复利计息次数
m
每年(m=1) 每半年(m=2) 每季(m=4) 每月(m=12) 每天(m=365) 每小时(m=8760)
CF1
1100.00 1102.50 1103.81 1104.71 1105.16 1105.17
i (1 r )m 1 m
实际年利率
0.10 0.1025 0.10381 0.10471 0.10516 0.10517
解答
1.如果我们今天将 $5,000 存在一个支付 10% 利率的账户 里,它需要经过多长时间能增值到 $10,000?
FV C0(1r)T $1,0 00 $0 5,00 (1 0 .1)T 0 (1.10)T $10,0002 $5,000 ln1(.10)T ln2
T ln2 0.69371.27years ln1.(1)0 0.0953
的1美元利息
复利终值
1.基本符号 PV-现值,未来现金流量在今天的价值 FVt-终值,现金流量在未来的价值 r-每期之利率,报酬率,通常1期是1年 t-期数,通常是年数 CF-现金流量
2.复利终值的一般计算公式 FVt = PV(1+ r)t (1+r)t为普通复利终值系数,经济意义是指现在 的一元t年后的终值
永续年金的现值 C/ r
增长年金与增长型永续年金
增长年金的现值公式推导
利用等比数列的公式:
增长年金与增长型永续年金 增长 年 C 1 金 [1 ( r g - ) 现 g /1 ( r )t值 ]
(P105)
预付年金的终值
FVAt
C 1 r t
年金终值
年金终值系数: 期初年金(annuity due)