导数公式大全_高二数学_数学_高中教育_教育专区
- 格式:ppt
- 大小:2.35 MB
- 文档页数:29
高二数学常用导数公式大全高二数学常用导数公式大全在学习数学的时候公式是一定要牢牢记住的,下面为大家带来了高二数学常用导数公式大全,一起来回顾一下吧! 导数(Derivative)是微积分中的重要基础概念。
当函数y=f(x)的自变量X在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df/dx(x0)。
1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^2把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。
可以知道,当a=e时有y=e^x y'=e^x。
4.y=logax⊿y=loga(x+⊿x)-logax=loga(x+⊿x)/x=loga[(1+⊿x/x)^ x]/x⊿y/⊿x=loga[(1+⊿x/x)^(x/⊿x)]/x因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1+⊿x/x)^(x/⊿x)=logae,所以有lim⊿x→0⊿y/⊿x=logae/x。
可以知道,当a=e时有y=lnx y'=1/x。
高等数学导数公式大全高等数学的导数公式是高校数学课程知识的核心,也是高等教育课程中比较重要的基本知识。
数学导数是解决数学问题的基础,是数学应用实践问题最重要的组成部分。
它有着十分重要的意义,不仅在数学中具有广泛的用处,还可以应用到物理,政治、社会等其它领域,在处理各类技术、管理及经济问题有重要的作用。
数学导数公式大全包括常用的一阶、二阶、高阶导数计算公式,以及关于函数发展式的公式、曲线的导数的计算公式、微分公式、有界函数微分性质的公式等。
常用的数学导数公式分别如下:一阶导数:在函数f(x)的每一点处的导数的定义为:$f'(x)=lim_{h->0}.[f(x+h)-f(x)/h]$。
二阶导数:在函数f(x)的每一点处的2阶导数的定义为:$$f''(x)=lim_{h->0}.[f'(x+h)-f'(x)/h]$$。
高阶导数:在函数f(x)的每一点处,高阶导数的定义为:$$f^{(n)}(x)=lim_{h->0}.[f^{(n-1)}(x+h)-f^{(n-1)}(x)/h]$$。
函数发展式:在实值函数f(x)的每一点处,它的发展式为:$$f(x)=f(x_0)+f'(x_0)(x-x_0)+{\frac{f''(x_0)}{2!}}(x-x_0)^2+..+{\frac{f^{(n)}(x_0)}{n!}}(x-x_0)^n+o(x-x_0)^n$$。
曲线的导数:在函数f(x)的每一点处,曲线的切线垂直于在该点的切线,切线的斜率称为曲线的导数,可用下面的公式表示:$\frac{dy}{dx}=f'(x)$。
微分公式:在函数f(x)的每一点处,它的微分公式为:$\int f'(x)dx =f(x)$。
有界函数微分性质:在函数f(x)的每一点处,它的有界函数微分性质的定义是:有界函数的微分性质是:若函数f(x)在闭区间[a,b]上是有界的,则可以得到它的微分$$\int_a^b f'(x)dx = f(b)-f(a)$$。
1.导数的概念(1)函数y =f (x )在x =x 0处的导数一般地,称函数y =f (x )在x =x 0处的瞬时变化率 lim Δx →0f (x 0+Δx )-f (x 0)Δx =lim Δx →0Δy Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim Δx →0Δy Δx =lim Δx →0f (x 0+Δx )-f (x 0)Δx. (2)导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数称函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx为f (x )的导函数. 2.基本初等函数的导数公式(1)[f (x )±g (x )]′=f ′(x )±g ′(x ).(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ).(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.导师提醒1.注意两种区别(1)f′(x)与f′(x0)的区别与联系:f′(x)是一个函数,f′(x0)是函数f′(x)在x0处的函数值(常数),所以[f′(x0)]′=0.(2)“过”与“在”:曲线y=f(x)“在点P(x0,y0)处的切线”与“过点P(x0,y0)的切线”的区别:前者P(x0,y0)为切点,而后者P(x0,y0)不一定为切点.2.关注两个易错点(1)函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.(2)曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.3.记住两个常用结论(1)奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.(2)[af(x)+bg(x)]′=af′(x)+bg′(x).。