度,据牛顿第二定律可得:F f =macos300,F N -mg=masin300因为56=mg F N ,解得53=mg F f .练习2.一物体放置在倾角为θ的斜面上,斜面固定于加速上升的电梯中,加速度为a ,如图3-1—15所示.在物体始终相对于斜面静止的条件下,下列说法中正确的是( ) A .当θ一定时,a 越大,斜面对物体的正压力越小 B .当θ一定时,a 越大,斜面对物体的摩擦力越大 C .当a 一定时,θ越大,斜面对物体的正压力越小 D .当a 一定时,θ越大,斜面对物体的摩擦力越小练习3.一物体放置在倾角为θ的斜面上,斜面固定于在水平面上加速运动的小车中,加速度为a ,如图3—1-16所示,在物体始终相对于斜面静止的条件下,下列说法中正确的是() A .当θ一定时,a 越大,斜面对物体的正压力越大 B .当θ一定时,a 越大,斜面对物体的摩擦力越大 C .当θ一定时,a 越大,斜面对物体的正压力越小 D .当θ一定时,a 越大,斜面对物体的摩擦力越小 问题2:必须弄清牛顿第二定律的瞬时性。
1、物体运动的加速度a 与其所受的合外力F 有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力.若合外力的大小或方向改变,加速度的大小或方向也立即(同时)改变;或合外力变为零,加速度也立即变为零(物体运动的加速度可以突变).2、中学物理中的“绳”和“线”,是理想化模型,具有如下几个特性:A .轻:即绳(或线)的质量和重力均可视为等于零,由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等.B .软:即绳(或线)只能受拉力,不能承受压力(因绳能变曲),由此特点可知,绳与其物体相互间作用力的方向总是沿着绳子且背离受力物体的方向.C .不可伸长:即无论绳所受拉力多大,绳子的长度不变,由此特点可知,绳子中的张力可以突变. 3、中学物理中的“弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性:A .轻:即弹簧(或橡皮绳)的质量和重力均可视为等于零,由此特点可知,同一弹簧的两端及其中间各点的弹力大小相等.B .弹簧既能承受拉力,也能承受压力(沿着弹簧的轴线),橡皮绳只能承受拉力,不能承受压力.图图C .由于弹簧和橡皮绳受力时,要发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能突变,但是,当弹簧或橡皮绳被剪断时,它们所受的弹力立即消失.4、做变加速度运动的物体,加速度时刻在变化(大小变化或方向变化或大小、方向都变化),某时刻的加速度叫瞬时加速度,由牛顿第二定律知,瞬时力决定瞬时加速度,确定瞬时加速度的关键是正确确定瞬时作用力.练习4、如图2(a )所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细线上,L 1的一端悬挂在天花板上,与竖直方向夹角为θ,L 2水平拉直,物体处于平衡状态。
现将L 2线剪断,求剪断瞬时物体的加速度.(l )下面是某同学对该题的一种解法:分析与解:设L 1线上拉力为T 1,L 2线上拉力为T 2,重力为mg ,物体在三力作用下保持平衡,有T 1cos θ=mg,T 1sin θ=T 2,T 2=mgtan θ。
剪断线的瞬间,T 2突然消失,物体即在T 2反方向获得加速度。
因为mgtan θ=ma ,所以加速度a =gtan θ,方向在T 2反方向。
你认为这个结果正确吗?请对该解法作出评价并说明理由。
(2)若将图2(a)中的细线L 1改为长度相同、质量不计的轻弹簧,如图2(b)所示,其他条件不变,求解的步骤和结果与(l )完全相同,即a =gtan θ,你认为这个结果正确吗?请说明理由。
分析与解:(1)错。
因为L 2被剪断的瞬间,L 1上的张力大小发生了变化。
剪断瞬时物体的加速度a=gsin θ.(2)对。
因为L 2被剪断的瞬间,弹簧L 1的长度来不及发生变化,其大小和方向都不变。
练习5.如图3—1—2所示,质量为m 的小球与细线和轻弹簧连接后被悬挂起来,静止平衡时AC 和BC 与过C 的竖直线的夹角都是600,则剪断AC 线瞬间,求小球的加速度;剪断B 处弹簧的瞬间,求小球的加速度.练习6.一物体在几个力的共同作用下处于静止状态.现使其中向东的一个力F 的值逐渐减小到零,又马上使其恢复到原值(方向不变),则() A .物体始终向西运动B .物体先向西运动后向东运动 C .物体的加速度先增大后减小D .物体的速度先增大后减小L 1 L 2θ图2(b) LLθ图2(a)图3-1-2练习7.如图3-1—13所示的装置中,中间的弹簧质量忽略不计,两个小球质量皆为m ,当剪断上端的绳子OA 的瞬间.小球A 和B 的加速度多大?练习8.如图3-1—14所示,在两根轻质弹簧a 、b 之间系住一小球,弹簧的另外两端分别固定在地面和天花板上同一竖直线上的两点,等小球静止后,突然撤去弹簧a ,则在撤去弹簧后的瞬间,小球加速度的大小为2。
5米/秒2,若突然撤去弹簧b,则在撤去弹簧后的瞬间,小球加速度的大小可能为()A .7。
5米/秒2,方向竖直向下B .7.5米/秒2,方向竖直向上 C .12.5米/秒2,方向竖直向下D .12.5米/秒2,方向竖直向上练习9.(2010·全国卷Ⅰ·15)如右图,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态。
现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为1a 、2a 。
重力加速度大小为g .则有 A .1a g =,2a g =B .10a =,2a g =C .10a =,2m M a g M +=D .1a g =,2m Ma g M+=【答案】C 【解析】在抽出木板的瞬时,弹簧对1的支持力和对2的压力并未改变。
对1物体受重力和支持力,mg=F ,a 1=0.对2物体受重力和压力,根据牛顿第二定律g MmM M Mg F a +=+=图图问题3:必须弄清牛顿第二定律的独立性。
当物体受到几个力的作用时,各力将独立地产生与其对应的加速度(力的独立作用原理),而物体表现出来的实际加速度是物体所受各力产生加速度叠加的结果。
那个方向的力就产生那个方向的加速度。
练习10、如图3所示,一个劈形物体M 放在固定的斜面上,上表面水平,在水平面上放有光滑小球m ,劈形物体从静止开始释放,则小球在碰到斜面前的运动轨迹是: A .沿斜面向下的直线B .抛物线 C .竖直向下的直线D 。
无规则的曲线。
分析与解:因小球在水平方向不受外力作用,水平方向的加速度为零,且初速度为零,故小球将沿竖直向下的直线运动,即C 选项正确。
问题4:必须弄清牛顿第二定律的同体性。