新课标人教A版高中数学必修五典题精讲(3
- 格式:doc
- 大小:279.00 KB
- 文档页数:6
利用均值不等式求最值的方法一.均值不等式1.(1)若R ba,,则ab ba222(2)若R ba,,则222b aab(当且仅当b a时取“=”)2. (1)若*,R ba ,则ab ba 2(2)若*,R b a ,则ab ba 2(当且仅当b a时取“=”)(3)若*,R ba ,则22ba ab(当且仅当b a时取“=”)3.若0x ,则12xx(当且仅当1x 时取“=”);若0x ,则12xx(当且仅当1x 时取“=”)若0x ,则11122-2x xxx xx即或 (当且仅当b a时取“=”)3.若0ab,则2ab ba(当且仅当b a时取“=”)若0ab ,则22-2a b a b a b bababa即或(当且仅当b a 时取“=”)4.若R ba,,则2)2(222b ab a (当且仅当b a时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.一、配凑1. 凑系数例1. 当04x 时,求y x x ()82的最大值。
解析:由04x知,820x,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到2828x x ()为定值,故只需将y x x ()82凑上一个系数即可。
y x x x x x x()[()]()821228212282282·当且仅当282x x ,即x =2时取等号。
所以当x =2时,y x x ()82的最大值为8。
评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。
2. 凑项例2. 已知x54,求函数f x xx()42145的最大值。
新课标人教A 版高中数学必修五典题精讲(3.4基本不等式)典题精讲例1(1)已知0<x <31,求函数y=x(1-3x)的最大值; (2)求函数y=x+x1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论.(1)解法一:∵0<x <31,∴1-3x >0. ∴y=x(1-3x)= 31·3x(1-3x)≤31[2)31(3x x -+]2=121,当且仅当3x=1-3x ,即x=61时,等号成立.∴x=61时,函数取得最大值121. 解法二:∵0<x <31,∴31-x >0. ∴y=x(1-3x)=3x(31-x)≤3[231x x -+]2=121,当且仅当x=31-x,即x=61时,等号成立. ∴x=61时,函数取得最大值121. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2xx 1∙=2,当且仅当x=1时,等号成立. 当x <0时,y=x+x 1=-[(-x)+)(1x -]. ∵-x >0,∴(-x)+)(1x -≥2,当且仅当-x=x -1,即x=-1时,等号成立. ∴y=x+x1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备.变式训练1当x >-1时,求f(x)=x+11+x 的最小值.思路分析:x >-1⇒x+1>0,变x=x+1-1时x+1与11+x 的积为常数. 解:∵x >-1,∴x+1>0.∴f(x)=x+11+x =x+1+11+x -1≥2)1(1)1(+∙+x x -1=1. 当且仅当x+1=11+x ,即x=0时,取得等号. ∴f(x)min =1.变式训练2求函数y=133224+++x x x 的最小值. 思路分析:从函数解析式的结构来看,它与基本不等式结构相差太大,而且利用前面求最值的方法不易求解,事实上,我们可以把分母视作一个整体,用它来表示分子,原式即可展开. 解:令t=x 2+1,则t≥1且x 2=t-1.∴y=133224+++x x x =1113)1(3)1(22++=++=+-+-t t t t t t t t . ∵t≥1,∴t+t 1≥2tt 1∙=2,当且仅当t=t 1,即t=1时,等号成立. ∴当x=0时,函数取得最小值3.例2已知x >0,y >0,且x 1+y9=1,求x+y 的最小值. 思路分析:要求x+y 的最小值,根据极值定理,应构建某个积为定值,这需要对条件进行必要的变形,下面给出三种解法,请仔细体会.解法一:利用“1的代换”, ∵x 1+y9=1, ∴x+y=(x+y)·(x 1+y 9)=10+yx x y 9+. ∵x >0,y >0,∴y x x y 9+≥2yx x y 9∙=6. 当且仅当yx x y 9=,即y=3x 时,取等号.又x 1+y9=1,∴x=4,y=12. ∴当x=4,y=12时,x+y 取得最小值16. 解法二:由x 1+y 9=1,得x=9-y y . ∵x >0,y >0,∴y >9. x+y=9-y y +y=y+999-+-y y =y+99-y +1=(y-9)+99-y +10. ∵y >9,∴y-9>0. ∴999-+-y y ≥299)9(-∙-y y =6. 当且仅当y-9=99-y ,即y=12时,取得等号,此时x=4.∴当x=4,y=12时,x+y 取得最小值16.解法三:由x 1+y9=1,得y+9x=xy, ∴(x-1)(y-9)=9.∴x+y=10+(x-1)+(y-9)≥10+2)9)(1(--y x =16,当且仅当x-1=y-9时取得等号.又x 1+y9=1, ∴x=4,y=12.∴当x=4,y=12时,x+y 取得最小值16.绿色通道:本题给出了三种解法,都用到了基本不等式,且都对式子进行了变形,配凑出基本不等式满足的条件,这是经常需要使用的方法,要学会观察,学会变形,另外解法二,通过消元,化二元问题为一元问题,要注意根据被代换的变量的范围对另外一个变量的范围的影响.黑色陷阱:本题容易犯这样的错误:x 1+y 9≥2xy 9①,即xy6≤1,∴xy ≥6. ∴x+y≥2xy ≥2×6=12②.∴x+y 的最小值是12. 产生不同结果的原因是不等式①等号成立的条件是x 1=y 9,不等式②等号成立的条件是x=y.在同一个题目中连续运用了两次基本不等式,但是两个基本不等式等号成立的条件不同,会导致错误结论.变式训练已知正数a,b,x,y 满足a+b=10,y b x a +=1,x+y 的最小值为18,求a,b 的值. 思路分析:本题属于“1”的代换问题.解:x+y=(x+y)(y b x a +)=a+x ay y bx ++b=10+xay y bx +. ∵x,y >0,a,b >0,∴x+y≥10+2ab =18,即ab =4.又a+b=10,∴⎩⎨⎧==8,2b a 或⎩⎨⎧==.2,8b a 例3求f(x)=3+lgx+x lg 4的最小值(0<x <1). 思路分析:∵0<x <1,∴lgx <0,xlg 4<0不满足各项必须是正数这一条件,不能直接应用基本不等式,正确的处理方法是加上负号变正数.解:∵0<x <1,∴lgx <0,x lg 4<0.∴-xlg 4>0. ∴(-lgx)+(-x lg 4)≥2)lg 4)(lg (xx --=4. ∴lgx+x lg 4≤-4.∴f(x)=3+lgx+xlg 4≤3-4=-1. 当且仅当lgx=x lg 4,即x=1001时取得等号. 则有f(x)=3+lgx+xlg 4 (0<x <1)的最小值为-1. 黑色陷阱:本题容易忽略0<x <1这一个条件.变式训练1已知x <45,求函数y=4x-2+541-x 的最大值. 思路分析:求和的最值,应凑积为定值.要注意条件x <45,则4x-5<0. 解:∵x <45,∴4x-5<0. y=4x-5+541-x +3=-[(5-4x)+x 451-]+3 ≤-2x x 451)45(-∙-+3=-2+3=1. 当且仅当5-4x=x451-,即x=1时等号成立. 所以当x=1时,函数的最大值是1.变式训练2当x <23时,求函数y=x+328-x 的最大值. 思路分析:本题是求两个式子和的最大值,但是x·328-x 并不是定值,也不能保证是正值,所以,必须使用一些技巧对原式变形.可以变为y=21(2x-3)+328-x +23=-(x x 238223-+-)+23,再求最值.解:y=21(2x-3)+328-x +23=-(x x 238223-+-)+23, ∵当x <23时,3-2x >0, ∴x x 238223-+-≥xx 2382232-∙-=4,当且仅当x x 238223-=-,即x=-21时取等号. 于是y≤-4+23=25-,故函数有最大值25-. 例4如图3-4-1,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.图3-4-1(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小?思路分析:设每间虎笼长为x m ,宽为y m ,则(1)是在4x+6y=36的前提下求xy 的最大值;而(2)则是在xy=24的前提下来求4x+6y 的最小值.解:(1)设每间虎笼长为x m ,宽为y m ,则由条件,知4x+6y=36,即2x+3y=18.设每间虎笼的面积为S ,则S=xy.方法一:由于2x+3y≥2y x 32⨯=2xy 6,∴2xy 6≤18,得xy≤227,即S≤227. 当且仅当2x=3y 时等号成立.由⎩⎨⎧=+=,1832,22y x y x 解得⎩⎨⎧==.3,5.4y x 故每间虎笼长为4.5 m ,宽为3 m 时,可使面积最大. 方法二:由2x+3y=18,得x=9-23y. ∵x >0,∴0<y <6. S=xy=(9-23y)y=23 (6-y)y. ∵0<y <6,∴6-y >0.∴S≤23[2)6(y y +-]2=227. 当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m 时,可使面积最大.(2)由条件知S=xy=24.设钢筋网总长为l,则l=4x+6y.方法一:∵2x+3y≥2y x 32∙=2xy 6=24,∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y 时,等号成立.由⎩⎨⎧==,24,32xy y x 解得⎩⎨⎧==.4,6y x 故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小. 方法二:由xy=24,得x=y 24. ∴l=4x+6y=y 96+6y=6(y 16+y)≥6×2y y⨯16=48,当且仅当y 16=y ,即y=4时,等号成立,此时x=6. 故每间虎笼长6 m,宽4 m 时,可使钢筋总长最小.绿色通道:在使用基本不等式求函数的最大值或最小值时,要注意:(1)x,y 都是正数;(2)积xy (或x+y )为定值;(3)x 与y 必须能够相等,特别情况下,还要根据条件构造满足上述三个条件的结论.变式训练某工厂拟建一座平面图为矩形且面积为200 平方米的三级污水处理池(平面图如图3-4-2所示),由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两道隔墙建造单价为每米248元,池底建造单价为每平方米80元,池壁的厚度忽略不计,试设计污水处理池的长和宽,使总造价最低,并求出最低造价.图3-4-2思路分析:在利用均值不等式求最值时,必须考虑等号成立的条件,若等号不能成立,通常要用函数的单调性进行求解.解:设污水处理池的长为x 米,则宽为x 200米(0<x≤16,0<x200≤16),∴12.5≤x≤16. 于是总造价Q(x)=400(2x+2×x 200)+248×2×x 200+80×200. =800(x+x 324)+16 000≥800×2xx 324∙+16 000=44 800, 当且仅当x=x 324 (x >0),即x=18时等号成立,而18∉[12.5,16],∴Q(x)>44 800. 下面研究Q(x)在[12.5,16]上的单调性.对任意12.5≤x 1<x 2≤16,则x 2-x 1>0,x 1x 2<162<324.Q(x 2)-Q(x 1)=800[(x 2-x 1)+324(1211x x -)] =800×212112)324)((x x x x x x --<0, ∴Q(x 2)>Q(x 1).∴Q(x)在[12.5,16]上是减函数.∴Q(x)≥Q(16)=45 000.答:当污水处理池的长为16米,宽为12.5米时,总造价最低,最低造价为45 000元.问题探究问题某人要买房,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高.当住第n 层楼时,上下楼造成的不满意度为n.但高处空气清新,嘈杂音较小,环境较为安静,因此随着楼层的升高,环境不满意度降低.设住第n 层楼时,环境不满意程度为n8.则此人应选第几楼,会有一个最佳满意度. 导思:本问题实际是求n 为何值时,不满意度最小的问题,先要根据问题列出一个关于楼层的函数式,再根据基本不等式求解即可.探究:设此人应选第n 层楼,此时的不满意程度为y. 由题意知y=n+n8. ∵n+n 8≥2248=⨯nn , 当且仅当n=n 8,即n=22时取等号. 但考虑到n ∈N *,∴n≈2×1.414=2.828≈3,即此人应选3楼,不满意度最低.例5解关于x 的不等式2)1(--x x a >1(a ≠1) 解 原不等式可化为 2)2()1(--+-x a x a >0, ①当a >1时,原不等式与(x -12--a a )(x -2)>0同解 由于2111211a a a -=-<<-- ∴原不等式的解为(-∞,12--a a )∪(2,+∞) ②当a <1时,原不等式与(x -12--a a )(x -2) <0同解 由于21111a a a -=---, 若a <0,211211a a a -=-<--,解集为(12--a a ,2); 若a =0时,211211a a a -=-=--,解集为∅; 若0<a <1,211211a a a -=->--,解集为(2,12--a a ) 综上所述 当a >1时解集为(-∞,12--a a )∪(2,+∞);当0<a <1时,解集为(2,12--a a );当a =0时,解集为∅;当a <0时,解集为(12--a a ,2)。
课时作业(十三)1.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .64答案 A解析 a 8=S 8-S 7=82-72=15.2.等差数列{a n }中,S 15=90,则a 8等于( ) A .3 B .4 C .6 D .12 答案 C解析 ∵S 15=15a 8=90, ∴a 8=6.3.已知等差数列{a n }中,|a 3|=|a 9|,公差d <0,则使前n 项和S n 取得最大值的整数n 是( ) A .4或5 B .5或6 C .6或7 D .不存在 答案 B解析 ∵d <0,∴a 3=-a 9,∴a 3+a 9=0. 又a 3+a 9=2a 6, ∴a 6=0.又d <0,∴S 5或S 6最大.4.等差数列{a n }中,前n 项和S n =an 2+(a -1)·n +(a +2),则a n 等于( ) A .-4n +1 B .2an -1 C .-2an +1 D .-4n -1 答案 D解析 ∵{a n }为等差数列,且S n =an 2+(a -1)·n +(a +2),∴a +2=0,a =-2,∴S n =-2n 2-3n. ∴a n =-4n -1.5.数列{a n }的通项a n =2n +1,则由b n =a 1+a 2+…+a nn(n ∈N *),所确定的数列{b n }的前n 项和是( ) A .n(n +1) B.n (n +1)2C.n (n +5)2D.n (n +7)2答案 C解析 b n =a 1+a 2+…+a n n =a 1+a n 2=3+2n +12=n +2,∴{b n }前n 项和T n =n (3+n +2)2=12n(n +5).6.已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 值是( ) A .21 B .20 C .19 D .18答案 B解析 a 1+a 3+a 5=105⇒a 3=35,a 2+a 4+a 6=99⇒a 4=33,则{a n }的公差d =33-35=-2,a 1=a 3-2d =39,S n =-n 2+40n ,因此当S n 取得最大值时,n =20.7.已知等差数列{a n }的公差为1,且a 1+a 2+…+a 98+a 99=99,则a 3+a 6+a 9+…+a 96+a 99=( ) A .99 B .66 C .33 D .0 答案 B解析 由a 1+a 2+…+a 98+a 99=99,得99a 1+99×982=99.∴a 1=-48,∴a 3=a 1+2d =-46.又∵{a 3n }是以a 3为首项,以3为公差的等差数列. ∴a 3+a 6+a 9+…+a 99=33a 3+33×322×3=33(48-46)=66. 8.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( ) A .8 B .7 C .6 D .5答案 D解析 ∵S k +2-S k =a k +1+a k +2=a 1+kd +a 1+(k +1)d =2a 1+(2k +1)d =2×1+(2k +1)×2=4k +4=24,∴k =5.9.等差数列{a n }中共有奇数个项,且该数列的奇数项之和为77,偶数项之和为66,若a 1=1,则其中间项为( ) A .7 B .8 C .11 D .16 答案 C10.已知等差数列{a n }中,S n 是它的前n 项和,若S 16>0,且S 17<0,则当S n 最大时n 的值为( ) A .16 B .8 C .9 D .10答案 B解析 S 16=16(a 1+a 16)2=8(a 8+a 9)>0,S 17=17(a 1+a 17)2=17a 9<0,∴a 8>0且d <0,∴S 8最大.11.设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于( )A.310 B.13 C.18 D.19 答案 A解析 据等差数列前n 项和性质可知:S 3,S 6-S 3,S 9-S 6,S 12-S 9仍成等差数列,设S 3=k ,则S 6=3k ,S 6-S 3=2k , ∴S 9-S 6=3k ,S 12-S 9=4k ,∴S 9=S 6+3k =6k ,S 12=S 9+4k =10k , ∴S 6S 12=3k 10k =310. 12.(2016·课标全国Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98 D .97 答案 C解析 设等差数列{a n }的公差为d ,因为{a n }为等差数列,且S 9=9a 5=27,所以a 5=3.又a 10=8,解得5d =a 10-a 5=5,所以d =1,所以a 100=a 5+95d =98.选C.13.在等差数列{a n }中,a 1+a 2+a 3=15,a n +a n -1+a n -2=78,S n =155,则n =______. 答案 10解析 由⎩⎪⎨⎪⎧a 1+a 2+a 3=15,a n +a n -1+a n -2=78,可得3(a 1+a n )=93.∴a 1+a n =31.又S n =n (a 1+a n )2, ∴155=31n2, ∴n =10.14.首项为正数的等差数列,前n 项和为S n ,且S 3=S 8,当n =________时,S n 取到最大值. 答案 5或615.(1)(2016·山东)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.求数列{b n }的通项公式.(2)已知数列{a n }的前n 项和S n =3+2n ,求a n .解析 (1)由题意知当n ≥2时,a n =S n -S n -1=6n +5, 当n =1时,a 1=S 1=11, 所以a n =6n +5. 设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧a 1=b 1+b 2,a 2=b 2+b 3,得⎩⎪⎨⎪⎧11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3.所以b n =3n +1. (2)①当n =1时,a 1=S 1=3+2=5. ②当n ≥2时,S n -1=3+2n -1,又S n =3+2n ,∴a n =S n -S n -1=2n -2n -1=2n -1. 又当n =1时,a 1=21-1=1≠5,∴a n =⎩⎪⎨⎪⎧5 (n =1),2n -1 (n ≥2).16.在等差数列{a n }中,S 10=100,S 100=10.求S 110. 解析 (基本量法)设等差数列{a n }的首项为a 1,公差为d ,则 ⎩⎪⎨⎪⎧10a 1+10(10-1)2d =100,100a 1+100(100-1)2d =10,解得⎩⎨⎧a 1=1 099100,d =-1150. ∴S 110=110a 1+110(110-1)2d =110×1 099100+110×1092×⎝⎛⎭⎫-1150=-110.17.设等差数列的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0. (1)求公差d 的取值范围;(2)指出S 1,S 2,…,S 12中哪一个值最大,并说明理由.解析 (1)依题意⎩⎨⎧S12=12a 1+12×112d>0,S13=13a 1+13×122d<0,即⎩⎪⎨⎪⎧2a 1+11d>0, ①a 1+6d<0. ② 由a 3=12,得a 1+2d =12. ③将③分别代入①,②,得⎩⎪⎨⎪⎧24+7d>0,3+d<0,解得-247<d<-3.(2)S 6的值最大,理由如下:由d<0可知数列{a n }是递减数列,因此若在1≤n ≤12中,使a n >0且a n +1<0,则S n 最大. 由于S 12=6(a 6+a 7)>0,S 13=13a 7<0,可得a 6>0,a 7<0,故在S 1,S 2,…,S 12中S 6的值最大.已知数列{a n }的前n 项和S n =n 2,则a n 等于( ) A .n B .n 2 C .2n +1 D .2n -1答案 D。
高中数学学习材料鼎尚图文*整理制作§3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域课时目标1.了解二元一次不等式表示的平面区域.2.会画出二元一次不等式(组)表示的平面区域.1.二元一次不等式(组)的概念含有两个未知数,并且未知数的次数是1的不等式叫做二元一次不等式.由几个二元一次不等式组成的不等式组称为二元一次不等式组.2.二元一次不等式表示的平面区域在平面直角坐标系中,二元一次不等式Ax+By+C>0表示直线Ax+By+C=0某一侧所有点组成的平面区域,把直线画成虚线以表示区域不包括边界.不等式Ax+By+C≥0表示的平面区域包括边界,把边界画成实线.3.二元一次不等式(组)表示平面区域的确定(1)直线Ax+By+C=0同一侧的所有点的坐标(x,y)代入Ax+By+C所得的符号都相同.(2)在直线Ax+By+C=0的一侧取某个特殊点(x0,y0),由Ax0+By0+C的符号可以断定Ax+By+C>0表示的是直线Ax+By+C=0哪一侧的平面区域.一、选择题1.如图所示,表示阴影部分的二元一次不等式组是()A.⎩⎪⎨⎪⎧ y ≥-23x -2y +6>0x <0 B.⎩⎪⎨⎪⎧ y ≥-23x -2y +6≥0x ≤0C.⎩⎪⎨⎪⎧y >-23x -2y +6>0x ≤0D.⎩⎪⎨⎪⎧y >-23x -2y +6<0x <0答案 C解析 可结合图形,根据确定二元一次不等式组表示的平面区域的方法逆着进行.由图知所给区域的三个边界中,有两个是虚的,所以C 正确.2.已知点(-1,2)和(3,-3)在直线3x +y -a =0的两侧,则a 的取值范围是( ) A .(-1,6) B .(-6,1)C .(-∞,-1)∪(6,+∞)D .(-∞,-6)∪(1,+∞) 答案 A解析 由题意知,(-3+2-a )(9-3-a )<0, 即(a +1)(a -6)<0,∴-1<a <6.3.如图所示,表示满足不等式(x -y )(x +2y -2)>0的点(x ,y )所在的区域为( )答案 B解析 不等式(x -y )(x +2y -2)>0等价于不等式组(Ⅰ)⎩⎪⎨⎪⎧x -y >0,x +2y -2>0或不等式组(Ⅱ)⎩⎪⎨⎪⎧x -y <0,x +2y -2<0.分别画出不等式组(Ⅰ)和(Ⅱ)所表示的平面区域,再求并集,可得正确答案为B.4.不等式组⎩⎪⎨⎪⎧4x +3y ≤12,x -y >-1,y ≥0表示的平面区域内整点的个数是( )A .2个B .4个C .6个D .8个答案 C解析 画出可行域后,可按x =0,x =1,x =2,x =3分类代入检验,符合要求的点有(0,0),(1,0),(2,0),(3,0),(1,1),(2,1)共6个.5.在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y ≥0,x -y +4≥0,x ≤a (a 为常数)表示的平面区域的面积是9,那么实数a 的值为( )A .32+2B .-32+2C .-5D .1 答案 D解析 区域如图,易求得A (-2,2),B (a ,a +4), C (a ,-a ).S △ABC =12|BC |·|a +2|=(a +2)2=9,由题意得a =1.6.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A.73B.37C.43D.34 答案 A解析 不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝⎛⎭⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点M ⎝⎛⎭⎫12,52.当y =kx +43过点⎝⎛⎭⎫12,52时,52=k 2+43, 所以k =73.二、填空题7.△ABC 的三个顶点坐标为A (3,-1),B (-1,1),C (1,3),则△ABC 的内部及边界所对应的二元一次不等式组是________________.答案 ⎩⎪⎨⎪⎧x +2y -1≥0x -y +2≥02x +y -5≤0解析如图直线AB 的方程为x +2y -1=0(可用两点式或点斜式写出). 直线AC 的方程为2x +y -5=0, 直线BC 的方程为x -y +2=0, 把(0,0)代入2x +y -5=-5<0, ∴AC 左下方的区域为2x +y -5<0.∴同理可得△ABC 区域(含边界)为⎩⎪⎨⎪⎧x +2y -1≥0x -y +2≥02x +y -5≤0.8.已知x ,y 为非负整数,则满足x +y ≤2的点(x ,y )共有________个.答案 6解析 由题意点(x ,y )的坐标应满足⎩⎪⎨⎪⎧x ∈N y ∈Nx +y ≤2,由图可知,整数点有(0,0),(1,0),(2,0)(0,1)(0,2)(1,1)6个.9.原点与点(1,1)有且仅有一个点在不等式2x -y +a >0表示的平面区域内,则a 的取值范围为________.答案 -1<a ≤0解析 根据题意,分以下两种情况:①原点(0,0)在该区域内,点(1,1)不在该区域内. 则⎩⎪⎨⎪⎧a >0a +1≤0.无解. ②原点(0,0)不在该区域内,点(1,1)在该区域内, 则⎩⎪⎨⎪⎧a ≤0a +1>0,∴-1<a ≤0. 综上所述,-1<a ≤0.10.若A 为不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________.答案 74解析如图所示,区域A 表示的平面区域为△OBC 内部及其边界组成的图形,当a 从-2连续变化到1时扫过的区域为四边形ODEC 所围成的区域.又D (0,1),B (0,2),E ⎝⎛⎭⎫-12,32,C (-2,0). S 四边形ODEC =S △OBC -S △BDE =2-14=74.三、解答题11.利用平面区域求不等式组⎩⎪⎨⎪⎧x ≥3y ≥26x +7y ≤50的整数解.解 先画出平面区域,再用代入法逐个验证.把x =3代入6x +7y ≤50,得y ≤327,又∵y ≥2,∴整点有:(3,2)(3,3)(3,4); 把x =4代入6x +7y ≤50,得y ≤267,∴整点有:(4,2)(4,3).把x =5代入6x +7y ≤50,得y ≤207,∴整点有:(5,2);把x =6代入6x +7y ≤50,得y ≤2,整点有(6,2);把x =7代入6x +7y ≤50,得y ≤87,与y ≥2不符.∴整数解共有7个为(3,2),(3,3),(3,4),(4,2),(4,3),(5,2),(6,2).12.若直线y =kx +1与圆x 2+y 2+kx +my -4=0相交于P 、Q 两点,且P 、Q 关于直线x +y =0对称,则不等式组⎩⎪⎨⎪⎧kx -y +1≥0kx -my ≤0y ≥0表示的平面区域的面积是多少?解 P 、Q 关于直线x +y =0对称,故PQ 与直线x +y =0垂直,直线PQ 即是直线y =kx +1,故k =1;又线段PQ 为圆x 2+y 2+kx +my -4=0的一条弦,故该圆的圆心在线段PQ 的垂直平分线上,即为直线x +y =0,又圆心为(-k 2,-m2),∴m =-k =-1,∴不等式组为⎩⎪⎨⎪⎧x -y +1≥0x +y ≤0y ≥0,它表示的区域如图所示,直线x -y +1=0与x +y =0的交点为(-12,12),∴S △=12×1×12=14.故面积为14. 能力提升13.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,则a 的取值范围是( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞) 答案 A解析 作出不等式组表示的平面区域D ,如图阴影部分所示.由⎩⎪⎨⎪⎧x +y -11=0,3x -y +3=0,得交点A (2,9). 对y =a x 的图象,当0<a <1时,没有点在区域D 上. 当a >1,y =a x 恰好经过A 点时,由a 2=9,得a =3. 要满足题意,需满足a 2≤9,解得1<a ≤3. 14.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a 表示的平面区域是一个三角形,则a 的取值范围是______________.答案 0<a ≤1或a ≥43解析不等式表示的平面区域如图所示,当x +y =a 过A ⎝⎛⎭⎫23,23时表示的区域是△AOB ,此时a =43; 当a >43时,表示区域是△AOB ;当x +y =a 过B (1,0)时表示的区域是△DOB ,此时a =1; 当0<a <1时可表示三角形;当a <0时不表示任何区域,当1<a <43时,区域是四边形.故当0<a ≤1或a ≥43时表示的平面区域为三角形.1.二元一次不等式(组)的解集对应着坐标平面的一个区域,该区域内每一个点的坐标均满足不等式(组).常用特殊点法确定二元一次不等式表示的是直线哪一侧的部分.2.画平面区域时,注意边界线的虚实问题.3.求平面区域内的整点个数时,要有一个明确的思路不可马虎大意,常先确定x 的范围,再逐一代入不等式组,求出y 的范围最后确定整数解的个数.。
新课程标准数学必修5第三章课后习题解答第三章 不等式3.1不等关系与不等式 练习(P74)1、(1)0a b +≥; (2)4h ≤; (3)(10)(10)3504L W L W ++=⎧⎨>⎩.2、这给两位数是57.3、(1)>; (2)<; (3)>; (4)<;习题3.1 A 组(P75)1、略.2、(1)24<; (2>.3、证明:因为20,04x x >>,所以21104x x x ++>+>因为22(1)02x +>>,所以12x+>4、设A 型号帐篷有x 个,则B 型号帐篷有(5)x +个,050448054853(5)484(4)48x x x x x x >⎧⎪+>⎪⎪<⎪⎨<-<⎪⎪+<⎪+⎪⎩≥5、设方案的期限为n 年时,方案B 的投入不少于方案A 的投入.所以,(1)5105002n n n -+⨯≥ 即,2100n ≥.习题3.1 B 组(P75)1、(1)因为222259(56)30x x x x x ++-++=+>,所以2225956x x x x ++>++ (2)因为222(3)(2)(4)(69)(68)10x x x x x x x ----=-+--+=>所以2(3)(2)(4)x x x ->--(3)因为322(1)(1)(1)0x x x x x --+=-+>,所以321x x x >-+(4)因为22222212(1)1222(1)(1)10x y x y x y x y x y ++-+-=++-+-=-+-+> 所以2212(1)x y x y ++>+-2、证明:因为0,0a b c d >>>>,所以0ac bd >>又因为0cd >,所以10cd >于是0a bd c>>>3、设安排甲种货箱x 节,乙种货箱y 节,总运费为z .所以 352515301535115050x y x y x y +⎧⎪+⎨⎪+=⎩≥≥ 所以28x ≥,且30x ≤所以 2822x y =⎧⎨=⎩,或2921x y =⎧⎨=⎩,或3020x y =⎧⎨=⎩所以共有三种方案,方案一安排甲种货箱28节,乙种货箱22节;方案二安排甲种货箱29节,乙种货箱21节;方案三安排甲种货箱30节,乙种货箱20节. 当3020x y =⎧⎨=⎩时,总运费0.5300.82031z =⨯+⨯=(万元),此时运费较少. 3.2一元二次不等式及其解法 练习(P80) 1、(1)1013x x ⎧⎫-⎨⎬⎩⎭≤≤; (2)R ; (3){}2x x ≠; (4)12x x ⎧⎫≠⎨⎬⎩⎭; (5)31,2x x x ⎧⎫<->⎨⎬⎩⎭或; (6)54,43x x x ⎧⎫<>⎨⎬⎩⎭或; (7)503x x ⎧⎫-<<⎨⎬⎩⎭.2、(1)使2362y x x =-+的值等于0的x的集合是1⎧⎪⎨⎪⎪⎩⎭;使2362y x x =-+的值大于0的x的集合为11x x x ⎧⎪<>⎨⎪⎪⎩⎭或;使2362y x x =-+的值小于0的x的集合是11x x ⎧⎪<<+⎨⎪⎪⎩⎭.(2)使225y x =-的值等于0的x 的集合{}5,5-; 使225y x =-的值大于0的x 的集合为{}55x x -<<; 使225y x =-的值小于0的x 的集合是{}5,5x x x <->或. (3)因为抛物线2+610y x x =+的开口方向向上,且与x 轴无交点 所以使2+610y x x =+的等于0的集合为∅; 使2+610y x x =+的小于0的集合为∅; 使2+610y x x =+的大于0的集合为R. (4)使231212y x x =-+-的值等于0的x 的集合为{}2; 使231212y x x =-+-的值大于0的x 的集合为∅;使231212y x x =-+-的值小于0的x 的集合为{}2x x ≠. 习题3.2 A 组(P80)1、(1)35,22x x x ⎧⎫<->⎨⎬⎩⎭或; (2)x x ⎧⎪<<⎨⎪⎪⎩⎭;(3){}2,5x x x <->或; (4){}09x x <<.2、(1)解2490x x -+≥,因为200∆=-<,方程2490x x -+=无实数根所以不等式的解集是R ,所以y R. (2)解2212180x x -+-≥,即2(3)0x -≤,所以3x =所以y {}3x x =3、{33m m m <-->-+或;4、R.5、设能够在抛出点2 m 以上的位置最多停留t 秒. 依题意,20122v t gt ->,即212 4.92t t ->. 这里0t >. 所以t 最大为2(精确到秒)答:能够在抛出点2 m 以上的位置最多停留2秒. 6、设每盏台灯售价x 元,则15[302(15)]400x x x ⎧⎨-->⎩≥. 即1520x <≤.所以售价{}1520x x x ∈<≤习题3.2 B 组(P81)1、(1)52x ⎧+⎪<<⎨⎪⎪⎩⎭; (2){}37x x <<; (3)∅; (4)113x x ⎧⎫<<⎨⎬⎩⎭. 2、由22(1)40m m ∆=--<,整理,得23210m m +->,因为方程23210m m +-=有两个实数根1-和13,所以11m <-,或213m >,m 的取值范围是11,3m m m ⎧⎫<->⎨⎬⎩⎭或.3、使函数213()324f x x x =--的值大于0的解集为3322x x x ⎧⎪<-<+⎨⎪⎪⎩⎭或.4、设风暴中心坐标为(,)a b ,则a =22450b +<,即150150b -<<151)13.72=≈(h ),3001520=.所以,经过约13.7小时码头将受到风暴的影响,影响时间为15小时.3.3二元一次不等式(组)与简单的线性规划问题 练习(P86) 1、B . 2、D . 3、B .4解:设家具厂每天生产A 类桌子x 张,B 类桌子y 张.对于A 类桌子,x 张桌子需要打磨10x min ,着色6x min ,上漆6x min 对于B 类桌子,y 张桌子需要打磨5y min ,着色12y min ,上漆9y min 而打磨工人每天最长工作时间是450min ,所以有105450x y +≤. 类似地,612480x y +≤,69450x y +≤ 在实际问题中,0,0x y ≥≥;所以,题目中包含的限制条件为 1054506124806945000x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥练习(P91)1、(1)目标函数为2z x y =+,可行域如图所示,作出直线2y x z =-+,可知z 要取最大值,即直线经过点C 时,解方程组11x y y +=⎧⎨=-⎩得(2,1)C -,所以,max 222(1)3z x y =+=⨯+-=.(2)目标函数为35z x y =+,可行域如图所示,作出直线35z x y =+ 可知,直线经过点B 时,Z 取得最大值. 直线经过点A 时,Z 取得最小值. 解方程组 153y x x y =+⎧⎨-=⎩,和15315y x x y =+⎧⎨+=⎩(第1题)可得点(2,1)A --和点(1.5,2.5)B .所以max 3 1.55 2.517z =⨯+⨯=,min 3(2)5(1)11z =⨯-+⨯-=-2、设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是 2400250000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,作直线30002000z x y =+当直线经过点A 时,z 取得最大值. 解方程组 24002500x y x y +=⎧⎨+=⎩可得点(200,100)A ,z 的最大值为800000元. 习题3.3 A 组(P93)1、画图求解二元一次不等式:(1)2x y +≤; (2)22x y ->; (3)2y -≤; (4)3x ≥2、3(第2题)解:设每周播放连续剧甲x 次,播放连续剧乙y目标函数为6020z x y =+,所以,题目中包含的限制条件为8040320600x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≥≥≥可行域如图. 解方程组80403206x y x y +⎧⎨+⎩==得点M 的坐标为(2,4),所以max 6020200z x y =+= 答:电视台每周应播放连续剧甲2次,播放连续剧乙4次,才能获得最高的收视率. 4、设每周生产空调器x 台,彩电y 台,则生产冰箱120x y--台,产值为z . 则,目标函数为432(120)2240z x y x y x y =++--=++ 所以,题目中包含的限制条件为111(120)402341202000x y x y x y x y ⎧++--⎪⎪⎪--⎨⎪⎪⎪⎩≤≥≥≥即,312010000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥ 可行域如图,解方程组3120100x y x y +⎧⎨+⎩==得点M 的坐标为(10,90),所以max 2240350z x y =++=(千元)答:每周应生产空调器10台,彩电90台,冰箱20台,才能使产值最高,最高产值是350千元.习题3.3 B 组(P93)1、画出二元一次不等式组 231223600x y x y x y +⎧⎪+>-⎪⎨⎪⎪⎩≤≥≥,所表示的区域如右图2、画出(21)(3)0x y x y +--+>表示的区域.3、设甲粮库要向A 镇运送大米x 吨、向B 镇运送大米y 吨,总运费为z . 则乙粮库要向A 镇运送大米(70)x -吨、向B 镇运送大米(110)y -吨,目标函数(总运费)为122025101512(70)208(110)60z x y x y x y =⨯⨯+⨯⨯+⨯⨯-+⨯⨯-=++. 所以,题目中包含的限制条件为 100(70)(110)800700x y x y x y +⎧⎪-+-⎪⎨⎪⎪⎩≤≤≤≤≥.所以当70,30x y ==时,总运费最省 min 37100z =(元) 所以当0,100x y ==时,总运费最不合理 max 39200z =(元)使国家造成不该有的损失2100元.答:甲粮库要向A 镇运送大米70吨,向B 镇运送大米30吨,乙粮库要向A 镇运送大米0吨,向B 镇运送大米80吨,此时总运费最省,为37100元. 最不合理的调运方案是要向A 镇运送大米0吨,向B 镇运送大米100吨,乙粮库要向A 镇运送大米70吨,向B 镇运送大米10吨,此时总运费为39200元,使国家造成损失2100元.3.42a b+练习(P100)1、因为0x >,所以12x x +≥当且仅当1x x =时,即1x =时取等号,所以当1x =时,即1x x+的值最小,最小值是2. 2、设两条直角边的长分别为,a b ,0,a >且0b >,因为直角三角形的面积等于50.即 1502ab =,所以20a b +==≥,当且仅当10a b ==时取等号.答:当两条直角边的长均为10时,两条直角边的和最小,最小值是20.(第2题)3、设矩形的长与宽分别为a cm ,b cm. 0a >,0b > 因为周长等于20,所以10a b +=所以 2210()()2522a b S ab +===≤,当且仅当5a b ==时取等号.答:当矩形的长与宽均为5时,面积最大.4、设底面的长与宽分别为a m ,b m. 0a >,0b >因为体积等于323m ,高2m ,所以底面积为162m ,即16ab =所以用纸面积是 222324()32323264S ab bc ac a b =++=+++=+=≥ 当且仅当4a b ==时取等号答:当底面的长与宽均为4米时,用纸最少. 习题3.4 A 组(P100) 1、(1)设两个正数为,a b ,则0,0a b >>,且36ab =所以 12a b +==≥,当且仅当6a b ==时取等号. 答:当这两个正数均为6时,它们的和最小.(2)设两个正数为,a b ,依题意0,0a b >>,且18a b +=所以2218()()8122a b ab +==≤,当且仅当9a b ==时取等号.答:当这两个正数均为9时,它们的积最大. 2、设矩形的长为x m ,宽为y m ,菜园的面积为S 2m . 则230x y +=,S x y =⨯由基本不等式与不等式的性质,可得211219002252()222242x y S x y +=⨯⨯=⨯=≤. 当2x y =,即1515,2x y ==时,菜园的面积最大,最大面积是22522m . 3、设矩形的长和宽分别为x 和y ,圆柱的侧面积为z ,因为2()36x y +=,即18x y +=. 所以222()1622x y z x y πππ+=⨯⨯⨯=≤, 当x y =时,即长和宽均为9时,圆柱的侧面积最大.4、设房屋底面长为x m ,宽为y m ,总造价为z 元,则12xy =,12y x=123600312006800580048000012480058000z y x x x⨯=⨯+⨯+=+++=≥ 当且仅当1236004800x x⨯=时,即3x =时,z 有最小值,最低总造价为34600元. 习题3.4 B 组(P101)1、设矩形的长AB 为x ,由矩形()ABCD AB AD >的周长为24,可知,宽12AB x =-. 设PC a =,则DP x a =-所以 222(12)()x x a a -+-=,可得21272x x a x -+=,1272x DP x a x-=-=.所以ADP ∆的面积 211272187272(12)66[()18]2x x x S x x x x x--+-=-=⨯=⨯-++ 由基本不等式与不等式的性质6[18]6(18108S ⨯-=⨯-=-≤ 当72x x=,即x =m 时,ADP ∆的面积最大,最大面积是(108-2m . 2、过点C 作CD AB ⊥,交AB 延长线于点D .设BCD α∠=,ACB β∠=,CD x =.在BCD ∆中,tan b c x α-=. 在ACD ∆中,tan()a cxαβ-+= 则tan()tan tan tan[()]1tan()tan αβαβαβααβα+-=+-=++⋅()()1a c b ca b x x a c b c a c b c x x x x----==----+⋅+))c =当且仅当()()a cbc x x--=,即x =tan β取得最大,从而视角也最大.第三章 复习参考题A 组(P103)1<2、化简得{}23A x x =-<<,{}4,2B x x x =<->或,所以{}23A B x x =<<3、当0k <时,一元二次不等式23208kx kx +-<对一切实数x 都成立,即二次函数2328y kx kx =+-在x 轴下方,234(2)()08k k ∆=--<,解之得:30k -<<.当0k >时,二次函数2328y kx kx =+-开口朝上一元二次不等式23208kx kx +-<不可能对一切实数x 都成立,所以,30k -<<. 4、不等式组438000x y x y ++>⎧⎪<⎨⎪<⎩表示的平面区域的整点坐标是(1,1)--.5、设每天派出A 型车x 辆,B 型车y 辆,成本为z .所以 070494860360x y x y x y ⎧⎪⎪⎨+⎪⎪+⎩≤≤≤≤≤≥,目标函数为160252z x y =+把160252z x y =+变形为40163252y x z =-+,得到斜率为4063-,在y 轴上的截距为1252z ,随z 变化的一族平行直线. 在可行域的整点中,点(5,2)M 使得z 取得最小值. 所以每天派出A 型车5辆,B 型车2辆,成本最小,最低成本为1304元.6、设扇形的半径是x ,扇形的弧长为y ,因为 12S xy =扇形的周长为2Z x y =+≥ 当2x y =,即x =y =Z可以取得最小值,最小值为. 7、设扇形的半径是x ,扇形的弧长为y ,因为2P x y =+扇形的面积为221112(2)()244216x y P Z xy x y +===≤当2x y =,即4P x =,2P y =时,Z 可以取得最大值,半径为4P时扇形面积最大值为216P .8、设汽车的运输成本为y , 2()s say bv a sbv v v=+⨯=+当sasbv v=时,即v =c 时,y 有最小值.2sa y sbv v =+=≥2c 时,由函数sa y sbv v =+的单调性可知,v c =时y 有最小值,最小值为sa sbc c+. 第三章 复习参考题B 组(P103)1、D2、(1)32264x x x x ⎧⎫<--<<>⎨⎬⎩⎭或或 (2)⎧⎨⎩3、1m =4、设生产裤子x 条,裙子y 条,收益为z .则目标函数为2040z x y =+,所以约束条件为 10210600x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥人教A 版高中数学课后习题解答答案11 5、因为22x y +是区域内的点到原点的距离的平方所以,当240330x y x y -+=⎧⎨--=⎩ 即2,3A A x y ==时,22x y +的最大值为13. 当4525x y ⎧=⎪⎪⎨⎪=⎪⎩时,22x y +最小,最小值是45. 6、按第一种策略购物,设第一次购物时的价格为1p ,购n kg ,第二次购物时的价格为2p ,仍购n kg ,按这种策略购物时两次购物的平均价格为121222p n p n p p n ++=. 若按第二种策略购物,第一次花m 元钱,能购1m p kg 物品,第二次仍花m 元钱,能购2m p kg 物品,两次购物的平均价格为12122211m m m p p p p =++ 比较两次购物的平均价格:221212121212121212121222()4()011222()2()p p p p p p p p p p p p p p p p p p p p +++---=-==++++≥ 所以,第一种策略的平均价格高于第二种策略的平均价格,因而,用第二种策略比较经济. 一般地,如果是n 次购买同一种物品,用第二种策略购买比较经济.。
正、余弦定理习题课一、教学目标:知识与技能:掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。
过程与方法:通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题。
情感、态度与价值观:通过正、余弦定理,在解三角形问题时沟通了三角形的有关性质和三角函数的关系,反映了事物之间的必然联系及一定条件下相互转化的可能,从而从本质上反映了事物之间的内在联系。
二.重点难点重点:在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用。
难点:正、余弦定理与三角形的有关性质的综合运用。
三、教材与学情分析本节课中,应先通过分析典型例题,帮助学生理解并掌握正弦定理和余弦定理;应指出正弦定理和余弦定理是相通的,凡是能用正弦定理解的三角形,用余弦定理也可以解,反之亦然.但解题的时候,应有最佳选择.教学过程中,我们应指导学生对利用正弦定理和余弦定理解斜三角形的问题进行归类。
同时应指出,在解斜三角形问题时,经常要利用正弦、余弦定理实施边角转换,转化的主要途径有两条:(1)化边为角,然后通过三角变换找出角与角之间的关系,进而解决问题;(2)化角为边,将三角问题转化为代数问题加以解决.一般地,当已知三角形三边或三边数量关系时,常用余弦定理;若既有角的条件,又有边的条件,通常利用正弦定理或余弦定理,将边化为角的关系,利用三角函数公式求解较为简便.总之,关键在于灵活运用定理及公式.四、教学方法问题引导,主动探究,启发式教学.五、教学过程(一)课题导入师 前面两节课,我们一起学习了正弦定理、余弦定理的内容,并且接触了利用正、余弦定理解三角形的有关题型.下面,我们先来回顾一下正、余弦定理的内容 (给出幻灯片1.1.3A ).从幻灯片大体可以看出,正弦定理、余弦定理实质上反映了三角形内的边角关系,运用定理可以进行边与角之间的转换,这一节,我们将通过例题分析来学习正、余弦定理的边角转换功能在判断三角形形状和证明三角恒等式时的应用.(二)推进新课思考:在△ABC 中,已知A =22c m ,B =25c m,A =133°,解三角形.(由学生阅读课本第9页解答过程)从此题的分析我们发现,在已知三角形的两边及其中一边的对角解三角形时,在某些条件下会出现无解的情形.下面进一步来研究这种情形下解三角形的问题.【例1】在△ABC 中,已知A ,B ,A ,讨论三角形解的情况.师 分析:先由a A b B sin sin =可进一步求出B ;则C =180°-(A +B ),从而AC a c sin sin =. 一般地,已知两边和其中一边的对角解三角形,有两解、一解、无解三种情况.1.当A 为钝角或直角时,必须a >b 才能有且只有一解;否则无解.2.当A 为锐角时,如果a ≥b ,那么只有一解; 如果a <b ,那么可以分下面三种情况来讨论:(1)若a >b sin A ,则有两解; (2)若a =b sin A ,则只有一解; (3)若a <b sin A ,则无解.(以上解答过程详见课本第9到第10页)师 注意在已知三角形的两边及其中一边的对角解三角形时,只有当A 为锐角且b sin A <a<b 时,有两解;其他情况时则只有一解或无解.(1)A 为直角或钝角(2)A 为锐角【例2】在△ABC中,已知a =7,b=5,c =3,判断△ABC的类型.分析:由余弦定理可知 a2=b2+c2⇔A是直角⇔△ABC是直角三角形,a2>b2+c2⇔A是钝角⇔△ABC是钝角三角形,a2<b2+c⇔A是锐角/△ABC是锐角三角形。
新课标人教A 版高中数学必修五典题精讲(3.4基本不等式)典题精讲例1(1)已知0<x <31,求函数y=x(1-3x)的最大值; (2)求函数y=x+x1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论.(1)解法一:∵0<x <31,∴1-3x >0. ∴y=x(1-3x)= 31·3x(1-3x)≤31[2)31(3x x -+]2=121,当且仅当3x=1-3x ,即x=61时,等号成立.∴x=61时,函数取得最大值121.解法二:∵0<x <31,∴31-x >0.∴y=x(1-3x)=3x(31-x)≤3[231xx -+]2=121,当且仅当x=31-x,即x=61时,等号成立. ∴x=61时,函数取得最大值121.(2)解:当x >0时,由基本不等式,得y=x+x 1≥2xx 1∙=2,当且仅当x=1时,等号成立. 当x <0时,y=x+x 1=-[(-x)+)(1x -]. ∵-x >0,∴(-x)+)(1x -≥2,当且仅当-x=x -1,即x=-1时,等号成立.∴y=x+x1≤-2. 综上,可知函数y=x+x1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备.变式训练1当x >-1时,求f(x)=x+11+x 的最小值. 思路分析:x >-1⇒x+1>0,变x=x+1-1时x+1与11+x 的积为常数.解:∵x >-1,∴x+1>0. ∴f(x)=x+11+x =x+1+11+x -1≥2)1(1)1(+∙+x x -1=1. 当且仅当x+1=11+x ,即x=0时,取得等号. ∴f(x)min =1.变式训练2求函数y=133224+++x x x 的最小值. 思路分析:从函数解析式的结构来看,它与基本不等式结构相差太大,而且利用前面求最值的方法不易求解,事实上,我们可以把分母视作一个整体,用它来表示分子,原式即可展开.解:令t=x 2+1,则t≥1且x 2=t-1.∴y=133224+++x x x =1113)1(3)1(22++=++=+-+-t t t t t t t t . ∵t≥1,∴t+t 1≥2tt 1∙=2,当且仅当t=t 1,即t=1时,等号成立.∴当x=0时,函数取得最小值3. 例2已知x >0,y >0,且x 1+y9=1,求x+y 的最小值. 思路分析:要求x+y 的最小值,根据极值定理,应构建某个积为定值,这需要对条件进行必要的变形,下面给出三种解法,请仔细体会. 解法一:利用“1的代换”, ∵x 1+y9=1, ∴x+y=(x+y)·(x 1+y 9)=10+yx x y 9+. ∵x >0,y >0,∴y x x y 9+≥2yx x y 9∙=6. 当且仅当yxx y 9=,即y=3x 时,取等号. 又x 1+y9=1,∴x=4,y=12. ∴当x=4,y=12时,x+y 取得最小值16. 解法二:由x 1+y 9=1,得x=9-y y . ∵x >0,y >0,∴y >9. x+y=9-y y +y=y+999-+-y y =y+99-y +1=(y-9)+99-y +10.∵y >9,∴y-9>0. ∴999-+-y y ≥299)9(-∙-y y =6.当且仅当y-9=99-y ,即y=12时,取得等号,此时x=4.∴当x=4,y=12时,x+y 取得最小值16.解法三:由x 1+y 9=1,得y+9x=xy,∴(x-1)(y-9)=9.∴x+y=10+(x-1)+(y-9)≥10+2)9)(1(--y x =16, 当且仅当x-1=y-9时取得等号.又x 1+y9=1, ∴x=4,y=12.∴当x=4,y=12时,x+y 取得最小值16. 绿色通道:本题给出了三种解法,都用到了基本不等式,且都对式子进行了变形,配凑出基本不等式满足的条件,这是经常需要使用的方法,要学会观察,学会变形,另外解法二,通过消元,化二元问题为一元问题,要注意根据被代换的变量的范围对另外一个变量的范围的影响. 黑色陷阱:本题容易犯这样的错误:x 1+y 9≥2xy 9①,即xy6≤1,∴xy ≥6. ∴x+y≥2xy ≥2×6=12②.∴x+y 的最小值是12. 产生不同结果的原因是不等式①等号成立的条件是x 1=y9,不等式②等号成立的条件是x=y.在同一个题目中连续运用了两次基本不等式,但是两个基本不等式等号成立的条件不同,会导致错误结论. 变式训练已知正数a,b,x,y 满足a+b=10,ybx a +=1,x+y 的最小值为18,求a,b 的值. 思路分析:本题属于“1”的代换问题. 解:x+y=(x+y)(y b x a +)=a+x ay y bx ++b=10+xayy bx +. ∵x,y >0,a,b >0,∴x+y≥10+2ab =18,即ab =4. 又a+b=10, ∴⎩⎨⎧==8,2b a 或⎩⎨⎧==.2,8b a 例3求f(x)=3+lgx+xlg 4的最小值(0<x <1). 思路分析:∵0<x <1, ∴lgx <0,xlg 4<0不满足各项必须是正数这一条件,不能直接应用基本不等式,正确的处理方法是加上负号变正数.解:∵0<x <1,∴lgx <0,x lg 4<0.∴-xlg 4>0.∴(-lgx)+(-x lg 4)≥2)lg 4)(lg (xx --=4. ∴lgx+x lg 4≤-4.∴f(x)=3+lgx+xlg 4≤3-4=-1. 当且仅当lgx=xlg 4,即x=1001时取得等号.则有f(x)=3+lgx+xlg 4(0<x <1)的最小值为-1. 黑色陷阱:本题容易忽略0<x <1这一个条件.变式训练1已知x <45,求函数y=4x-2+541-x 的最大值. 思路分析:求和的最值,应凑积为定值.要注意条件x <45,则4x-5<0.解:∵x <45,∴4x-5<0.y=4x-5+541-x +3=-[(5-4x)+x451-]+3≤-2xx 451)45(-∙-+3=-2+3=1.当且仅当5-4x=x451-,即x=1时等号成立.所以当x=1时,函数的最大值是1.变式训练2当x <23时,求函数y=x+328-x 的最大值. 思路分析:本题是求两个式子和的最大值,但是x·328-x 并不是定值,也不能保证是正值,所以,必须使用一些技巧对原式变形.可以变为y=21(2x-3)+328-x +23=-(x x 238223-+-)+23,再求最值.解:y=21(2x-3)+328-x +23=-(x x 238223-+-)+23,∵当x <23时,3-2x >0,∴x x 238223-+-≥xx 2382232-∙-=4,当且仅当x x 238223-=-,即x=-21时取等号. 于是y≤-4+23=25-,故函数有最大值25-. 例4如图3-4-1,动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.图3-4-1(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小? 思路分析:设每间虎笼长为x m ,宽为y m ,则(1)是在4x+6y=36的前提下求xy 的最大值;而(2)则是在xy=24的前提下来求4x+6y 的最小值. 解:(1)设每间虎笼长为x m ,宽为y m ,则由条件,知4x+6y=36,即2x+3y=18. 设每间虎笼的面积为S ,则S=xy.方法一:由于2x+3y≥2y x 32⨯=2xy 6, ∴2xy 6≤18,得xy≤227,即S≤227. 当且仅当2x=3y 时等号成立. 由⎩⎨⎧=+=,1832,22y x y x 解得⎩⎨⎧==.3,5.4y x故每间虎笼长为4.5 m ,宽为3 m 时,可使面积最大. 方法二:由2x+3y=18,得x=9-23y. ∵x >0,∴0<y <6.S=xy=(9-23y)y=23(6-y)y. ∵0<y <6,∴6-y >0. ∴S≤23[2)6(y y +-]2=227. 当且仅当6-y=y,即y=3时,等号成立,此时x=4.5.故每间虎笼长4.5 m,宽3 m 时,可使面积最大. (2)由条件知S=xy=24.设钢筋网总长为l,则l=4x+6y.方法一:∵2x+3y≥2y x 32∙=2xy 6=24,∴l=4x+6y=2(2x+3y)≥48,当且仅当2x=3y 时,等号成立. 由⎩⎨⎧==,24,32xy y x 解得⎩⎨⎧==.4,6y x故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小. 方法二:由xy=24,得x=y24. ∴l=4x+6y=y 96+6y=6(y 16+y)≥6×2y y⨯16=48,当且仅当y 16=y ,即y=4时,等号成立,此时x=6. 故每间虎笼长6 m,宽4 m 时,可使钢筋总长最小.绿色通道:在使用基本不等式求函数的最大值或最小值时,要注意: (1)x,y 都是正数;(2)积xy (或x+y )为定值;(3)x 与y 必须能够相等,特别情况下,还要根据条件构造满足上述三个条件的结论.变式训练某工厂拟建一座平面图为矩形且面积为200 平方米的三级污水处理池(平面图如图3-4-2所示),由于地形限制,长、宽都不能超过16米,如果池外周壁建造单价为每米400元,中间两道隔墙建造单价为每米248元,池底建造单价为每平方米80元,池壁的厚度忽略不计,试设计污水处理池的长和宽,使总造价最低,并求出最低造价.图3-4-2思路分析:在利用均值不等式求最值时,必须考虑等号成立的条件,若等号不能成立,通常要用函数的单调性进行求解.解:设污水处理池的长为x 米,则宽为x 200米(0<x≤16,0<x200≤16),∴12.5≤x≤16. 于是总造价Q(x)=400(2x+2×x 200)+248×2×x200+80×200.=800(x+x 324)+16 000≥800×2xx 324∙+16 000=44 800, 当且仅当x=x324(x >0),即x=18时等号成立,而18∉[12.5,16],∴Q(x)>44 800. 下面研究Q(x)在[12.5,16]上的单调性.对任意12.5≤x 1<x 2≤16,则x 2-x 1>0,x 1x 2<162<324. Q(x 2)-Q(x 1)=800[(x 2-x 1)+324(1211x x -)]=800×212112)324)((x x x x x x --<0,∴Q(x 2)>Q(x 1).∴Q(x)在[12.5,16]上是减函数. ∴Q(x)≥Q(16)=45 000.答:当污水处理池的长为16米,宽为12.5米时,总造价最低,最低造价为45 000元. 问题探究问题某人要买房,随着楼层的升高,上下楼耗费的精力增多,因此不满意度升高.当住第n 层楼时,上下楼造成的不满意度为n.但高处空气清新,嘈杂音较小,环境较为安静,因此随着楼层的升高,环境不满意度降低.设住第n 层楼时,环境不满意程度为n8.则此人应选第几楼,会有一个最佳满意度. 导思:本问题实际是求n 为何值时,不满意度最小的问题,先要根据问题列出一个关于楼层的函数式,再根据基本不等式求解即可.探究:设此人应选第n 层楼,此时的不满意程度为y. 由题意知y=n+n8. ∵n+n 8≥2248=⨯nn , 当且仅当n=n8,即n=22时取等号. 但考虑到n ∈N *,∴n≈2×1.414=2.828≈3,即此人应选3楼,不满意度最低.。