货币时间价值
- 格式:doc
- 大小:22.50 KB
- 文档页数:2
第二章货币的时间价值一、名词解释:1.货币的时间价值:是指货币经历一定时间的投资和再投资所增加的价值。
2.终值:又称本利和,是指资金经过若干时期后,包括本金和时间价值在内的未来价值。
3.复利:就是不仅本金要计算利息,本金所生的利息在下期也要加入本金一起计算利息,即通常所说的“利滚利”。
4.复利终值:复利终值是指一定数量的本金在一定的利率下按照复利的方法计算出的若干时期以后的本金和利息。
5.复利现值:复利现值是指未来一定时间的特定资金按复利计算的现在价值,即为取得未来一定本利和现在所需要的本金。
6.递延年金:递延年金是指第一次收付款发生时间是在第二期或者第二期以后的年金。
1.现金流量:现金流量是企业在一定时期内的经营过程或一项投资项目的资金投入与收回过程中所发生的现金流出与流入。
二、判断题:1.货币时间价值的表现形式通常是用货币的时间价值率。
(错)2.实际上货币的时间价值率与利率是相同的。
(错)3.单利现值的计算就是确定未来终值的现在价值。
(对)4.普通年金终值是指每期期末有等额的收付款项的年金。
(错)5.永续年金没有终值。
(对)6.货币的时间价值是由时间创造的,因此,所有的货币都有时间价值。
(错)7.复利的终值与现值成正比,与计息期数和利率成反比。
(错)8.若i>0,n>1,则PVIF 一定小于1。
(对)9.若i>0,n>1,则复利的终值系数一定小于1。
(错)三、单项选择题:1.A公司于2002年3月10日销售钢材一批,收到商业承兑汇票一张,票面金额为60 000元,票面利率为4%,期限为90天(2002年6月10日到期),则该票据到期值为( A )A.60 600(元)B.62 400(元)C.60 799(元)D.61 200(元)2.复利终值的计算公式是( B )A.F=P·(1+i)B.F=P·(1+i) nC . F =P ·(1+i) n -D . F =P ·(1+i) n +13、普通年金现值的计算公式是( C ) A .P =F ×(1+ i )-nB .P =F ×(1+ i )nC .P=A ·i i n-+-)1(1D .P=A ·i i n 1)1(-+4.ii n 1)1(-+是( A )A . 普通年金的终值系数B . 普通年金的现值系数C . 先付年金的终值系数D . 先付年金的现值系数5.复利的计息次数增加,其现值( C ) A . 不变 B . 增大 C . 减小 D . 呈正向变化6.A 方案在三年中每年年初付款100元,B 方案在三年中每年年末付款100元,若利率为10%,则二者在第三年年末时的终值相差( A ) A .33.1 B .31.3 C .133.1 D .13.317.下列项目中的( B )被称为普通年金。
货币时间价值概述货币时间价值(Time Value of Money,简称TVM)是金融学中一个重要的概念,指的是货币在不同时间点的价值不同。
简单来说,TVM认为一笔现金在现在的价值大于同样一笔现金在未来的价值,因为它可以用于投资或者收益。
TVM的核心原理是时间的价值,即货币的价值随着时间的推移而增加或减少。
这是因为货币可以通过投资而产生利息、股息或其他盈利方式,也可以通过通货膨胀而贬值。
因此,对于投资者和借款人来说,了解和应用TVM原理是做出明智的金融决策的基础。
TVM的基本思想是将货币的价值量化为现值和未来值。
现值指的是一个金额在当前时间点的价值,未来值指的是相同金额在未来某一时间点的价值。
TVM涉及到现金流量的时间推移和调整,包括现金的未来价值、现金流量的折现、年金等。
具体来说,TVM包括以下几个重要概念和公式:1. 未来值(Future Value,简称FV):指的是将一笔现金在未来某一时间点的价值,可以通过对当前现金的投资来获得。
计算未来值的公式为:FV = PV * (1 + r)^n,其中PV代表现值,r代表年利率,n代表时间期限。
2. 现值(Present Value,简称PV):指的是一笔未来现金在当前时间点的价值,可以通过将未来现金流折算为当前现金来计算。
计算现值的公式为:PV = FV / (1 + r)^n。
3. 年金(Annuity):指的是在一段连续的时间内,以相同金额、相同时间间隔进行的现金流量。
年金可以是普通年金(Ordinary Annuity)或者永续年金(Perpetuity)。
普通年金的现值公式为:PV = P * [1 - (1 + r)^(-n)] / r,其中P代表每期支付的金额,r代表年利率,n代表支付期数。
4. 折现率(Discount Rate):指的是将未来现金流折算为现值时所使用的利率。
折现率通常是基于风险和机会成本等因素确定的。
TVM的应用广泛,包括投资决策、贷款计算、退休规划等方面。
【知识点 3】货币时间价值(一)货币时间价值的含义货币时间价值,是指一定量货币在不同时点上的价值量差额。
货币的时间价值来源于货币进入社会再生产过程后的价值增值。
通常情况下,它是指没有风险也没有通货膨胀情况下的社会平均利润率,是利润平均化规律发生作用的结果。
根据货币具有时间价值的理论,可以将某一时点的货币价值金额折算为其他时点的价值金额。
例如:若年利率为 3%,那么现在的 100 元钱,相当于一年后的 103 元。
(二)终值和现值的计算终值又称将来值,是现在一定量的货币折算到未来某一时点所对应的金额,通常记作 F。
现值,是指未来某一时点上一定量的货币折算到现在所对应的金额,通常记作 P。
现值和终值是一定量货币在前后两个不同时点上对应的价值,其差额即为货币的时间价值。
现实生活中计算利息时所称本金、本利和的概念相当于货币时间价值理论中的现值和终值。
单利和复利是计息的两种不同方式。
单利是指按照固定的本金计算利息的一种计息方式。
按照单利计算的方法,只有本金在贷款期限中获得利息,不管时间多长,所生利息均不加入本金重复计算利息。
举例:银行活期存款利息、公司债券的票面利息复利是指不仅对本金计算利息,还对利息计算利息的一种计息方式。
【提示】财务估值中一般都按照复利方式计算货币的时间价值。
为计算方便,假定有关字母符号的含义如下:I 为利息;F 为终值;P 为现值;A 为年金值;i 为利率(折现率);n 为计算利息的期数。
1.复利的终值和现值(1)复利终值复利终值是指一定量的货币,按复利计算的若干期后的本利总和。
【例题】某人将 100 元存入银行,年利率 2,求 5 年后的终值。
已知(F/P,2,5)=1.1041(2)复利现值复利现值是指未来某期的一定量的货币,按复利计算的现在价值。
【提示】①复利终值和复利现值互为逆运算;②复利终值系数(F/P,i,n)与复利现值系数(P/F,i,n)互为倒数。
【例题】某人为了 5 年后能从银行取出 100 元,在年利率 2的情况下,求当前应存入的金额。
第二章货币的时间价值一、名词解释:1.货币的时间价值:是指货币经历一定时间的投资和再投资所增加的价值。
2.终值:又称本利和,是指资金经过若干时期后,包括本金和时间价值在内的未来价值。
3.复利:就是不仅本金要计算利息,本金所生的利息在下期也要加入本金一起计算利息,即通常所说的“利滚利”。
4.复利终值:复利终值是指一定数量的本金在一定的利率下按照复利的方法计算出的若干时期以后的本金和利息。
5.复利现值:复利现值是指未来一定时间的特定资金按复利计算的现在价值,即为取得未来一定本利和现在所需要的本金。
6.递延年金:递延年金是指第一次收付款发生时间是在第二期或者第二期以后的年金。
1.现金流量:现金流量是企业在一定时期内的经营过程或一项投资项目的资金投入与收回过程中所发生的现金流出与流入。
二、判断题:1.货币时间价值的表现形式通常是用货币的时间价值率。
(错)2.实际上货币的时间价值率与利率是相同的。
(错)3.单利现值的计算就是确定未来终值的现在价值。
(对)4.普通年金终值是指每期期末有等额的收付款项的年金。
(错)5.永续年金没有终值。
(对)6.货币的时间价值是由时间创造的,因此,所有的货币都有时间价值。
(错)7.复利的终值与现值成正比,与计息期数和利率成反比。
(错)8.若i>0,n>1,则PVIF 一定小于1。
(对)9.若i>0,n>1,则复利的终值系数一定小于1。
(错)三、单项选择题:1.A公司于2002年3月10日销售钢材一批,收到商业承兑汇票一张,票面金额为60 000元,票面利率为4%,期限为90天(2002年6月10日到期),则该票据到期值为( A )A.60 600(元)B.62 400(元)C.60 799(元)D.61 200(元)2.复利终值的计算公式是( B )A.F=P·(1+i)B.F=P·(1+i) nC . F =P ·(1+i) n -D . F =P ·(1+i) n +13、普通年金现值的计算公式是( C ) A .P =F ×(1+ i )-nB .P =F ×(1+ i )nC .P=A ·i i n-+-)1(1D .P=A ·i i n 1)1(-+4.ii n 1)1(-+是( A )A . 普通年金的终值系数B . 普通年金的现值系数C . 先付年金的终值系数D . 先付年金的现值系数5.复利的计息次数增加,其现值( C ) A . 不变 B . 增大 C . 减小 D . 呈正向变化6.A 方案在三年中每年年初付款100元,B 方案在三年中每年年末付款100元,若利率为10%,则二者在第三年年末时的终值相差( A ) A .33.1 B .31.3 C .133.1 D .13.317.下列项目中的( B )被称为普通年金。
货币的时间价值概述货币的时间价值概述引言货币的时间价值是指货币在不同时间点上的价值不同。
由于时间的流逝和不确定性的存在,人们普遍认同拥有货币的好处比将来某个时间点拥有同等金额的货币更有价值。
货币的时间价值在金融领域具有重要意义,对投资决策、贷款利率、退休规划等方面都有重要影响。
本文旨在对货币的时间价值进行概述,包括时间价值的概念、原因、计算方法以及影响因素等。
一、时间价值的概念时间价值是指货币的价值随着时间的推移而变化。
这种变化主要源于以下几个方面:1. 通货膨胀:通货膨胀是指货币的购买力下降。
随着时间的推移,同等金额的货币在购买力上会相对减少,即货币的价值降低。
2. 机会成本:拥有货币可以为人们提供许多机会,例如投资、消费等。
因此,人们宁愿用当前的货币购买力来享受或投资,而不是将来某个时间点的货币。
3. 风险:未来的事情是不确定的,存在风险。
人们倾向于将风险越早承担,因此他们会降低对未来货币的价值。
二、时间价值的计算方法货币的时间价值可以通过利用复利公式来计算,常用的计算方法有:1. 未来价值(FV):未来价值是指将现金流量从现在延续到未来某一时点后的价值。
计算公式为FV = PV(1 + r)^n,其中FV是未来价值,PV是现值,r是利率,n是时间。
2. 现值(PV):现值是指未来现金流量的现在价值,即将未来的价值贴现回现在。
计算公式为PV = FV / (1+r)^n,其中PV是现值,FV是未来价值,r是利率,n是时间。
3. 年金(Annuity):年金是指在一定时间内以相等间隔支付或收取的一系列现金流量。
计算公式为PV = PMT * [1 -(1+r)^-n]/r,其中PV是现值,PMT是每期支付或收取的金额,r是利率,n是时间。
三、影响货币时间价值的因素货币的时间价值受到多个因素的影响,包括以下几个方面:1. 利率:利率是衡量货币时间价值的关键因素。
利率越高,当前的货币就越有价值,因为它可以获得更高的回报。
货币的时间价值概述货币的时间价值是指货币的价值随着时间的推移而发生变化。
这种变化是由于货币的使用能力、购买力和投资机会等因素造成的。
货币的时间价值在金融领域中具有重要意义,对个人和企业的财务决策有着深远的影响。
货币的时间价值是建立在三个基本原则上的。
第一,货币具有时间偏好,即人们更喜欢即时获取货币而不愿意等待同等金额的货币。
这是由于人们倾向于享受即时的满足感和消费需求。
第二,货币具有不确定性,未来的货币价值可能受到通货膨胀、利率波动和政府干预等因素的影响。
第三,货币可以通过投资增值或被用于借贷,从而产生额外的收入。
货币的时间价值在现金流量分析中起到了至关重要的作用。
现金流量分析是一种评估投资项目或决策的方法,它将现金流量的量化与时间价值结合起来,以确定实际价值。
时间价值的概念使得未来的现金流量必须通过折现率进行调整,以反映其相对于当前的价值。
在个人层面,货币的时间价值可以影响个人的储蓄和投资决策。
例如,如果一个人希望在未来购买一辆汽车,他需要考虑到通货膨胀的影响,以确保他储蓄的钱足以支付未来车辆的价格。
同样,个人在做投资决策时也需要考虑到货币的时间价值,以衡量投资回报率是否能超过通货膨胀以及其他风险。
对于企业来说,货币的时间价值可以影响投资项目的选择和资本预算决策。
当企业考虑购买新设备、扩大生产线或进行其他投资时,他们需要评估未来现金流量的价值,以确定投资的可行性和回报率。
货币的时间价值也在企业财务管理中起着重要的作用,例如确定适当的资本结构、管理现金流以及进行财务规划和预测等方面。
总而言之,货币的时间价值是指货币的价值随时间的推移而发生变化。
它在个人和企业的财务决策中起着重要作用,影响着储蓄、投资和决策的选择。
了解货币的时间价值对于进行合理的财务规划和决策至关重要。
货币的时间价值是金融学中一个重要的概念,它是建立在现金流量和时间关系之上的。
现金流量是指在一定时间内的现金流入或流出,而时间就是货币的时间价值所体现的维度。
货币时间价值
1、某人为了5年后能从银行取出100元,在复利年利率5%的情况下,求当前应存入金额。
2、某人将100元存入银行,复利年利率5%,求5年后的终值。
3、某人拟在5年后还清10 000元债务,从现在起每年末等额存入银行一笔款项。
假设银行利率为10%,则每年需存入银行多少钱?
4、某企业借得1 000万元的贷款,在10年内以年利率12%等额偿还,则每年应付的金额为多少?
5、为给儿子上大学准备资金,王先生连续6年于每年年初存入银行3 000元。
若银行存款利率为5%,则王先生在第6年末能一次取出本利和多少钱?
6、某企业5年后需偿还40000元债务,如果每年年末存款一次,年复利率为10%。
要求:计算每年末应存入现金多少元,可以到期一次还本付息。
选择
1.企业打算在未来三年每年年初存入2000元,年利率2%,单利计息,则在第三年年末存款的终值是()元。
A.6120.8
B.6243.2
C.6240
D.6606.6
2.某人分期购买一套住房,每年年末支付50000元,分10次付清,假设年利率为3%,则该项分期付款相当于现在一次性支付()元。
(P/A,3%,10)=8.5302
A.469161
B.387736
C.426510
D.504057
3.甲希望在10年后获得80000元,已知银行存款利率为2%,那么为了达到这个目标,甲从现在开始,共计存10次,每年末应该存入()元。
(F/A,2%,10)=10.95
A.8706.24
B.6697.11
C.8036.53
D.7305.94
4.某人现在从银行取得借款20000元,贷款利率为3%,要想在5年内还清,每年应该等额归还()元。
(P/A,3%,5)=4.5797
A.4003.17
B.4803.81
C.4367.10
D.5204.13。