人教版七年级下册_相交线与平行线_提高题_
- 格式:doc
- 大小:337.00 KB
- 文档页数:3
人教版七年级下册数学第五章《相交线与平行线》单元练习题(含答案)一、单选题1.如图,AB CD ∥ ,点E 在CA 的延长线上若50BAE ∠=︒,则ACD ∠的大小为( )A .100°B .120°C .130°D .110°2.如图,要修建一条公路,从A 村沿北偏东75°方向到B 村,从B 村沿北偏西25°方向到C 村.若要保持公路CE 与从A 村到B 村的方向一致,则应顺时针转动的度数为( )A .50°B .75°C .100°D .105°3.如图,直线AB ∥CD ,如果∠1=70°,那么∠BOF 的度数是( )A .70°B .100°C .110°D .120°4.具有下列关系的两角:①互为补角;②同位角;③对顶角;④内错角;⑤邻补角;⑥同旁内角.其中一定有公共顶点的两角的对数为( )A .1对B .2对C .3对D .4对5.如图,将三角板与直尺贴在一起,使三角板的直角顶点C (∠ACB =90°)在直尺的一边上,若∠2=65°,则∠1的度数是( )A .15°B .25°C .35°D .65°6.下列命题中,真命题是( )A .一条直线截另外两条直线所得到的同位角相等B .两个无理数的和仍是无理数C .有公共顶点且相等的两个角是对顶角D .等角的余角相等7.如图,AB ∥CD ,AE 平分∠CAB 交CD 于点E ,若∠C=70°,则∠AED=( )A .55°B .125°C .135°D .140°8.如图,12l l //,点O 在直线1l 上,若90AOB ︒∠=,135︒∠=,则2∠的度数为()A .65°B .55°C .45°D .35°9.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是010.如图,直线AB ∥ CD ,∠ B=50°,∠ C=40°,则∠E 等于( )A .70°B .80°C .90°D .100°二、填空题 11.如图,AD ∥BC ,EF ∥BC ,BD 平分∠ABC ,图中与∠ADO 相等的角有_______ 个,分别是___________.因为AB ∥CD ,EF ∥AB ,根据_____________________________,所以_____________.12.如图,在正方形网格中,三角形DEF 是由三角形ABC 平移得到的,则点C 移动了________格.13.如图,在ABC ∆中,4AB =,6BC =,60B ∠=︒,将ABC ∆沿射线BC 的方向平移2个单位后,得到A B C '''∆,连结A C ',则A B C ∆''的周长为______.14.下面三个命题: ①若是方程组的解,则或; ②函数通过配方可化为; ③最小角等于的三角形是锐角三角形. 其中正确命题的序号为 .15.设圆上有n 个不同的点,连接任两点所得线段,将圆分成若干个互不重合的区域,记()f n 为区域数的最大值,则(5)_________f =,(6)________f =.16.如图,已知AB ∥ED,∠ABC=300,∠EDC=400,则∠BCD 的度数是 .17.点M ,N 在线段AB 上,且MB =6cm ,NB =9cm ,且N 是AM 的中点,则AB =___cm ,AN =____cm .18.把命题“三个角都相等的三角形是等边三角形”改写成“如果……,那么……”的形式是_____;该命题的条件是_____,结论是_____.三、解答题19.如图,已知点A 是射线OP 上一点.(1)过点A 画OQ 的垂线,垂足为B ;过点B 画OP 的平行线BC ;(2)若50POQ ∠=,求ABC ∠的度数.20.(1)问题背景:已知:如图①-1,//AB CD ,点P 的位置如图所示,连结,PA PC ,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(将下面的解答过程补充完整,括号内写上相应理由或数学式)解:(1)APC ∠与PAB ∠、PCD ∠之间的数量关系是:360APC PAB PCD ∠+∠+∠=︒(或360()APC PAB PCD ∠=︒∠+∠只要关系式形式正确即可)理由:如图①-2,过点P 作//PE AB .∵//PE AB (作图),∴180PAB APE ∠+∠=︒( ),∴//AB CD (已知)//PE AB (作图),∴//PE _______( ),∴CPE PCD ∠+∠=_______( ),∴180180360PAB APE CPE PCD ∠+∠+∠+∠=+︒=︒(等量代换)又∵APE CPE APC ∠+∠=∠(角的和差),∴360APC PAB PCD ∠+∠+∠=︒(等量代换)总结反思:本题通过添加适当的辅助线,从而利用平行线的性质,使问题得以解决.(2)类比探究:如图②,//AB CD ,点P 的位置如图所示,连结PA 、PC ,请同学们类比(1)的解答过程,试探究APC ∠与PAB ∠、PCD ∠之间有什么数量关系,并说明理由.(3)拓展延伸:如图③,//AB CD ,ABP ∠与CDP ∠的平分线相交于点1P ,若128P ∠=︒,求P ∠的度数,请直接写出结果,不说明理由.21.如图,抛物线y =ax 2+bx ﹣3与x 轴交于A (﹣1,0),B (3,0),与y 轴交于点C ,顶点为D .(1)求抛物线的解析式及点D的坐标.(2)在线段BC下方的抛物线上,是否存在异于点D的点E,使S△BCE=S△BCD?若存在,求出点E的坐标;若不存在,请说明理由.(3)点M3,2m⎛⎫- ⎪⎝⎭在抛物线上,点P为y轴上一动点,求2MP+2PC的最小值.22.如图,在96⨯网格中,已知△ABC,请按下列要求画格点三角形A' B' C'(三角形的三个顶点都是小正方形的顶点).(1)在图①中,将△ABC平移,使点O落在△ABC的边AB(不包括点A和点B)上;(2)在图②中,将△ABC平移,使点O落在△ABC的内部.23.如图.一次函数y=12x+1的图象L1交y轴于点A,一次函数y=﹣x+3的图象L2交x轴于点B,L1与L2交于点C.(1)求点A与点B的坐标;(2)求△ABC的面积.24.在如图所示的方格纸中,每个小正方形的边长为1,每个小正方形的顶点都叫做格点.△ABC的顶点A、B、C都在格点上.(1)过B作AC的平行线BD.(2)作出表示B到AC的距离的线段BE.(3)线段BE与BC的大小关系是:BE BC(填“>”、“<”、“=”).(4)△ABC的面积为.25.如图,点E在直线DF上,点B在直线AC上,若∠1=∠2,∠3=∠4,则∠A=∠F,请说明理由.解:∵∠1=∠2(已知)∠2=∠DGF∴∠1=∠DGF(____________)∴BD∥CE∴∠3+∠C=180°( )又∵∠3=∠4(已知)∴∠4+∠C=180°∴∥(同旁内角互补,两直线平行)∴∠A=∠F( ).26.如图,所有小正方形的边长都为1,A、B、C都在格点上.(1)过点C画直线AB的平行线(不写画法,下同);(2)过点A画直线BC的垂线,并注明垂足为G;过点A画直线AB的垂线,交BC于点H.(3)线段_____的长度是点A到直线BC的距离;(4)线段AG、AH的大小关系为AG_____AH.(填“>”或“<”或“=”),理由________.27.如图,AB∥CD,∠1=∠2,求证:AM∥CN参考答案1.C2.C3.C4.B5.B6.D7.B8.B9.A10.C11.4 ∠DOF、∠EOB、∠ABD、∠DBC平行于同一直线的两条直线平行CD∥EF 12.513.1214.②③15.16;3116.70°17. 12 318.如果一个三角形的三个角都相等,那么这个三角形是等边三角形一个三角形的三个角都相等这个三角形是等边三角形19.(2)40°20.(1)∠APC+∠PAB+∠PCD=360°,理由见解析;两直线平行,同旁内角互补;CD,如果两条直线都和第三条直线平行,那么这两条直线也互相平行;180°,两直线平行,同旁内角互补;(2)∠APC=∠PAB+∠PCD,(3)∠P=56°.21.(1)y=x2﹣2x﹣3,D的坐标为(1,﹣4);(2)存在异于点D的点E,使S△BCE=S△BCD,点E的坐标为(2,﹣3);(3)最小值为23.(1)A(0,1),B(3,0);(2)5 324. (3) <;(4) 9 26.(3)AG;(4)<.。
小专题(一)平行线中的“拐点”问题模型1 M型【例1】如图,已知AB∥CD,则∠B,∠BED,∠D之间有何数量关系?请说明理由.【思路点拨】由已知条件知,AB∥CD,但图形中没有截这两条平行线的第三条直线,因而不能直接用平行线的性质解决.为此可构造第三条直线,即过点E 作EF∥AB,于是BE,DE就可以作为第三条直线了.变式当点E运动到平行线的外侧1.已知AB∥CD,点E为AB,CD之外任意一点.(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;(2)如图2,探究∠CDE与∠B,∠BED的数量关系,并说明理由.2.(1)如图1中,AB∥CD,则∠E+∠G与∠B+∠F+∠D有何关系?(2)在图2中,若AB∥CD,又能得到什么结论?如果出现多个拐点时,可以作多条平行线,从而将多拐点问题转化为一个拐点问题来处理.M型最终的结论为:朝左的角之和等于朝右的角之和.模型2 铅笔型【例2】如图,直线AB∥CD,∠B,∠BED,∠D之间有什么关系呢?为什么?3.(1)①如图1,MA1∥NA2,则∠A1+∠A2=度;②如图2,MA1∥NA3,则∠A1+∠A2+∠A3=度;③如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=度;④图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=度;从上述结论中你发现了什么规律?(2)如图5,MA1∥NAn,则∠A1+∠A2+∠A3+…+∠An=度.小专题(二) 利用平行线的性质求角的度数类型1 直接利用平行线的性质与判定求角度1.如图,OC是∠AOB的平分线,l∥OB.若∠1=52°,则∠2的度数为( ) A.52° B.54° C.64° D.69°2.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF 的度数是( )A.20° B.25° C.30° D.35°3.如图,AB∥CD,CB∥DE,∠B=50°,则∠D=.4.如图,已知EF∥AD,∠1=∠2,∠BAC=80°,求∠AGD的度数.类型2 借助学具的特征求角度5.如图,将直尺与30°角的三角尺叠放在一起.若∠1=40°,则∠2的大小是( )A.40° B.60° C.70° D.80°6.如图,一块直角三角板的两锐角的顶点刚好落在平行线l1,l2上,已知∠C是直角,则∠1+∠2的度数等于( )A.75° B.90° C.105° D.120°类型3 折叠问题中求角度7.将一个长方形纸片折叠成如图所示的图形.若∠ABC=26°,则∠ACD=.8.如图,一个四边形纸片ABCD,∠B=∠D=90°,∠C=130°.把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕,则∠AEB的度数是.类型4 抽象出平行线模型求角度(建模思想)9.如图,∠AOB的一边OA为平面镜,∠AOB=38°,一束光线(与水平线OB平行)从点C射入经平面镜反射后,反射光线落在OB上的点E处,已知∠ADC=∠ODE.则∠DEB的度数是度.10.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是.小专题(三) 平行线的性质与判定的综合运用——教材P37T13的变式与应用教材母题(教材P37T13):完成下面的证明.(1)如图1,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF ∥CA.求证:∠FDE=∠A.证明:∵DE∥BA,∴∠FDE=.∵DF∥CA,∴∠A=.∴∠FDE=∠A.(2)如图2,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD.求证AC∥BD.证明:∵∠C=∠COA,∠D=∠BOD,又∠COA=∠BOD( ),∴∠C=.∴AC∥BD(内错角相等,两直线平行).(1)判定两直线平行的方法有五种:①平行线的定义;②平行公理的推论;③同位角相等,两直线平行;④内错角相等,两直线平行;⑤同旁内角互补,两直线平行.(2)判定两直线平行时,定义一般不常用,其他四种方法要灵活运用,推理时要注意书写格式.(3)由两条直线平行得到同位角相等、内错角相等或同旁内角互补,解题时应结合图形先确认所成的角是不是两平行线被第三条直线所截得的同位角或内错角或同旁内角,同时要学会简单的几何说理,做到每一步有理有据.1.如图,已知AD⊥BC,EF⊥BC,垂足分别为D,F,∠2+∠3=180°.试说明:∠GDC=∠B.下面是不完整的说理过程,请你将横线上的过程和括号里的理由补充完整.解:因为AD⊥BC,EF⊥BC(已知),①所以∠ADB=∠EFB= (垂直的定义).②所以 (同位角相等,两直线平行).③所以∠1+∠2= (两直线平行,同旁内角互补).④又因为∠2+∠3=180°( ),⑤所以∠1=∠3( ).⑥所以AB∥DG( ).⑦所以∠GDC=∠B( ).2.如图,点G在射线BC上,射线DE与AB,AG分别交于点H,M.若DF∥AB,∠B=75°,∠D=105°,求证:∠AME=∠AGC.3.如图,AB∥CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.求证:AD ∥BC.4.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的平分线.你能判断DF 与AB的位置关系吗?请说明理由.5.如图,AB⊥BD于点B,点E是BD上的点,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.求证:CD⊥BD.6.如图,把一张长方形ABCD的纸片沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上.若∠EFG=55°,求∠1,∠2的度数.7.如图,已知BC∥GE,∠AFG=∠1=50°.(1)求证:AF∥DE;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACQ的度数.参考答案:小专题(一)平行线中的“拐点”问题模型1 M型【例1】如图,已知AB∥CD,则∠B,∠BED,∠D之间有何数量关系?请说明理由.【思路点拨】由已知条件知,AB∥CD,但图形中没有截这两条平行线的第三条直线,因而不能直接用平行线的性质解决.为此可构造第三条直线,即过点E 作EF∥AB,于是BE,DE就可以作为第三条直线了.【解答】∠BED=∠B+∠D.理由:过点E作EF∥AB,则EF∥CD.∴∠B=∠BEF,∠D=∠DEF.∴∠BED=∠BEF+∠DEF=∠B+∠D.变式当点E运动到平行线的外侧1.已知AB∥CD,点E为AB,CD之外任意一点.(1)如图1,探究∠BED与∠B,∠D的数量关系,并说明理由;(2)如图2,探究∠CDE与∠B,∠BED的数量关系,并说明理由.解:(1)∠B=∠BED+∠D.理由如下:过点E作EF∥AB,则AB∥CD∥EF.∴∠BEF=∠B,∠D=∠DEF.∵∠BEF=∠BED+∠DEF,∴∠B=∠BED+∠D.(2)∠CDE=∠B+∠BED.理由如下:过点E作EF∥AB,则AB∥CD∥EF.∴∠B+∠BEF=180°,∠CDE+∠DEF=180°.又∵∠DEF=∠BEF-∠BED,∴∠CDE+∠BEF-∠BED=∠B+∠BEF,即∠CDE=∠B+∠BED.拓展平行线间有多个拐点2.(1)如图1中,AB∥CD,则∠E+∠G与∠B+∠F+∠D有何关系?(2)在图2中,若AB∥CD,又能得到什么结论?解:(1)∠BEF+∠FGD=∠B+∠EFG+∠D.理由:过点E,F,G分别作EM∥AB,FN∥AB,GH∥AB,由AB∥CD,得AB∥EM∥FN∥GH∥CD.∴∠BEM=∠B,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D.∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D.(2)在图2中,有∠E1+∠E2+∠E3+…+∠En=∠B+∠F1+∠F2+…+∠Fn-1+∠D.如果出现多个拐点时,可以作多条平行线,从而将多拐点问题转化为一个拐点问题来处理.M型最终的结论为:朝左的角之和等于朝右的角之和.模型2 铅笔型【例2】如图,直线AB∥CD,∠B,∠BED,∠D之间有什么关系呢?为什么?【解答】∠B+∠BED+∠D=360°.理由:过点E作EF∥AB.∵AB∥CD,∴AB∥CD∥EF.∴∠B+∠BEF=180°,∠D+∠DEF=180°. ∴∠B+∠BEF+∠D+∠DEF=360°,即∠B+∠BED+∠D=360°.拓展平行线间有多个拐点3.(1)①如图1,MA1∥NA2,则∠A1+∠A2=180度;②如图2,MA1∥NA3,则∠A1+∠A2+∠A3=360度;③如图3,MA1∥NA4,则∠A1+∠A2+∠A3+∠A4=540度;④图4,MA1∥NA5,则∠A1+∠A2+∠A3+∠A4+∠A5=720度;从上述结论中你发现了什么规律?(2)如图5,MA1∥NAn,则∠A1+∠A2+∠A3+…+∠An=180(n-1)度.解:每增加一个角,度数增加180°.小专题(二) 利用平行线的性质求角的度数类型1 直接利用平行线的性质与判定求角度1.如图,OC是∠AOB的平分线,l∥OB.若∠1=52°,则∠2的度数为( C ) A.52° B.54° C.64° D.69°2.如图,CD∥AB,点O在AB上,OE平分∠BOD,OF⊥OE,∠D=110°,则∠AOF 的度数是( D )A.20° B.25° C.30°D.35°3.如图,AB∥CD,CB∥DE,∠B=50°,则∠D=130°.4.如图,已知EF∥AD,∠1=∠2,∠BAC=80°,求∠AGD的度数.解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等).∵∠1=∠2,∴∠1=∠3(等量代换).∴AB∥DG(内错角相等,两直线平行).∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补).∵∠BAC=80°,∴∠AGD=100°.类型2 借助学具的特征求角度5.如图,将直尺与30°角的三角尺叠放在一起.若∠1=40°,则∠2的大小是( D )A.40° B.60° C.70° D.80°6.如图,一块直角三角板的两锐角的顶点刚好落在平行线l1,l2上,已知∠C是直角,则∠1+∠2的度数等于( B )A.75° B.90° C.105° D.120°类型3 折叠问题中求角度7.将一个长方形纸片折叠成如图所示的图形.若∠ABC=26°,则∠ACD=128°.8.如图,一个四边形纸片ABCD,∠B=∠D=90°,∠C=130°.把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕,则∠AEB的度数是65°.类型4 抽象出平行线模型求角度(建模思想)9.如图,∠AOB的一边OA为平面镜,∠AOB=38°,一束光线(与水平线OB平行)从点C射入经平面镜反射后,反射光线落在OB上的点E处,已知∠ADC=∠ODE.则∠DEB的度数是76度.10.如图1是我们常用的折叠式小刀,图2中刀柄外形是一个梯形挖去一个小半圆,其中刀片的两条边缘线可看成两条平行的线段,转动刀片时会形成如图2所示的∠1与∠2,则∠1与∠2的度数和是90°.小专题(三) 平行线的性质与判定的综合运用——教材P37T13的变式与应用教材母题(教材P37T13):完成下面的证明.(1)如图1,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF ∥CA.求证:∠FDE=∠A.证明:∵DE∥BA,∴∠FDE=∠BFD(两直线平行,内错角相等).∵DF∥CA,∴∠A=∠BFD(两直线平行,同位角相等).∴∠FDE=∠A.(2)如图2,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD.求证AC∥BD.证明:∵∠C=∠COA,∠D=∠BOD,又∠COA=∠BOD(对顶角相等),∴∠C=∠D.∴AC∥BD(内错角相等,两直线平行).(1)判定两直线平行的方法有五种:①平行线的定义;②平行公理的推论;③同位角相等,两直线平行;④内错角相等,两直线平行;⑤同旁内角互补,两直线平行.(2)判定两直线平行时,定义一般不常用,其他四种方法要灵活运用,推理时要注意书写格式.(3)由两条直线平行得到同位角相等、内错角相等或同旁内角互补,解题时应结合图形先确认所成的角是不是两平行线被第三条直线所截得的同位角或内错角或同旁内角,同时要学会简单的几何说理,做到每一步有理有据.1.如图,已知AD⊥BC,EF⊥BC,垂足分别为D,F,∠2+∠3=180°.试说明:∠GDC=∠B.下面是不完整的说理过程,请你将横线上的过程和括号里的理由补充完整.解:因为AD⊥BC,EF⊥BC(已知),①所以∠ADB=∠EFB=90°(垂直的定义).②所以AD∥EF(同位角相等,两直线平行).③所以∠1+∠2=180°(两直线平行,同旁内角互补).④又因为∠2+∠3=180°(已知),⑤所以∠1=∠3(同角的补角相等).⑥所以AB∥DG(内错角相等,两直线平行).⑦所以∠GDC=∠B(两直线平行,同位角相等).2.如图,点G在射线BC上,射线DE与AB,AG分别交于点H,M.若DF∥AB,∠B=75°,∠D=105°,求证:∠AME=∠AGC.证明:∵DF∥AB(已知),∴∠D=∠BHM(两直线平行,同位角相等).又∵∠B=75°,∠D=105°(已知),∴∠B+∠BHM=75°+105°=180°.∴DE∥BC(同旁内角互补,两直线平行).∴∠AME=∠AGC(两直线平行,同位角相等).3.如图,AB∥CD,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.求证:AD ∥BC.证明:∵AE平分∠BAD(已知),∴∠1=∠2(角平分线的定义).∵AB∥CD(已知),∴∠1=∠CFE(两直线平行,同位角相等).又∵∠1=∠2(已证),∠CFE=∠E(已知),∴∠2=∠E(等量代换).∴AD∥BC(内错角相等,两直线平行).4.如图,∠E=∠1,∠3+∠ABC=180°,BE是∠ABC的平分线.你能判断DF 与AB的位置关系吗?请说明理由.解:DF∥AB.理由:∵BE是∠ABC的平分线,∴∠1=∠2(角平分线的定义).∵∠E=∠1(已知),∴∠E=∠2(等量代换).∴AE∥BC(内错角相等,两直线平行).∴∠A+∠ABC=180°(两直线平行,同旁内角互补).∵∠3+∠ABC=180°(已知),∴∠A=∠3(等量代换).∴DF∥AB(同位角相等,两直线平行).5.如图,AB⊥BD于点B,点E是BD上的点,AE平分∠BAC,CE平分∠ACD,且∠1+∠2=90°.求证:CD⊥BD.证明:∵AE平分∠BAC,CE平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的性质).∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2).∵∠1+∠2=90°(已知),∴∠BAC+∠ACD=180°.∴AB∥CD(同旁内角互补,两直线平行).∴∠B+∠D=180°(两直线平行,同旁内角互补).∴∠D=180°-∠B(等式的性质).∵AB⊥BD(已知),∴∠B=90°(垂直的定义).∴∠D=90°,即CD⊥BD.6.如图,把一张长方形ABCD的纸片沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上.若∠EFG=55°,求∠1,∠2的度数.解:∵AD∥BC,∠EFG=55°,∴∠2=∠GED,∠DEF=∠EFG=55°(两直线平行,内错角相等).由折叠,知∠GEF=∠DEF=55°.∴∠GED=110°.∴∠2=110°.∴∠1=180°-∠2=70°(两直线平行,同旁内角互补).7.如图,已知BC∥GE,∠AFG=∠1=50°.(1)求证:AF∥DE;(2)若AQ平分∠FAC,交BC于点Q,且∠Q=15°,求∠ACQ的度数.解:(1)证明:∵BC∥GE,∴∠E=∠1=50°.∵∠AFG=∠1=50°,∴∠E=∠AFG=50°.∴AF∥DE.(2)过点A作AP∥GE,∵BC∥GE,∴AP∥GE∥BC.∴∠FAP=∠AFG=50°,∠PAQ=∠Q=15°.∴∠FAQ=∠FAP+∠PAQ=65°.∵AQ平分∠FAC,∴∠CAQ=∠FAQ=65°.∴∠CAP=80°.∴∠ACQ=180°-∠CAP=100°.。
2022-2023学年人教版七年级数学下册《第5章相交线与平行线》单元综合练习题(附答案)一.选择题1.如图,直线AB、CD相交于点O,且∠AOC+∠BOD=120°,则∠AOD的度数为()A.130°B.120°C.110°D.100°2.如图,直线AB、CD相交于点O,OE平分∠AOC,若∠AOE=35°,则∠BOD的度数是()A.40°B.50°C.60°D.70°3.有下列命题:①两条不相交的直线叫平行线;②同一平面内,过一点有且只有一条直线与已知直线垂直;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线互相垂直;④有公共顶点的两个角是对顶角.其中正确命题的个数是()A.1B.2C.3D.44.如图所示,下列说法中错误的是()A.∠A和∠3是同位角B.∠2和∠3是同旁内角C.∠A和∠B是同旁内角D.∠C和∠1是内错角5.如图,已知直线c与a、b分别交于点A、B,且∠1=120°,当∠2=()时,直线a∥b.A.60°B.120°C.30°D.150°6.如图,将Rt△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42B.96C.84D.487.如图,AB∥CD,FE⊥DB,垂足为E,∠1=60°,则∠2的度数是()A.60°B.50°C.40°D.30°8.如图,已知AB∥DE,∠ABC=75°,∠CDE=145°,则∠BCD的值为()A.20°B.30°C.40°D.70°二.填空题9.用一张长方形纸条折成如图所示图形,如果∠1=130°,那么∠2=.10.如图,已知∠ABD=∠PCE,AB∥CD,∠AEC的角平分线交直线CD于点H,∠AFD =86°,∠H=22°,∠PCE=°.11.如图,OP∥QR∥ST,若∠2=100°,∠3=120°,则∠1=.12.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠FEC=30°,∠ACF=20°,则∠DAC 的度数为°.13.如图,已知AB∥CD,∠A=36°,∠C=120°,则∠F﹣∠E的大小是°.14.如图,已知AB∥CD,P为直线AB,CD外一点,BF平分∠ABP,DE平分∠CDP,BF 的反向延长线交DE于点E,若∠FED=a,试用a表示∠P为.三.解答题15.如图,已知:∠B=28°,∠A+20°=∠1.(1)求∠1的度数;(2)若∠ACD=66°,求证:AB∥CD.16.如图,B是线段AC上一点,已知∠1=∠E,∠2=∠D,且BD⊥BE.试说明AE∥CD.17.如图,点F在线段AB上,点E,G在线段CD上,FG∥AE,∠1=∠2.(1)求证:AB∥CD;(2)若BC平分∠ABD,∠D=112°,求∠C的度数.18.如图:△ABC平移后的图形是△A'B'C',其中C与C'是对应点(1)请画出平移后的△A'B'C'.(2)请计算:△ABC在平移过程中扫过的面积.19.如图,A、E、B三点在一条直线上,C、F、D三点在一条直线上,给出下面三个论断:①∠1=∠2;②AB∥CD;③∠B=∠C;试以其中的两个论断作为条件,另一个论断作为结论,写出一个正确的命题,并说明理由.20.如图,已知:点A在射线BG上,∠1=∠2,∠1+∠3=180°,∠EAB=∠BCD.求证:EF∥CD.21.根据题意解答:(1)如图1,点A、C、F、B在同一直线上,CD平分∠ECB,FG∥CD,若∠ECA为α度,求∠GFB的度数(用关于a的代数式表示),并说明理由.(2)如图2,某停车场入口大门的栏杆如图所示,BA⊥地面AE,CD∥地面AE,求∠1+∠2的度数,并说明理由.(3)如图3,若∠3=40°,∠5=50°,∠7=70°,则∠1+∠2+∠4+∠6+∠8=度.参考答案一.选择题(共8小题)1.解:∵∠AOC=∠BOD,∠AOC+∠BOD=120°,∴∠AOC=60°,∴∠AOD=180°﹣60°=120°,故选:B.2.解:∵直线AB、CD相交于点O,OE平分∠AOC,∠AOE=35°,∴∠EOC=∠AOE=35°,∴∠AOC=∠BOD=70°.故选:D.3.解:①同一平面内,两条不相交的直线叫平行线;故不符合题意;②同一平面内,过一点有且只有一条直线与已知直线垂直;故符合题意;③两条直线相交所成的四个角中,如果有两个角相等,那么这两条直线不一定互相垂直;故不符合题意;④有公共顶点,两边互为反向延长线的两个角是对顶角;故不符合题意;故其中正确命题的个数是1,故选:A.4.解:A、∠A和∠3是同位角,此选项说法正确;B、∠2和∠3是邻补角,此选项说法错误;C、∠A和∠B是同旁内角,此选项说法正确;D、∠C和∠1是内错角,此选项说法正确;故选:B.5.解:∵∠1=120°,∠1与∠3是对顶角,∴∠1=∠3=120°,∵∠2=∠3=120°,∴直线a∥b,故选:B.6.解:由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC=S梯形ABEO=(AB+OE)•BE=(10+6)×6=48.故选:D.7.解:在△DEF中,∠1=60°,∠DEF=90°,∴∠D=180°﹣∠DEF﹣∠1=30°.∵AB∥CD,∴∠2=∠D=30°.故选:D.8.解:延长ED交BC于F,如图所示:∵AB∥DE,∠ABC=75°,∴∠MFC=∠B=75°,∵∠CDE=145°,∴∠FDC=180°﹣145°=35°,∴∠C=∠MFC﹣∠MDC=75°﹣35°=40°,故选:C.二.填空题9.解:∵长方形的对边互相平行,∴∠3=180°﹣∠1=180°﹣130°=50°,由翻折的性质得,∠2=(180°﹣∠3)=(180°﹣50°)=65°.故答案为:65°.10.解:∵AB∥CD,∴∠ABD=∠PDB,∵∠ABD=∠PCE,∴∠PDB=∠PCE,∴BD∥CE,∴∠CEG=∠DGH,∵EH平分∠AEC,∴∠CEH=∠AEH,∵∠DGH=∠EGF,∴∠EGF=∠GEF,∵∠AFD=∠AEG+∠EGF=2∠EGF=86°,∴∠EGF=43°,∴∠DGH=43°,∴∠PCE=∠PDG=∠H+∠DGH=65°,故答案为:65.11.解:∵OP∥QR∥ST,∠2=100°,∠3=120°,∴∠2+∠PRQ=180°,∠3=∠SRQ=120°,∴∠PRQ=180°﹣100°=80°,∴∠1=∠SRQ﹣∠PRQ=40°,故答案是40°.12.解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠BCE=∠FEC=30°,∵CE平分∠BCF,∴∠BCF=2∠BCE=60°,∴∠ACB=∠BCF+∠ACF=80°,∵AD∥BC,∴∠DAC+∠ACB=180°,∴∠DAC=100°.故答案为100.13.解:如图,过点E作EG∥AB,过点F作FH∥AB,∵AB∥CD,∴AB∥EG∥FH∥CD,∴∠A=∠1=36°,∠2=∠3,∠4=180°﹣∠C=180°﹣120°=60°∴∠EFC﹣∠AEF=∠3+∠4﹣∠1﹣∠2=∠4﹣∠1=60°﹣36°=24°.故答案为:24.14.解:延长AB交PD于点G,延长FE交CD于点H,∵BF平分∠ABP,DE平分∠CDP,∴∠1=∠2,∠3=∠4,∵AB∥CD,∴∠1=∠5,∠6=∠PDC=2∠3,∵∠PBG=180°﹣2∠1,∴∠PBG=180°﹣2∠5,∴∠5=90°﹣∠PBG,∵∠FED=180°﹣∠HED,∠5=180°﹣∠EHD,∠EHD+∠HED+∠3=180°,∴180°﹣∠5+180°﹣∠FED+∠3=180°,∴∠FED=180°﹣∠5+∠3,∴∠FED=180°﹣(90°﹣∠PBG)+∠6=90°+(∠PBG+∠6)=90°+(180°﹣∠P)=180°﹣∠P,∵∠FED=a,∴a=180°﹣∠P∴∠P=360°﹣2a.故答案为:∠P=360°﹣2a.三.解答题15.(1)解:在△ABC中,∵∠A+∠B+∠1=180°又∵∠B=28°,∠A+20°=∠1∴∠A+28°+∠A+20°=180°∴∠A=66°∴∠1=∠A+20°=86°.(2)证明:∵∠A=66°,∠ACD=66°∴AB∥CD.16.解:∵BD⊥BE,∴∠DBE=90°,∴∠1+∠2=90°,∴∠E+∠D=90°,∴∠A+∠C=180°,∴AE∥CD.17.解:(1)证明:∵FG∥AE,∴∠FGC=∠2,∵∠1=∠2,∴∠1=∠FGC,∴AB∥CD;(2)∵AB∥CD,∴∠ABD+∠D=180°,∵∠D=112°,∴∠ABD=180°﹣112°=68°,∵BC平分∠ABD,∴∠ABC=ABD=34°,∵AB∥CD,∴∠C=∠ABC=34°.所以∠C的度数为34°.18.解:(1)如图所示,△A'B'C'即为所求.(2)△ABC在平移过程中扫过的面积=3×5+×4×3=21.19.解:答案不唯一.如果①∠1=∠2,②AB∥CD,那么③∠B=∠C;理由如下:∵∠1=∠2,∠=∠3,∴∠2=∠3,∴EC∥BF,∴∠AEC=∠B,∵AB⊥CD,∴∠AEC=∠C,∴∠B=∠C.20.证明:∵∠1+∠3=180°,∴BG∥EF,∵∠1=∠2,∴AE∥BC,∴∠EAC=∠ACB,∵∠EAB=∠BCD,∴∠BAC=∠ACD,∴BG∥CD,∴EF∥CD.21.解:(1)∵CD平分∠ECB,FG∥CD,∵∠ECD=∠DCF=∠GFB=(180°﹣∠ECA),∵∠ECA=α,∴∠GFB=(180°﹣a)=90°﹣a,答:∠GFB的度数为90°﹣.(2)如图,过点B作BM∥AE,则BM∥AE∥CD,∴∠1+∠CBM=180°,∠MBA+∠BAE=180°,∵AB⊥AE,∴∠BAE=MBA=90°,∴∠1+∠2+∠BAE=180°×2,∴∠1+∠2=360°﹣∠BAE=360°﹣90°=270°,答:∠1+∠2的度数为270°.(3)分别以各个角的顶点,作∠2的长边的平行线,根据平行线的性质,两直线平行,内错角相等,可得,∠3+∠5+∠7=∠2+∠4+∠6+∠1+∠8=40°+50°+70°=160°.故答案为:160.。
第五章相交线与平行线类型一邻补角与对顶角巧分辨1.如图1所示的几个图形中,能构成对顶角的是( )图12.如图2,三条直线AB,CD,EF相交于点O,则∠1的邻补角为______________.图23.如图3,直线AB,CD交于点O,射线OM平分∠AOC.若∠BOD=76°,求∠AOM的度数.图3类型二区分同位角、内错角、同旁内角有原则4.如图4,与∠1构成内错角的是( )图4A.∠2 B.∠3 C.∠4 D.∠55.如图5,直线DE经过点C,则∠A的内错角是________,∠A的同旁内角是________________.图56.如图6,E是AB延长线上一点,指出下面各组中的两个角是由哪两条直线被哪一条直线所截形成的?它们是什么角?(1)∠A和∠D;(2)∠A和∠CBA;(3)∠C和∠CBE.图6类型三掌握相交的特殊情形——垂直7.如图7,已知AB,CD相交于点O,OE⊥CD,垂足为O,∠AOC=30°,则∠BOE等于( )图7A .30°B .60°C .120°D .130°8.如图8所示,在直角三角形ABC 中,∠ACB=90°,CD⊥AB 于点D ,则点A 到BC 的距离为线段______的长度;点A到CD 的距离为线段______的长度;点C 到AB 的距离为线段______的长度.图8类型四 平行线的判定和性质9.如图9,直线a ,b 被直线c 所截,下列说法正确的是( )A .当∠1=∠2时,一定有a∥bB .当a∥b 时,一定有∠1=∠2C .当a∥b 时,一定有∠1+∠2=90°D .当∠1+∠2=180°时,一定有a∥b10.如图10,已知AB∥CD,∠1=60°,则∠2=________°.图9图1011.如图11,不添加辅助线,请你写出一个能判定EB∥AC的条件:________________________.图1112.如图12,AB∥CD,直线EF交AB于点E,交CD于点F,EG平分∠BEF,交CD于点G,∠1=50°,求∠2的度数.图1213.如图13,已知∠1+∠2=180°,∠DEF=∠A,试判断∠ACB与∠DEB的大小关系,并说明理由.图1314.如图14所示,已知OP∥QR∥ST,连接PR,SR,猜想∠1,∠2,∠3三个角之间的关系,并说明理由.图14类型五命题与定理须细辨15.下列语句不是命题的是( )A.若a<0,b<0,则ab>0B.用三角板画一个60°的角C.对顶角相等D.互为相反数的两个数的和为016.下列命题中,是真命题的是( )A.对顶角相等B.同位角相等C.若a2=b2,则a=bD.若a>b,则-2a>-2b17.将下列命题改写成“如果……那么……”的形式.(1)直角都相等;(2)末位数字是5的整数能被5整除;(3)三角形的内角和是180°.类型六平移平移的特征:图形的平移变换中,图形的形状、大小、方向都不发生改变,只是改变了图形的位置;平移前后图形的对应点的连线平行(或在同一条直线上)且相等.18.下列现象中,不属于平移的是( )A.钟表的指针转动B.电梯的升降C.火车在笔直的铁轨上行驶D.传送带上物品的运动19.如图15,将周长为8的三角形ABC沿BC方向向右平移1个单位长度得到三角形DEF,则四边形ABFD的周长为( )图15A.6 B.8 C.10 D.12类型七方程思想在几何中的应用20.如图16,已知a∥b,∠1=(3x+70)°,∠2=(5x+22)°,求∠1的补角的度数.图16类型八开放型问题21.给出下列三个论断:①∠B+∠D=180°;②AB∥CD;③BC∥DE.请你以其中两个论断作为已知条件,填入“已知”栏中,以一个论断作为结论,填入“结论”栏中,使之成为一道由已知可得到结论的题目,并说明理由.已知:如图17,________________________.结论:________________________.图17类型九探究型问题22.【阅读材料】在“相交线与平行线”的学习中,有这样一道典型问题:如图18①,AB∥CD,点P在AB与CD之间,可得结论:∠BAP+∠APC+∠PCD=360°.理由如下:过点P作PQ∥AB.∴∠BAP+∠APQ=180°.∵AB∥CD,PQ∥AB,∴PQ∥CD,∴∠PCD+∠CPQ=180°.∴∠BAP+∠APC+∠PCD=∠BAP+∠APQ+∠CPQ+∠PCD=180°+180°=360°.【问题解决】(1)如图②,AB∥CD,点P在AB与CD之间,可得∠BAP,∠APC,∠PCD间的等量关系是________________________________________________________________________;(2)如图③,AB∥CD,点P ,E 在AB 与CD 之间,AE 平分∠BAP,CE 平分∠DCP,写出∠AEC 与∠APC 间的等量关系,并写出理由;(3)如图④,AB∥CD,点P ,E 在AB 与CD 之间,∠BAE=13∠BAP,∠DCE=13∠DCP ,可得∠AEC与∠APC 间的等量关系是________________________.图18答案1.D2.∠BOE 和∠AOF 3.解:∵∠BOD=76°, ∴∠AOC=∠BOD=76°. ∵射线OM 平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°.4.B5.∠ACD ∠ACB,∠ACE 和∠B6.解:(1)∠A 和∠D 是直线AE ,DC 被直线AD 所截而成的同旁内角. (2)∠A 和∠CBA 是直线AD ,BC 被直线AE 所截而成的同旁内角. (3)∠C 和∠CBE 是直线DC ,AE 被直线BC 所截而成的内错角. 7.C 8.AC AD CD 9.D 10.12011.答案不唯一,如∠C=∠EBD 12.解:∵AB∥CD,∴∠2=∠BEG,∠BEF+∠1=180°. ∵∠1=50°,∴∠BEF=130°. ∵EG 平分∠BEF,∴∠BEG=12∠BEF=65°, ∴∠2=65°.13.解:∠ACB=∠DEB.理由:∵∠1+∠2=180°,∠1+∠DFE=180°,∴∠2=∠DFE,∴AB∥EF,∴∠DEF=∠BDE.∵∠DEF=∠A,∴∠A=∠BDE,∴AC∥DE,∴∠ACB=∠DEB.14.解:∠2+∠3=180°+∠1.理由:∵OP∥QR,∴∠2+∠QRP=180°,∴∠QRP=180°-∠2.∵QR∥ST,∴∠3=∠QRS=∠1+∠QRP=∠1+180°-∠2.∴∠2+∠3=180°+∠1.15.B16. A17.解:(1)如果几个角是直角,那么它们都相等.(2)如果一个整数的末位数字是5,那么它能被5整除.(3)如果一个图形是三角形,那么它的内角和是180°.18.A19. C20.解:如图,因为a∥b,所以∠1=∠3.又因为∠1=(3x+70)°,∠2=(5x+22)°,∠2+∠3=180˚,所以(3x +70)°+(5x+22)°=180°,解得x=11,所以∠1=(3x+70)°=103°.又因为180°-103°=77°,所以∠1的补角的度数为77°.21.解:答案不唯一,符合题意的情况有3种,即①②→③;①③→②;②③→①,任选其中一种即可.已知:如图17,∠B+∠D=180°,AB∥CD.结论:BC∥DE.理由:因为AB∥CD,所以∠B=∠C(两直线平行,内错角相等).又因为∠B+∠D=180°,所以∠C+∠D=180°,所以BC∥DE(同旁内角互补,两直线平行).22.解:(1)如图②,作PE∥AB,得∠APE=∠BAP.∵AB∥CD,AB∥PE,∴CD∥PE,∴∠CPE=∠PCD,∴∠APC=∠APE+∠CPE=∠BAP+∠PCD.故答案为∠APC=∠BAP+∠PCD.(2)∠APC=2∠AE C.理由:设∠EAB=∠EAP=x,∠ECD=∠ECP=y.由(1)可知:∠AEC=x+y,∠APC=2x+2y,∴∠APC=2∠AE C.(3)设∠EAB=a,∠DCE=b,则∠BAP=3a,∠DCP=3b. 由题意得∠AEC=a+b,∠APC+3a+3b=360°,∴∠APC+3∠AEC=360°.故答案为∠APC+3∠AEC=360°.。
七年级下册压轴题50道人教版一、相交线与平行线1. 如图,直线AB、CD相交于点O,OE平分∠BOD,OF平分∠COE,∠AOD:∠BOE = 4:1,求∠AOF的度数。
解析:设∠BOE = x°,因为OE平分∠BOD,所以∠BOD = 2∠BOE=2x°。
又因为∠AOD + ∠BOD = 180°,且∠AOD:∠BOE = 4:1,所以∠AOD = 4x°。
则4x+2x = 180,6x=180,x = 30。
所以∠BOD = 60°,∠COE=180°∠BOE = 150°。
因为OF平分∠COE,所以∠COF=(1)/(2)∠COE = 75°。
∠AOC=∠BOD = 60°,所以∠AOF=∠AOC+∠COF = 60°+75° = 135°。
2. 已知直线l_1∥ l_2,点A,B分别在l_1,l_2上,点P是l_1,l_2间一点,连接PA,PB。
(1) 如图1,若∠A = 50°,∠B = 70°,求∠APB的度数;(2) 如图2,点C在l_1上方,连接PC,AC,若∠PAC = 150°,∠PBC = 130°,求∠APC + ∠BPC的度数。
解析:(1) 过点P作PD∥ l_1,因为l_1∥ l_2,所以PD∥ l_2。
∠A = ∠APD = 50°(两直线平行,内错角相等),∠B = ∠BPD=70°。
所以∠APB=∠APD + ∠BPD = 50°+70° = 120°。
(2) 过点P作PE∥ l_1,过点C作CF∥ l_1。
因为l_1∥ l_2,所以PE∥ l_2,CF∥ l_2。
∠PAC + ∠APE = 180°,所以∠APE = 180° 150°=30°。
2020-2021学年下学期七年级数学单元提升卷【人教版】第五章相交线与平行线(提高卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共23题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题2分,共24分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.下列各图中,∠1与∠2是对顶角的是()A.B.C.D.【答案】D【分析】根据对顶角的概念判断即可.【解答】解:A、∠1与∠2不是对顶角;B、∠1与∠2不是对顶角;C、∠1与∠2不是对顶角;D、∠1与∠2是对顶角;故选:D.【知识点】对顶角、邻补角2.如图,能判定DE∥AC的条件是()A.∠3=∠C B.∠1=∠3C.∠2=∠4D.∠1+∠2=180°【答案】A【分析】直接利用平行线的判定方法分别分析得出答案.【解答】解:A、当∠3=∠C时,DE∥AC,符合题意;B、当∠1=∠3时,EF∥BC,不符合题意;C、当∠2=∠4时,无法得到DE∥AC,不符合题意;D、当∠1+∠2=180°时,EF∥BC,不符合题意;故选:A.【知识点】平行线的判定3.如图,已知AB∥CD.直线EF分别交AB、CD于点E、F,EG平分∠AEF,若∠1=65°,则∠2的度数是()A.70°B.65°C.60°D.50°【答案】D【分析】根据平行线及角平分线的性质即可求解.【解答】解:∵AB∥CD,∴∠AEG=∠1(两直线平行,内错角相等),∵EG平分∠AEF,∴∠GEF=∠AEG=∠1,∵∠1=65°,∴∠GEF=∠1=65°,∴∠2=180°﹣∠GEF﹣∠1=180°﹣65°﹣65°=50°,故选:D.【知识点】平行线的性质4.如图,一个直角三角板的直角顶点落在直尺上的一条边上,若∠1=58°,则∠2的大小为()A.48°B.38°C.42°D.32°【答案】D【分析】根据对顶角相等和直角三角形的性质,可以得到∠2的度数.【解答】解:∵∠1=58°,∠1=∠3,∴∠3=58°,∵∠3+∠2=90°,∴∠2=32°,故选:D.【知识点】平行线的性质5.如图,已知AB∥CD,∠BAE=87°,∠DCE=121°,则∠E的度数为()A.28°B.34°C.56°D.46°【答案】B【分析】延长DC交AE于F,利用平行线的性质可得∠EFC的度数,然后再利用三角形外角的性质计算出∠E的度数即可.【解答】解:延长DC交AE于F,∵AB∥CD,∴∠A=∠EFC=87°,∵∠DCE=121°,∴∠E=121°﹣87°=34°,故选:B.【知识点】平行线的性质6.如图摆放的一副学生用直角三角板,∠F=30°,∠C=45°,AB与DE相交于点G,当EF∥BC时,∠EGB的度数是()A.135°B.120°C.115°D.105°【答案】D【分析】过点G作HG∥BC,则有∠HGB=∠B,∠HGE=∠E,又因为△DEF和△ABC都是特殊直角三角形,∠F=30°,∠C=45°,可以得到∠E=60°,∠B=45°,有∠EGB=∠HGE+∠HGB即可得出答案.【解答】解:过点G作HG∥BC,∵EF∥BC,∴GH∥BC∥EF,∴∠HGB=∠B,∠HGE=∠E,∵在Rt△DEF和Rt△ABC中,∠F=30°,∠C=45°∴∠E=60°,∠B=45°∴∠HGB=∠B=45°,∠HGE=∠E=60°∴∠EGB=∠HGE+∠HGB=60°+45°=105°故∠EGB的度数是105°,故选:D.【知识点】平行线的性质、三角形内角和定理7.如图,AB∥CD,∠BED=110°,BF平分∠ABE,DF平分∠CDE,则∠BFD=()A.130°B.115°C.110°D.125°【答案】D【分析】分别过E,F两点作AB∥ME,FN∥AB,根据平行线的性质可得∠BED+∠ABE+∠CDE=360°,∠BFD=∠ABF+∠CDF,再根据∠BED=110°,结合角平分线的定义可求解.【解答】解:分别过E,F两点作AB∥ME,FN∥AB,∴∠ABE+∠BEM=180°,∠ABF=∠BFN,∵AB∥CD,∴CD∥ME,FN∥CD,∴∠CDE+∠DEM=180°,∠CDF=∠DFN,∴∠BED+∠ABE+∠CDE=360°,∠BFD=∠ABF+∠CDF,∵∠BED=110°,∴∠ABE+∠CDE=250°,∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠ABF,∠CDE=2∠CDF,∴∠BFD=∠ABF+∠CDF=(∠ABE+∠CDE)=125°.故选:D.【知识点】平行线的性质8.下列说法正确的个数有()①不相交的两条直线叫做平行线;②过一点有且只有一条直线垂直于已知直线;③同一平面内,过一点有且只有一条直线与已知直线平行;④直线外一点到这条直线的垂线段叫做这点到这条直线的距离.A.0个B.1个C.2个D.3个【答案】A【分析】根据各个小题中的说法,可以判断各个小题中的说法是否正确,从而可以解答本题.【解答】解:在同一个平面内,不相交的两条直线叫做平行线,如果不在同一个平面内,不相交的两条直线不一定是平行线,故①错误;在同一个平面内,过一点有且只有一条直线垂直于已知直线,故②错误;同一平面内,过直线外一点有且只有一条直线与已知直线平行,故③错误;直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离,故④错误;故选:A.【知识点】平行公理及推论、点到直线的距离、平行线、平行线的性质、垂线9.如图,平面内∠AOB=∠COD=90°,∠COE=∠BOE,OF平分∠AOD,则以下结论:①∠AOE=∠DOE;②∠AOD+∠COB=180°;③∠COB﹣∠AOD=90°;④∠COE+∠BOF=180°.其中正确结论的个数有()A.4个B.3个C.2个D.0个【答案】B【分析】由∠AOB=∠COD=90°根据等角的余角相等得到∠AOC=∠BOD,而∠COE=∠BOE,即可判断①正确;由∠AOD+∠COB=∠AOD+∠AOC+90°,而∠AOD+∠AOC=90°,即可判断,②确;由∠COB﹣∠AOD=∠AOC+90°﹣∠AOD,没有∠AOC≠∠AOD,即可判断③不正确;由OF平分∠AOD得∠AOF=∠DOF,由①得∠AOE=∠DOE,根据周角的定义得到∠AOF+∠AOE=∠DOF+∠DOE=180°,即点F、O、E共线,又∠COE=∠BOE,即可判断④正确.【解答】解:∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,而∠COE=∠BOE,∴∠AOE=∠DOE,所以①正确;∠AOD+∠COB=∠AOD+∠AOC+90°=90°+90°=180°,所以②正确;∠COB﹣∠AOD=∠AOC+90°﹣∠AOD,而∠AOC≠∠AOD,所以③不正确;∵OF平分∠AOD,∴∠AOF=∠DOF,而∠AOE=∠DOE,∴∠AOF+∠AOE=∠DOF+∠DOE=180°,即点F、O、E共线,∵∠COE=∠BOE,∴∠COE+∠BOF=180°,所以④正确.故选:B.【知识点】垂线、角平分线的定义10.如图,直线AB∥CD,点F在直线AB上,点N在直线CD上,∠EF A=25°,∠FGH=90°,∠HMN=25°,∠CNP=30°,则∠GHM=()A.45°B.50°C.55°D.60°【答案】D【分析】延长HG交直线AB于点K,延长PM交直线AB于点S.利用平行线的性质求出∠KSM,利用邻补角求出∠SMH,利用三角形的外角与内角的关系,求出∠SKG,再利用四边形的内角和求出∠GHM.【解答】解:延长HG交直线AB于点K,延长PM交直线AB于点S.∵AB∥CD,∴∠KSM=∠CNP=30°.∵∠EF A=∠KFG=25°,∠KGF=180°﹣∠FGH=90°,∠SMH=180°﹣∠HMN=155°,∴∠SKH=∠KFG+∠KGF=25°+90°=115°.∵∠SKH+∠GHM+∠SMH+∠KSM=360°,∴∠GHM=360°﹣115°﹣155°﹣30°=60°.故选:D.【知识点】平行线的性质11.如图,△ABC中,C、C′关于AB对称,B、B′关于AC对称,D、E分别在AB、AC上,且C′D∥BC∥B′E,BE,CD交于点F,若∠BFD=α,∠A=β,则α与β之间的关系为()A.2β+α=180°B.α=2βC.α=D.α=180°﹣【答案】B【分析】利用四边形内角和定理,三角形内角和定理,平行线的性质解决问题即可.【解答】解:在△ABC中,∵∠A=β,∴∠ABC+∠ACB=180°﹣β,∵C′D∥BC∥B′E,∴∠ABC=∠C′DB,∠ACB=∠B′EC,∵C、C′关于AB对称,∴AB垂直平分线段CC′,∴∠C′DB=∠CDB,同理∠B′EC=∠BEC,∴∠CDB+∠BEC=180°﹣β,∵∠ADC+∠CDB=180°,∠AEB+∠BEC=180°,∴∠ADC+∠AEB=180°+β,∵∠ADE+∠A+∠AEB+∠DFE=360°,∠DFE=180°﹣α,∴180°+β+β+180°﹣α=360°,∴α=2β,故选:B.【知识点】轴对称的性质、平行线的性质12.如图,AD∥BC,∠D=∠ABC,点E是边DC上一点,连接AE交BC的延长线于点H.点F是边AB上一点.使得∠FBE=∠FEB,作∠FEH的角平分线EG交BH于点G,若∠DEH=100°,则∠BEG的度数为()A.30°B.40°C.50°D.60°【答案】B【分析】AD∥BC,∠D=∠ABC,则AB∥CD,则∠AEF=180°﹣∠AED﹣∠BEG=180°﹣2β,在△AEF 中,100°+2α+180°﹣2β=180°,故β﹣α=40°,即可求解.【解答】解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,∵AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEG=∠F AE=100°,∠AEF=180°﹣∠AED﹣∠BEG=180°﹣2β,在△AEF中,100°+2α+180°﹣2β=180°,故β﹣α=40°,而∠BEG=∠FEG﹣∠FEB=β﹣α=40°,故选:B.【知识点】平行线的性质二、填空题(本大题共4小题,每小题2分,共8分.不需写出解答过程,请把答案直接填写在横线上)13.过平面上一点O作三条射线OA、OB和OC,已知OA⊥OB,∠AOC:∠AOB=1:2,则∠BOC=°.【答案】135或45【分析】根据题意画出图形,再结合垂直定义进行计算即可.【解答】解:∵OA⊥OB,∴∠AOB=90°,∵∠AOC:∠AOB=1:2,∴∠AOC=45°,如图1:∠BOC=90°+45°=135°,如图2:∠BOC=90°﹣45°=45°,故答案为:135或45.【知识点】垂线、角的计算14.如图,三角形ABC中,D是AB上一点,F是BC上一点,E,H是AC上的点,EF的延长线交AB的延长线于点G,连接DE,DH,DE∥BC.若∠CEF=∠CHD,∠EFC=∠ADH,∠CEF:∠EFC=5:2,∠C=47°,则∠ADE的度数为.【答案】76°【分析】根据平行线的性质和三角形的内角和解答即可.【解答】解:∵∠CEF=∠CHD,∴DH∥GE,∴∠ADH=∠G,∵∠EFC=∠ADH,∵∠BFG=∠EFC,∴∠G=∠BFG,∴∠ABC=∠G+∠BFG=2∠EFC,∵∠CEF:∠EFC=5:2,∠C=47°,∴∠EFC=38°,∴∠ABC=76°,∵DE∥BC,∴∠ADE=∠ABC=76°,故答案为:76°.【知识点】平行线的性质15.如图,直线MN分别与直线AB,CD相交于点E,F,EG平分∠BEF,交直线CD于点G,若∠MFD=∠BEF=62°,射线GP⊥EG于点G,则∠PGF的度数为度.【答案】59或121【分析】分两种情况:①当射线GP⊥EG于点G时,∠PGE=90°,②当射线GP′⊥EG于点G时,∠P′GE=90°,根据平行线的判定与性质和角平分线定义即可求出∠PGF的度数.【解答】解:如图,①当射线GP⊥EG于点G时,∠PGE=90°,∵∠MFD=∠BEF=62°,∴CD∥AB,∴∠GEB=∠FGE,∵EG平分∠BEF,∴∠GEB=∠GEF=BEF=31°,∴∠FGE=31°,∴∠PGF=∠PGE﹣∠FGE=90°﹣31°=59°;②当射线GP′⊥EG于点G时,∠P′GE=90°,同理:∠P′GF=∠PGE+∠FGE=90°+31°=121°.则∠PGF的度数为59或121度.故答案为:59或121.【知识点】平行线的判定与性质16.如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB交BC于点F,交AC于点E,过点O作OD⊥BC于D,下列四个结论:①∠AOB=90°+∠C;②AE+BF=EF;③当∠C=90°时,E、F分别是AC、BC的中点;④若OD=a,CE+CF=2b,则S△CEF=ab,其中正确的是.【答案】①②④【分析】根据角平分线的定义和三角形内角和定理判断①;根据角平分线的定义和平行线的性质判断②;根据三角形三边关系判断③;根据角平分线的性质判断④.【解答】解:∵∠BAC和∠ABC的平分线相交于点O,∴∠OBA=∠CBA,∠OAB=∠CAB,∴∠AOB=180°﹣∠OBA﹣∠OAB=180°﹣∠CBA﹣∠CAB=180°﹣(180°﹣∠C)=90°+∠C,①正确;∵EF∥AB,∴∠FOB=∠ABO,又∠ABO=∠FBO,∴∠FOB=∠FBO,∴FO=FB,同理EO=EA,∴AE+BF=EF,②正确;当∠C=90°时,AE+BF=EF<CF+CE,∴E,F不是AC,BC的中点,③错误;作OH⊥AC于H,∵∠BAC和∠ABC的平分线相交于点O,∴点O在∠C的平分线上,∴OD=OH,∴S△CEF=×CF×OD+×CE×OH=ab,④正确.故答案为①②④.【知识点】角平分线的性质、平行线的性质、等腰三角形的判定与性质三、解答题(本大题共7小题,共68分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.如图,直线AB,CD相交于点O,射线OF⊥CD于点O,∠BOF=30°,求∠BOD,∠AOD的度数.【分析】利用垂直的定义可得∠DOF=90°,再结合条件∠BOF=30°,可求出∠BOD的度数,利用邻补角互补可得∠AOD的度数.【解答】解:∵OF⊥CD,∴∠DOF=90°,∵∠BOF=30°,∴∠BOD=60°,∴∠AOD=180°﹣60°=120°.【知识点】对顶角、邻补角、垂线18.如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=145°,求∠AFG的度数.【分析】(1)由于∠AGF=∠ABC,可判断GF∥BC,则∠1=∠3,由∠1+∠2=180°得出∠3+∠2=180°判断出BF∥DE;(2)由∠2=145°得出∠1=35°,得出∠AFG的度数.【解答】解:(1)BF∥DE.理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE;(2)∵∠1+∠2=180°,∠2=145°,∴∠1=35°,∴∠AFG=90°﹣35°=55°.【知识点】平行线的判定与性质19.完成推理填空.填写推理理由:如图:EF∥AD,∠1=∠2,∠BAC=70°,把求∠AGD的过程填写完整.∵EF∥AD,∴∠2=,()又∵∠1=∠2,∴∠1=∠3,∴AB∥,()∴∠BAC+=180°,()又∵∠BAC=70°,∴∠AGD=110°.【答案】【第1空】∠3【第2空】两直线平行,同位角相等【第3空】DG【第4空】内错角相等,两直线平行【第5空】∠DGA【第6空】两直线平行,同旁内角互补【分析】根据平行线的性质和已知求出∠1=∠3,根据平行线的判定推出AB∥DG,根据平行线的性质推出∠BAC+∠DGA=180°即可.【解答】解:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等),∵∠1=∠2,∴∠1=∠3,∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补),∵∠BAC=70°,∴∠AGD=110°,故答案为:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠DGA;两直线平行,同旁内角互补.【知识点】平行线的判定与性质20.已知:直线GH分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,并且EM∥FN.(1)如图1,求证:AB∥CD;(2)如图2,∠AEF=2∠CFN,在不添加任何辅助线的情况下,请直接写出图2中四个角,使写出的每个角的度数都为135°.【分析】(1)根据平行线的判定与性质和角平分线定义即可证明;(2)根据平行线的判定与性质、角平分线定义和邻补角互补即可得结论.【解答】(1)证明:∵EM∥FN,∴∠EFN=∠FEM.∵EM平分∠BEF,FN平分∠CFE,∴∠CFE=2∠EFN,∠BEF=2∠FEM.∴∠CFE=∠BEF.∴AB∥CD.(2)∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.理由如下:∵AB∥CD,∴∠AEF+∠CFE=180°,∵FN平分∠CFE,∴∠CFE=2∠CFN,∵∠AEF=2∠CFN,∴∠AEF=∠CFE=90°,∴∠CFN=∠EFN=45°,∴∠DFN=∠HFN=180°﹣45°=135°,同理:∠AEM=∠GEM=135°.∴∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.【知识点】平行线的判定与性质21.(1)如图1,已知射线BC,MA⊥BC,DF⊥BC,垂足分别为E和F,若∠BAM+∠D=180°,请判断AB和CD的位置关系,并说明理由.(2)在(1)的条件下,连接DE,直接写出∠BAE,∠EDC,∠AED之间的数量关系.(3)如图2,AB∥CD,EF∥CG,若∠A=32°,∠E=60°,请求出∠C的度数.【分析】(1)根据平行线的判定定理和垂直的定义即可得到结论;(2)根据平行线的性质和三角形外角的性质即可得到结论;(3)根据平行线的判定和性质定理即可得到结论.【解答】解:(1)AB∥CD,理由如下:∵∠BAM+∠D=180°,又∵∠BAM+∠BAE=180°,∴∠D=∠BAE,∵MA⊥BC,DF⊥BC,∴∠AEB=∠DFC=90°,∴∠BAE+∠B=90°,∠D+∠DCF=90°,∴∠B=∠DCF,∴AB∥CD;(2)∵AB∥CD,∴∠DCF=∠B,∵∠DCF=∠DEC+∠EDC,∴∠B=∠DEC+∠EDC,∵∠AEB=∠AEC=90°,∴∠BAE=90°﹣∠B,∵∠DEC=90°﹣∠AED,∴90°﹣∠BAE=∠EDC+∠90°﹣∠AED,∴∠BAE+∠EDC=∠AED;(3)延长CD至点N交EF于点H,过E作EM∥CN,∵EM∥CN,∴∠MEF=∠EHC,∵AB∥CD,∴AB∥EM,∴∠A=∠AEM,∵∠AEF=∠AEM+∠MEF,∴∠AEF=∠A+∠EHC,∴∠EHC=60°﹣32°=28°,∵EF∥CG,∴∠C=∠EHC=28°.【知识点】平行线的判定与性质22.三角形ABC中,D是AB上一点,DE∥BC交AC于点E,点F是线段DE延长线上一点,连接FC,∠BCF+∠ADE=180°.(1)如图1,求证:CF∥AB;(2)如图2,连接BE,若∠ABE=40°,∠ACF=60°,求∠BEC的度数;(3)如图3,在(2)的条件下,点G是线段FC延长线上一点,若∠EBC:∠ECB=7:13,BE平分∠ABG,求∠CBG的度数.【分析】(1)根据平行线的判定与性质即可完成证明;(2)如图2,过点E作EK∥AB,可得CF∥AB∥EK,再根据平行线的性质即可得结论;(3)根据∠EBC:∠ECB=7:13,可以设∠EBC=7x°,则∠ECB=13x°,然后根据∠AED+∠DEB+∠BEC=180°,13x+7x+100=180,求出x的值,进而可得结果.【解答】(1)证明:∵DE∥BC,∴∠ADE=∠B,∵∠BCF+∠ADE=180°.∴∠BCF+∠B=180°.∴CF∥AB;(2)解:如图2,过点E作EK∥AB,∴∠BEK=∠ABE=40°,∵CF∥AB,∴CF∥EK,∴∠CEK=∠ACF=60°,∴∠BEC=∠BEK+∠CEK=40°+60°=100°;(3)∵BE平分∠ABG,∴∠EBG=∠ABE=40°,∵∠EBC:∠ECB=7:13,∴设∠EBC=7x°,则∠ECB=13x°,∵DE∥BC,∴∠DEB=∠EBC=7x°,∠AED=∠ECB=13x°,∵∠AED+∠DEB+∠BEC=180°,∴13x+7x+100=180,解得x=4,∴∠EBC=7x°=28°,∵∠EBG=∠EBC+∠CBG,∴∠CBG=∠EBG﹣∠EBC=40°﹣28°=12°.【知识点】平行线的判定与性质23.已知AB∥CD,点M在直线AB上,点N、Q在直线CD上,点P在直线AB、CD之间,∠AMP=∠PQN=α,PQ平分∠MPN.(1)如图①,求∠MPQ的度数(用含α的式子表示);(2)如图②,过点Q作QE∥PN交PM的延长线于点E,过E作EF平分∠PEQ交PQ于点F.请你判断EF与PQ的位置关系,并说明理由;(3)如图③,在(2)的条件下,连接EN,若NE平分∠PNQ,请你判断∠NEF与∠AMP的数量关系,并说明理由.【分析】(1)如图①,过点P作PR∥AB,可得AB∥CD∥PR,进而可得结论;(2)根据已知条件可得2∠EPQ+2∠PEF=180°,进而可得EF与PQ的位置关系;(3)结合(2)和已知条件可得∠QNE=∠QEN,根据三角形内角和定理可得∠QNE=(180°﹣∠NQE)=(180°﹣3α),可得∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE,进而可得结论.【解答】解:(1)如图①,过点P作PR∥AB,∵AB∥CD,∴AB∥CD∥PR,∴∠AMP=∠MPR=α,∠PQN=∠RPQ=α,∴∠MPQ=∠MPR+∠RPQ=2α;(2)如图②,EF⊥PQ,理由如下:∵PQ平分∠MPN.∴∠MPQ=∠NPQ=2α,∵QE∥PN,∴∠EQP=∠NPQ=2α,∴∠EPQ=∠EQP=2α,∵EF平分∠PEQ,∴∠PEQ=2∠PEF=2∠QEF,∵∠EPQ+∠EQP+∠PEQ=180°,∴2∠EPQ+2∠PEF=180°,∴∠EPQ+∠PEF=90°,∴∠PFE=180°﹣90°=90°,∴EF⊥PQ;(3)如图③,∠NEF=∠AMP,理由如下:由(2)可知:∠EQP=2α,∠EFQ=90°,∴∠QEF=90°﹣2α,∵∠PQN=α,∴∠NQE=∠PQN+∠EQP=3α,∵NE平分∠PNQ,∴∠PNE=∠QNE,∵QE∥PN,∴∠QEN=∠PNE,∴∠QNE=∠QEN,∵∠NQE=3α,∴∠QNE=(180°﹣∠NQE)=(180°﹣3α),∴∠NEF=180°﹣∠QEF﹣∠NQE﹣∠QNE=180°﹣(90°﹣2α)﹣3α﹣(180°﹣3α)=180°﹣90°+2α﹣3α﹣90°+α=α=∠AMP.∴∠NEF=∠∠AMP.【知识点】平行线的判定与性质。
第5章相交线与平行线(提升练习)-人教版七年级下册一.选择题1.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠2=55°,则∠3的度数等于()A.20°B.25°C.30°D.35°2.如图,AB∥CD,一副三角尺按如图所示放置,∠AEG=20°,则∠HFD的度数为()A.40°B.35°C.30°D.25°3.下列图形中,根据AB∥CD,能得到∠1=∠2的是()A.B.C.D.4.如图,点E在CD的延长线上,下列条件中能判定BC∥AD的是()A.∠1=∠2B.∠3=∠4C.∠5=∠A D.∠A+∠ADC=180°5.如图1是一个由齿轮、轴承、托架等元件构成的手动变速箱托架,其主要作用是动力传输.如图2是乎动变速箱托架工作时某一时刻的示意图,已知AB∥CD,CG∥EF,∠BAG=150°,∠AGC=80°,则∠DEF的度数为()A.110°B.120°C.130°D.140°6.如图,点A是直线l外一点,过点A作AB⊥l于点B.在直线l上取一点C,连结AC,使AC=AB,点P在线段BC上,连结AP.若AB=3,则线段AP的长不可能是()A.3.5B.4.1C.5D.5.57.平面内两两相交的4条直线,其交点个数最少为m个,最多为n个,则m+n等于()A.6B.11C.7D.178.如图,BC⊥AE,垂足为C,过C作CD∥AB.若∠ECD=43°,则∠B的度数是()A.43°B.45°C.47°D.57°9.如图1,A、B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小.如图2,连接AB,与l交于点C,则C点即为所求的码头的位置,这样做的理由是()A.垂线段最短B.两点确定一条直线C.两点之间,线段最短D.平行于同一条直线的两条直线平行10.如图,∠1=60°,下列推理正确的是()①若∠2=60°,则AB∥CD;②若∠5=60°,则AB∥CD;③若∠3=120°,则AB∥CD;④若∠4=120°,则AB∥CD.A.①②B.②④C.②③④D.②③二.填空题11.如图,直线AB、CD相交于点O,过点O作EO⊥AB.若∠1=55°,则∠2的大小为度.12.如图,将△ABO沿着射线AD的方向平移5cm得到△DCE,连接OE,则OE=cm.13.如图,将一张长方形纸片ABCD沿EF折叠,点C、D分别到C′、D′的位置,D′E与BC相交于G,若∠1=40°,则∠2=°.14.如图,把△ABC沿AC方向平移1cm得到△FDE,AE=6cm,则FC的长是cm.15.如图,长方形纸片ABCD,M为AD边的中点,将纸片沿BM、CM折叠,使A点落在A1处,D点落在D1处,若∠BMC=110°,则∠1的度数为.三.解答题16.如图,已知直线AB∥CD,直线MN分别交AB、CD于点G、E,EF平分∠GED,交直线AB于点F,且GE平分∠BGI,GH平分∠AGE.(1)求证:GH∥FE;(2)若∠FED=68°,求∠HGI的度数.17.判断下列命题是真命题还是假命题.如果是假命题,请举出一个反例.(1)两个钝角的和一定大于180°;(2)异号两数相加和为零;(3)若a2=b2,则a=b.18.如图,在平面直角坐标系中,点A(﹣1,4),B(﹣2,1),C(﹣4,1),将△ABC向右平移3个单位再向下平移2个单位得到△A1B1C1,点A、B、C的对应点分别为点A1、B1、C1.(1)在图上画出△A1B1C1,并写出点A1,B1,C1的坐标;(2)设点P(m,n)为△ABC内一点,经过平移后,请写出点P在△A1B1C1内的对应点P1的坐标.19.如图,已知直线AB、CD相交于点O,射线OD平分∠BOF,OE⊥CD于点O,∠AOC =35°.(1)求∠EOF的度数;(2)试判断射线OE是否平分∠AOF,并说明理由.20.如图1,把一块含30°的直角三角板ABC的BC边放置于长方形直尺DEFG的EF边上.(1)填空:∠1=°,∠2=°(2)如图2,现把三角板绕B点逆时针旋转n°,当0<n<90,且点C恰好落在DG边上时,①请直接写出∠1=°,∠2=°(结果用含n的代数式表示);②若∠2恰好是∠1的倍,求n的值.(3)如图1三角板ABC的放置,现将射线BF绕点B以每秒2°的转速逆时针旋转得到射线BM,同时射线QA绕点Q以每秒3°的转速顺时针旋转得到射线QN,当射线QN旋转至与QB重合时,则射线BM、QN均停止转动,设旋转时间为t(s).①在旋转过程中,若射线BM与射线QN相交,设交点为P.当t=20(s)时,则∠QPB =°②在旋转过程中,是否存在BM∥QN.若存在,求出此时t的值;若不存在,请说明理由.。
第五章相交线与平行线5.1.1相交线知识点1认识邻补角和对顶角1.如图,下列各组角中,互为对顶角的是( )A.∠1和∠2 B.∠1和∠3 C.∠2和∠4 D.∠2和∠5 2.如图所示,∠1和∠2是对顶角的图形是( )3.下面四个图形中,∠1与∠2是邻补角的是( )4.如图所示,AB与CD相交所成的四个角中,∠1的邻补角是,∠1的对顶角是.知识点2邻补角和对顶角的性质5.如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是( )A.60° B.90° C.120° D.150°6.如图,已知∠1=120°,则∠2的度数是( )A.120° B.90° C.60°D.30°7.如图,测角器测得工件(圆台)的角度是度,其测量角的原理是.第4题图第5题图第6题图第7题图8.在括号内填写依据:如图,因为直线a,b相交于点O,所以∠1+∠3=180°( ),∠1=∠2( ).AB9.如右图所示,直线AB,CD,EF 相交于点O ,则①∠AOD 的对顶角是___________,∠EOC 的对顶角是___________②∠AOC 的邻补角是_________________,∠BOE 的邻补角是__________________. ③若∠AOC=50°,求∠BOD ,∠COB 的度数. 解:∵∠AOC=50° ∴∠BOD=__________=________( ); ∵∠BOC+∠AOC=180°∴∠COB=180°-∠________( )=180°-________°=________°10.如图,直线AB ,CD 相交于点O ,∠EOC =70°,OA 平分∠EOC ,求∠BOD 的度数.【综合训练】11.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A .1个B .2个C .3个D .4个 12.如图,三条直线l 1,l 2,l 3相交于一点,则∠1+∠2+∠3=( )A .90°B .120°C .180°D .360°13.如图所示,直线AB 和CD 相交于点O.若∠AOD 与∠BOC 的和为236°,则∠AOC 的度数为( )A .62°B .118°C .72°D .59°第12题图 第13题图14.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x )°,则x = . 15.若∠1的对顶角是∠2,∠2的邻补角是∠3,且∠3=45°,则∠1的度数为 . 16.如图,直线a ,b ,c 两两相交,∠1=80°,∠2=2∠3,则∠4=.17.如图所示, 直线AB,CD 相交于点O,OE 平分∠AOD,∠AOC=120°,求∠BOD,∠AOE 的度数.解:∵∠AOC=120°∴∠BOD=__________=________( );∵OE 平分∠AOD ∴∠AOE=21___________( ) ∵∠AOD+∠AOC=180°∴∠AOD=180°-∠________( )=_________________________=___________ ∠AOE=____________.18.如图,直线AB ,CD 相交于点O ,∠AOE =∠BOE ,OB 平分∠DOF.若∠DOE =50°,求∠DOF 的度数.19.如图,l 1,l 2,l 3交于点O ,∠1=∠2,∠3∶∠1=8∶1,求∠4的度数.20.探究题:(1)三条直线相交,最少有 个交点,最多有 个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(2)四条直线相交,最少有 个交点,最多有 个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(3)依次类推,n 条直线相交,最少有 个交点,最多有 个交点,对顶角有 对,邻补角有 对.OE DC BA第五章相交线与平行线5.1.1相交线答案知识点1认识邻补角和对顶角1.如图,下列各组角中,互为对顶角的是( A )A.∠1和∠2 B.∠1和∠3 C.∠2和∠4 D.∠2和∠5 2.如图所示,∠1和∠2是对顶角的图形是( C )3.下面四个图形中,∠1与∠2是邻补角的是( D )4.如图所示,AB与CD相交所成的四个角中,∠1的邻补角是∠2,∠4,∠1的对顶角是∠3.知识点2邻补角和对顶角的性质5.如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是( C )A.60° B.90° C.120° D.150°6.如图,已知∠1=120°,则∠2的度数是( A )A.120° B.90° C.60°D.30°AB 7.如图,测角器测得工件(圆台)的角度是40度,其测量角的原理是对顶角相等.8.在括号内填写依据:如图,因为直线a ,b 相交于点O , 所以∠1+∠3=180°(邻补角互补), ∠1=∠2(对顶角相等).9.如右图所示,直线AB,CD,EF 相交于点O ,则①∠AOD 的对顶角是_∠BOC__,∠EOC 的对顶角是__∠DOF___ ②∠AOC 的邻补角是_∠AOD____,∠BOE 的邻补角是___∠AOE__. ③若∠AOC=50°,求∠BOD ,∠COB 的度数.解:∵∠AOC=50°∴∠BOD=_∠AOC_=_50°(对顶角相等); ∵∠BOC+∠AOC=180°∴∠COB=180°-∠AOC (邻补角互补) =180°- 50° = 130°10.如图,直线AB ,CD 相交于点O ,∠EOC =70°,OA 平分∠EOC ,求∠BOD 的度数.解:因为OA 平分∠EOC ,∠EOC =70°, 所以∠AOC =12∠EOC =35°.所以∠BOD =∠AOC =35°. 【综合训练】11.下列说法正确的有( B )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A .1个B .2个C .3个D .4个 12.如图,三条直线l 1,l 2,l 3相交于一点,则∠1+∠2+∠3=( C )A .90°B .120°C .180°D .360°13.如图所示,直线AB 和CD 相交于点O.若∠AOD 与∠BOC 的和为236°,则∠AOC 的度数为( A )A .62°B .118°C .72°D .59° 14.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x )°,则x=40或80. 15.若∠1的对顶角是∠2,∠2的邻补角是∠3,且∠3=45°,则∠1的度数为135°. 16.如图,直线a ,b ,c 两两相交,∠1=80°,∠2=2∠3,则∠4=140°.17.如图所示, 直线AB,CD 相交于点O,OE 平分∠AOD,∠AOC=120°,求∠BOD,∠AOE 的度数.解:∵∠AOC=120°∴∠BOD= ∠AOC = 120° (对顶角相等); ∵OE 平分∠AOD∴∠AOE=21∠AOD∵∠AOD+∠AOC=180°∴∠AOD=180°-∠AOC (邻补角互补)=180°-120°= 60° ∠AOE= 30°.18.如图,直线AB ,CD 相交于点O ,∠AOE =∠BOE ,OB 平分∠DOF.若∠DOE =50°,求∠DOF 的度数.解:因为∠AOE =∠BOE ,且∠AOE +∠BOE =180°, 所以∠AOE =∠BOE =90°. 因为∠DOE =50°,所以∠DOB =∠BOE -∠DOE =40°.因为OB 平分∠DOF ,所以∠DOF =2∠DOB =80°.OE DCBA19.如图,l 1,l 2,l 3交于点O ,∠1=∠2,∠3∶∠1=8∶1,求∠4的度数. 解:设∠1=∠2=x °,则∠3=8x °. 由∠1+∠2+∠3=180°,得 10x =180.解得x =18. 所以∠1=∠2=18°. 所以∠4=∠1+∠2=36°. 20.探究题:(1)三条直线相交,最少有1个交点,最多有3个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(2)四条直线相交,最少有1个交点,最多有6个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(3)依次类推,n 条直线相交,最少有1个交点,最多有n (n -1)2个交点,对顶角有n(n -1)对,邻补角有2n(n -1)对.解:(1)图略,对顶角有6对,邻补角有12对. (2)图略,对顶角有12对,邻补角有24对.。
人教版七年级数学下册《第五章相交线与平行线》能力提升卷-附答案班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分试题共23题其中选择10道、填空6道、解答7道.答卷前考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题每小题3分共30分)在每小题所给出的四个选项中只有一项是符合题目要求的.1.(2022秋•唐河县期末)如图下列图形中的∠1和∠2不是同位角的是()A.B.C.D.【分析】根据同位角的意义逐项进行判断即可.【解答】解:选项A中的∠1与∠2 是直线AB、BC被直线EF所截的同位角因此选项A不符合题意;选项B中的∠1与∠2 是直线AB、MG被直线EM所截的同位角因此选项B不符合题意;选项C中的∠1与∠2 没有公共的截线因此不是同位角所以选项C符合题意;选项D中的∠1与∠2 是直线CD、EF被直线AB所截的同位角因此选项D不符合题意;故选:C.2.(2022秋•长春期末)如图测量运动员跳远成绩选取的是AB的长度其依据是()A.两点确定一条直线B.两点之间直线最短C.两点之间线段最短D.垂线段最短【分析】利用垂线段最短求解.【解答】解:该运动员跳远成绩的依据是:垂线段最短;故选:D.3.(2020秋•射洪市期末)如图所示下列结论中正确的是()A.∠1和∠2是同位角B.∠2和∠3是同旁内角C.∠1和∠4是内错角D.∠3和∠4是对顶角【分析】根据同位角内错角同旁内角以及对顶角的定义进行解答.【解答】解:A、∠1和∠2是同旁内角故本选项错误;B、∠2和∠3是同旁内角故本选项正确;C、∠1和∠4是同位角故本选项错误;D、∠3和∠4是邻补角故本选项错误;故选:B.4.(2018秋•龙岗区期末)下列四个命题中真命题是()A.两条直线被第三条直线所截内错角相等B.如果∠1和∠2是对顶角那么∠1=∠2C.三角形的一个外角大于任何一个内角D.如果x2>0 那么x>0【分析】利用平行线的性质、对顶角的性质、三角形的外角的性质分别判断后即可确定正确的选项.【解答】解:A、两条直线被第三条直线所截内错角相等错误为假命题;B、如果∠1和∠2是对顶角那么∠1=∠2 正确为真命题;C、三角形的一个外角大于任何一个内角错误为假命题;D、如果x2>0 那么x>0 错误为假命题故选:B.5.(2022秋•玉泉区期末)如图直线AB、CD相交于点O OA平分∠EOC∠EOC:∠EOD=1:2 则∠BOD等于()A.30°B.36°C.45°D.72°【分析】根据邻补角的定义求出∠EOC再根据角平分线的定义求出∠AOC然后根据对顶角相等解答.【解答】解:∵∠EOC:∠EOD=1:2∴∠EOC=180°×=60°∵OA平分∠EOC∴∠AOC=∠EOC=×60°=30°∴∠BOD=∠AOC=30°.故选:A.6.(2022秋•宛城区期末)如图下列能判定AB∥CD的条件有()个(1)∠1=∠2;(2)∠3=∠4;(3)∠B=∠5;(4)∠B+∠BCD=180°.A.1B.2C.3D.4【分析】根据平行线的判定方法对四个条件分别进行判断即可.【解答】解:(1)∵∠1=∠2∴AD∥BC;(2)∵∠3=∠4∴AB∥CD;(3)∵∠B=∠5∴AB∥CD;(4)∵∠B+∠BCD=180°∴AB∥CD.故选:C.7.(2022秋•卧龙区校级期末)如图所示下列推理正确的个数有()①若∠1=∠2 则AB∥CD②若AD∥BC则∠3+∠A=180°③若∠C+∠CDA=180°则AD∥BC④若AB∥CD则∠3=∠4.A.0个B.1个C.2个D.3个【分析】根据平行线的判定(内错角相等两直线平行同位角相等两直线平行同旁内角互补两直线平行)和平行线的性质(两直线平行内错角相等两直线平行同位角相等两直线平行同旁内角互补)判断即可.【解答】解:∵∠1=∠2∴AB∥DC∴①正确;∵AD∥BC∴∠CBA+∠A=180°∠3+∠A<180°∴②错误;∵∠C+∠CDA=180°∴AD∥BC∴③正确;由AD∥BC才能推出∠3=∠4 而由AB∥CD不能推出∠3=∠4 ∴④错误;正确的个数有2个故选:C.8.(2022秋•市中区校级期末)如图在下列给出的条件中不能判定AB∥CD的是()A.∠BAD+∠ADC=180°B.∠ABD=∠BDCC.∠ADB=∠DBC D.∠ABE=∠DCE【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、正确∵∠BAD+∠ADC=180°∴AB∥CD(同旁内角互补两直线平行);B、正确∵∠ABD=∠BDC∴AB∥CD(内错角相等两直线平行);C、∠ADB=∠DBC判定的是AD∥BC所以不符合要求;D、正确∵∠ABE=∠DCE∴AB∥CD(同位角相等两直线平行);故选:C.9.(2022秋•兴宁区校级期中)如图某校区2号楼楼梯的示意图现在要在楼梯上铺一条地毯如果楼梯的宽度是1.8米那么地毯的面积为()A.(a+1.8)h m2B.(h+1.8)a m2C.1.8(h+a)m2D.1.8ah m2【分析】根据图形可得地毯长度为(a+h)米再根据长方形的面积公式解答即可.【解答】解:由题意得地毯的长度为(a+h)米故地毯的面积为:1.8(h+a)m2.故选:C.10.(2022秋•南岗区校级期中)如图AB∥CD∥EF则下列各式中正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2=180°+∠3C.∠1+∠3=180°+∠2D.∠2+∠3=180°+∠1【分析】根据两直线平行同旁内角互补可得∠2+∠BDC=180°再根据两直线平行内错角相等可得∠3=∠CDE而∠CDE=∠1+∠BDC整理可得∠2+∠3﹣∠1=180°.【解答】解:∵AB∥CD∥EF∴∠2+∠BDC=180°∠3=∠CDE又∠BDC=∠CDE﹣∠1∴∠2+∠3﹣∠1=180°.故选:D.二、填空题(本大题共6小题每小题4分共24分)请把答案直接填写在横线上11.(2022•东阳市校级开学)如图所示图中用数字标出的角中∠2的内错角是∠6.【分析】两条直线被第三条直线所截形成的角中若两个角都在两直线的之间并且在第三条直线(截线)的两旁则这样一对角叫做内错角由此即可判断.【解答】解:图中用数字标出的角中∠2的内错角是∠6.故答案为:∠6.12.(2022秋•姜堰区期中)如图△ABC经过平移得到△A'B'C' 连接BB'、CC' 若BB'=1.2cm则CC'= 1.2cm.【分析】根据平移的性质即可得到结论.【解答】解:∵△ABC经过平移得到△A'B'C' 连接BB'、CC' BB'=1.2cm∴CC'=BB′=1.2cm故答案为:1.2.13.(2022春•和平区校级月考)如图CD⊥AD BE⊥AC AF⊥CF CD=2cm BE=1.5cm AF=4cm则点A到直线BC的距离是4cm点B到直线AC的距离是 1.5cm点C到直线AB的距离是2 cm.【分析】根据点到直线的距离:直线外一点到直线的垂线段的长度叫做点到直线的距离解答即可.【解答】解:∵CD⊥AD BE⊥AC AF⊥CF CD=2cm BE=1.5cm AF=4cm∴点A到直线BC的距离是4cm点B到直线AC的距离是1.5cm点C到直线AB的距离是2cm.故答案为:4、1.5、2.14.(2022春•新乐市校级月考)如图直线EF CD相交于点O OA⊥OB垂足为O且OC平分∠AOF.(1)若∠AOE=40°则∠DOE的度数为70°;(2)∠AOE与∠BOD的数量关系为∠AOE=2∠BOD.【分析】(1)利用邻补角的定义进行计算即可;(2)利用第一步的步骤和思路推理即可.【解答】解:(1)∵OA⊥OB∴∠AOB=90°∵∠AOF+∠AOE=180°∠AOE=40°∴∠AOF=140°∵OC平分∠AOF∴∠AOC=∠COF=70°∵∠BOD+∠AOB+∠AOC=180°∴∠DOE=∠COF=70°.故答案为:70°;(2)∵∠AOE+∠AOF=180°∠AOC=∠COF∴∠AOC=(180°﹣∠AOE)=90°﹣∠AOE∵∠BOD+∠AOB+∠AOC=180°∴∠BOD=180°﹣90°﹣∠AOC=90°﹣(90°﹣∠AOE)=﹣∠AOE∴∠AOE=2∠BOD.故答案为:∠AOE=2∠BOD.15.(2022秋•南岗区校级期中)已知两个角的两边分别互相平行其中一个角的度数比另一个角度数的多15°则这个角为20°或48°.【分析】由两个角的两边都平行可得此两角互补或相等然后设其中一个角为x°分别从两角相等或互补去分析由其中一个角的度数是另一个角的3倍少20°列方程求解即可求得答案.【解答】解:∵两个角的两边都平行∴此两角互补或相等设其中一个角为x°∵其中一个角的度数比另一个角度数的多15°∴①若两角相等则x=x+15 解得:x=20②若两角互补则x=(180﹣x)+15 解得:x=48∴两个角的度数分别是20°或48°.故答案为:20°或48.16.(2022秋•香坊区校级期中)如图已知AB∥CD∠P AQ=2∠BAQ∠PCD=3∠QCD∠P=75°则∠AQC=95°.【分析】先根据平行线的性质求出∠APC+∠P AB+∠PCD=360°由∠APC=75°求出∠P AB+∠PCD=285°根据∠P AQ=2∠BAQ可得∠P AB=3∠BAQ由∠PCD=3∠QCD可得∠BAQ+∠QCD=95°最后证∠AQC=∠BAQ+∠QCD即可得出答案.【解答】解:过点P作PE∥AB过点Q作QF∥AB如图:∵AB∥CD QF∥AB∴AB∥QF∥CD∴∠BAQ=∠AQF∠QCD=∠CQF∴∠BAQ+∠QCD=∠AQF+∠CQF即∠BAQ+∠QCD=∠AQC∵AB∥CD PE∥AB∴AB∥PE∥CD∴∠APE+∠P AB=180°∠CPE+∠PCD=180°∴∠APE+∠CPE+∠P AB+∠PCD=360°即∠APC+∠P AB+∠PCD=360°∵∠APC=75°∴∠P AB+∠PCD=285°∵∠P AQ=2∠BAQ∴∠P AB=3∠BAQ∵∠PCD=3∠QCD∴3∠BAQ+3∠QCD=285°∴∠BAQ+∠QCD=95°∴∠AQC=95°.故答案为:95°.三、解答题(本大题共7小题共66分.解答时应写出文字说明、证明过程或演算步骤)17.(2022春•金东区期末)如图△ABC△A1B1C1的顶点都在边长为1个单位长度的小正方形组成的网格线交点上.(1)将△ABC向右平移4个单位得到△A2B2C2请画出△A2B2C2.(2)试描述△A1B1C1经过怎样的平移可得到△A2B2C2.【分析】(1)利用平移的性质可画出△A2B2C2;(2)根据平移的特征可得答案.【解答】解:(1)如图△A2B2C2即为所求;(2)将△A1B1C1向左平移2个单位再向下平移4个单位可得到△A2B2C2.18.(2021春•新市区校级期末)如图点G在CD上已知∠BAG+∠AGD=180°EA平分∠BAG FG 平分∠AGC请说明AE∥GF的理由.解:因为∠BAG+∠AGD=180°(已知)∠AGC+∠AGD=180°(邻补角的定义)所以∠BAG=∠AGC(同角的补角相等).因为EA平分∠BAG所以∠1=∠BAG(角平分线的定义).因为FG平分∠AGC所以∠2=∠AGC得∠1=∠2(等量代换)所以AE∥GF(内错角相等两直线平行).【分析】根据邻补角的定义及题意得出∠BAG=∠AGC再根据角平分线的定义得到∠1=∠2 即可判定AE∥GF.【解答】解:因为∠BAG+∠AGD=180°(已知)∠AGC+∠AGD=180°(邻补角的定义)所以∠BAG=∠AGC(同角的补角相等)因为EA平分∠BAG所以∠1=∠BAG(角平分线的定义)因为FG平分∠AGC所以∠2=∠AGC得∠1=∠2(等量代换)所以AE∥GF(内错角相等两直线平行).故答案为:已知;邻补角的定义;同角的补角相等;∠BAG;角平分线的定义;∠AGC;等量代换;内错角相等两直线平行.19.判断下列命题是真命题还是假命题;如果是假命题举一个反例.(1)同旁内角互补;(2)如果a>b那么ac>bc;(3)两个锐角的和是钝角.【分析】(1)根据平行线的性质判断即可;(2)根据不等式的性质判断即可;(3)根据角的分类判断即可.【解答】解:(1)同旁内角互补是假命题如两直线不平行同旁内角不能互补;(2)如果a>b那么ac>bc是假命题如c=0时ac=bc;(3)两个锐角的和是钝角是假命题如30°+30°=60°.20.(2022秋•中山市期末)如图已知直线AB CD相交于点O OE平分∠BOD OF平分∠COB∠BOE =36°求∠AOF的度数.【分析】根据角平分线可得∠BOE=∠DOE根据邻补角可得∠BOC的度数根据角平分线的定义可得∠COF再根据对顶角及角的和差可得答案.【解答】解:∵直线AB CD相交于点O OE平分∠BOD OF平分∠COB∴∠BOE=∠DOE=36°∠BOF=∠COF∴∠BOD=∠AOC=2∠BOE=72°∴∠BOC=180°﹣∠BOD=108°∴∠COF==54°∴∠AOF=∠AOC+∠COF=72°+54°=126°.21.(2022秋•皇姑区校级期末)如图已知直线AB∥DF∠D+∠B=180°.(1)求证:DE∥BC;(2)如果∠AMD=70°求∠AGC的度数.【分析】(1)根据平行线的性质得出∠D+∠BHD=180°求出∠B=∠DHB根据平行线的判定得出即可;(2)根据平行线的性质求出∠AGB=∠AMD=75°根据邻补角的定义求出即可.【解答】(1)证明:∵AB∥DF∴∠D+∠BHD=180°∵∠D+∠B=180°∴∠B=∠DHB∴DE∥BC;(2)解:∵DE∥BC∠AMD=70°∴∠AGB=∠AMD=70°∴∠AGC=180°﹣∠AGB=180°﹣70°=110°.22.(2022秋•二道区校级期末)如图点O在直线AB上OC⊥OD∠D与∠1互余.(1)求证:ED∥AB;(2)OF平分∠AOD交DE于点F若∠OFD=65°补全图形并求∠1的度数.【分析】(1)根据垂直的定义、余角的概念推出∠D=∠DOB即可判定ED∥AB;(2)根据平行线的性质、角平分线的定义求出∠AOD=2∠AOF=130°根据角的和差即可求解.【解答】(1)证明:∵OC⊥OD∴∠COD=90°∴∠1+∠DOB=90°∵∠D与∠1互余∴∠D+∠1=90°∴∠D=∠DOB∴ED∥AB;(2)解:如图∵ED∥AB∠OFD=65°∴∠AOF=∠OFD=65°∵OF平分∠AOD∴∠AOD=2∠AOF=130°∵∠COD=90°∠AOD=∠1+∠COD∴∠1=40°.23.(2022秋•朝阳区校级期末)(1)问题发现:如图①直线AB∥CD连接BE CE可以发现∠B+∠C =∠BEC.请把下面的证明过程补充完整:证明:过点E作EF∥AB∵AB∥DC(已知)EF∥AB(辅助线的作法)∴EF∥DC(平行于同一直线的两直线平行).∴∠C=∠CEF.(两直线平行内错角相等).∵EF∥AB∴∠B=∠BEF(同理).∴∠B+∠C=∠BEF+∠CEF.即∠B+∠C=∠BEC.(2)拓展探究:如果点E运动到图②所示的位置其他条件不变说明:∠B+∠BEC+∠C=360°.(3)解决问题:如图③AB∥DC E、F、G是AB与CD之间的点直接写出∠1 ∠2 ∠3 ∠4 ∠5之间的数量关系∠1+∠3+∠5=∠2+∠4.【分析】(1)过点E作EF∥AB根据平行线的性质及角的和差求解即可;(2)过点E作EF∥AB根据平行线的性质及角的和差求解即可;(3)过点F作FM∥AB根据(1)求解即可.【解答】(1)证明:如图①过点E作EF∥AB∵AB∥DC(已知)EF∥AB(辅助线的作法)∴EF∥DC(平行于同一直线的两直线平行)∴∠C=∠CEF(两直线平行内错角相等)∵EF∥AB∴∠B=∠BEF(同理)∴∠B+∠C=∠BEF+∠CEF(等量代换)即∠B+∠C=∠BEC故答案为:平行于同一直线的两直线平行;两直线平行内错角相等;∠BEF+∠CEF;(2)解:如图②过点E作EF∥AB∵AB∥CD EF∥AB∴EF∥CD∴∠C+∠CEF=180°∠B+∠BEF=180°∴∠B+∠C+∠AEC=360°∴∠B+∠C=360°﹣(∠BEF+∠CEF)即∠B+∠C=360°﹣∠BEC;∠B+∠BEC+∠C=360°.(3)解:∠1+∠3+∠5=∠2+∠4 理由如下:如图过点F作FM∥AB则AB∥FM∥CD由(1)得∠1+∠3+∠5=∠2+∠4.故答案为:∠1+∠3+∠5=∠2+∠4.。
①
21
21
②
1
2③
1
2
④
七年级数学下册《相交线与平行线》测试
一、选择题:
1.下列所示的四个图形中,1∠和2∠是同位角...
的是( )
A. ②③
B. ①②③
C. ①②④
D. ①④
2.如右图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( )
A. 43∠=∠
B. 21∠=∠
C. DCE D ∠=∠
D. ο
180=∠+∠ACD D 3.一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )
A. 第一次向左拐ο
30,第二次向右拐ο
30 B. 第一次向右拐ο
50,第二次向左拐ο
130 C. 第一次向右拐ο
50,第二次向右拐ο
130 D. 第一次向左拐ο
50,第二次向左拐ο
130 4.两条平行直线被第三条直线所截,下列命题中正确..
的是( ) A. 同位角相等,但内错角不相等 B. 同位角不相等,但同旁内角互补 C. 内错角相等,且同旁内角不互补 D. 同位角相等,且同旁内角互补 5.下列说法中错误..
的个数是( ) (1)过一点有且只有一条直线与已知直线平行。
(2)过一点有且只有一条直线与已知直线垂直。
(3)在同一平面内,两条直线的位置关系只有相交、平行两种。
(4)不相交的两条直线叫做平行线。
(5)有公共顶点且有一条公共边的两个角互为邻补角。
A. 1个 B. 2个 C. 3个 D. 4个 6.下列说法中,正确..
的是( ) A. 图形的平移是指把图形沿水平方向移动。
B. 平移前后图形的形状和大小都没有发生改变。
C. “相等的角是对顶角”是一个真命题。
D. “直角都相等”是一个假命题。
7.如右图,CD AB //,且ο25=∠A ,ο
45=∠C ,则E ∠的度数是( ) A. ο
60 B. ο
70 C. ο
110 D. ο
80
8.如右图所示,已知BC AC ⊥ ,AB CD ⊥,垂足分别是C 、D ,那 么以下 线段大小的比较必定成立....
的是( ) A. AD CD > B. BC AC < C. BD BC > D. BD CD < 9.在一个平面内,任意四条直线相交,交点的个数最多有( ) A. 7个 B. 6个 C. 5个 D. 4个
10.如右图所示,BE 平分ABC ∠,BC DE //,图中相等的角共有( )
E
D
C
B
A
432
1
D C
B
A E D
C
B A
E
D
C
B
A
A. 3对
B. 4对
C. 5对
D. 6对 二、填空题
1.把命题“等角的余角相等”写成“如果…,那么…。
”的形式为 。
2.用吸管吸易拉罐内的饮料时,如图①,ο
1101
=∠,则=2∠ (拉罐的上下底面互相平行)
3.有一个与地面成30°角的斜坡,如图②,现要在斜坡上竖一电线杆,当电线杆与斜坡成的=1∠ °时, 电线杆与地面垂直。
4.如图③,按角的位置关系填空:A ∠与1∠是 ;A ∠与3∠是 ;2∠与3∠是 。
5.如图④,若ο
22021=∠+∠ ,则=3∠ 。
6.如图⑤,已知b a //,若ο
501=∠,则=∠2 ; 若ο
1003=
∠,则=∠2 。
7.如图⑥,为了把ABC ∆平移得到‘
’‘
C B A ∆,可以先将ABC ∆向右平移 格,再向上平移 格。
8.已知直线a b 、c 、在同一平面,若b a //,c b ⊥,则a c 。
9.三条直线AB 、CD 、EF 相交于点O ,如图⑦所示,AOD ∠的对顶角是 ,FOB ∠的对顶 角是 ,EOB ∠的邻补角是 。
三、解答题。
1.如图,已知BC DE //,ο
80=∠B ,ο
56=∠C ,求ADE ∠和DEC ∠的度数。
2.如图,已知:21∠∠=,ο50=D ∠,求B ∠的度数。
2
1
图①1
图②
30︒
图③
C
B
A
3
2
1
b
a
3
图④
212
图⑤
c
b
a 3
1图⑥
A’C ’
B ’
A
B
C
H
G 2
1
F
E
D
C B
A
E
D C
B A
图⑦
O F
E
D
C B A
3.如图,已知CD AB //,CF AE //,求证:DCF BAE ∠=∠。
4.如图,CD AB //,AE 平分BAD ∠,CD 与AE 相交于F ,E CFE ∠=∠。
求证:BC AD //。
5.如图,已知CD AB //,ο
40=∠B ,CN 是BCE ∠的平分线,CN CM ⊥,求BCM ∠的度数。
F
E
D
C
B A
2
1
F
E
D
C
B
A
N
M
E
D
C
B
A。