九年级期末综合测试题
- 格式:docx
- 大小:921.18 KB
- 文档页数:5
(第4题)九年级数学上册期末复习综合测试题(含答案)一、选择题(本大题共6小题,每小题2分,共12分.) 1.一元二次方程 x 2=x 的根是( )A .x 1=0,x 2=1B .x 1=0,x 2=-1C .x 1=x 2=0D .x 1=x 2=12.一个不透明布袋中有2个红球,3个白球,这些球除颜色外无其他差别,摇匀后从中随机摸出一个小球,该小球是红色的概率为( )A .12B .23C .15D .253.若一组数据 2,3,4,5,x 的方差比另一组数据 5,6,7,8,9 的方差大,则 x 的值可能是( ) A .1B .4C .6D .84.如图,OA 、OB 是⊙O 的半径,C 是⊙O 上一点.若∠OAC =16°,∠OBC =54°,则 ∠AOB 的度数是( )A .70°B .72°C .74°D .76°5.若关于x 的一元二次方程ax 2+k =0的一个根为2,则二次函数y =a (x +1)2+k 与x 轴的交点坐标为( ) A .(-3,0)、(1,0) B .(-2,0)、(2,0) C .(-1,0)、(1,0)D .(-1,0)、(3,0)6.如图,在Rt △ABC ,∠ACB =90°,AC =4,BC =3,点D ,E 分别在AB ,AC 上,连接DE ,将△ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分∠EFB ,则AD 的长为( ) A . 157B .207C .258D .259二、填空题(本大题共10小题,每小题2分,共20分.) 7(第12题)l 1 l 2l 3A BCEFD (第11题)8.若a b =43,则a -b b= .9.设x 1、x 2是方程x 2+mx -m +3=0的两个根,则x 1+x 2-x 1x 2= .10.把抛物线y =-x 2向左平移2个单位,然后向上平移3个单位,则平移后该抛物线相应的函数表达式为 .11.如图,l 1∥l 2∥l 3,若AD =1,BE =3,CF =6,则ABBC的值为 .12.如图,点A 、B 、C 在⊙O 上,⊙O 的半径为3,∠AOC =的长为 . 13.已知关于x 的函数y =x 2+2mx +1,若x >1时,y 随x 的增大而增大,则m 的取值范围是 .14.如图,弦AB 是⊙O 的内接正六边形的一边,弦AC 是⊙O 的内接正方形的一边,若 BC =2+23,则⊙O 的半径为 .15.如图,正方形ABCD 的边长是4,点E 在DC 上,点F 在AC 上,∠BFE =90°,若 CE =116.如图,在矩形ABCD 中,AB =2,AD =4,点E 、F 分别为AD 、CD 边上的点,且EF 的长为2,点G 为EF 的中点,点P 为BC 上一动点,则P A +PG 的最小值为 . 三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解方程:(1)x 2-4x -5=0; (2)x 2-4=2x (x -2).18.(8分)甲乙两人在相同条件下完成了5次射击训练,两人的成绩(单位:环)如下(1)甲射击成绩的中位数为 环,乙射击成绩的众数为 环;(2)计算两人射击成绩的方差;(3)根据训练成绩,你认为选派哪一名队员参赛更好,为什么?19.(8分)某校开展秋季运动会,需运动员代表进行发言,从甲、乙、丙、丁四名运动员中随机抽取.(1)若随机抽取1名,甲被抽中的概率为 ; (2)若随机抽取2名,求甲在其中的概率.20.(7分)如图,在△ABC 中,点D 、E 分别在AB 、AC 上,且∠BCE +∠BDE =180°. (1)求证:△ADE ∽△ACB ;(2)连接BE 、CD ,求证:△AEB ∽△ADC .21.(8分)如图是二次函数y =-x 2+bx +c 的图像. (1)求该二次函数的关系式及顶点坐标; (2)当y >0时 x 的取值范围是 ;(3)当m <x <m +4时,-5<y ≤4,则m 的值为 .22.(7分)在Rt △ABC ,∠BAC =90°,AB =AC ,D 、E、F 分别为BC 、AB 、AC 边上的点,且∠EDF =45°.(1)求证:△EBD ∽△DCF ;(2)当D 是BC 的中点时,连接EF ,若CF =5,DF =4,则EF 的长为 .23.(8分)某超市销售一种商品,成本为每千克50元.当每千克售价60元时,每天的销售量为60千克,经市场调查,当每千克售价增加1元,每天的销售量减少2千克. (1)为保证某天获得750元的销售利润,则该天的销售单价应定为多少? (2)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?24.(8分)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点P ,连接BC ,过点D 作DE ⊥CD ,交⊙O 于点E ,连接AE ,F 是DE 延长线上一点,且∠BCD =∠F AE . (1)求证:AF 是⊙O 的切线;(2)若AF =2,EF =1,求⊙O 的半径.25.(8分)已知二次函数y =(x -2)(x -m )(m 为常数). (1)求证:不论m 为何值,该函数的图像与x 轴总有公共点;(2)若M (-1,0), N (3,0),该函数图像与线段MN 只有1个公共点,直接写出 m 的取值范围;(3)若点A (-1,a ),B (1,b ),C (3,c )在该函数的图像上,当abc <0时,结合函数图像,直接写出m 的取值范围.26.(8分)如图,四边形ABCD 内接于⊙O ,AB =AC ,BD ⊥AC ,垂足为E . (1)求证:∠BAC =2∠DAC ; (2)若AB =10,CD =5,求BC 的长.27.(10分)定义:圆心在三角形的一边上,与另一边相切,且经过三角形一个顶点(非切点)的圆,称为这个三角形圆心所在边上的“伴随圆”.(1) 如图①,在△ABC 中,∠C =90°,AB =5,AC =3,则BC 边上的伴随圆的半径为 . (2)如图②,△ABC 中,AB =AC =5,BC =6,直接写出它的所有伴随圆的半径. (3)如图③,△ABC 中,∠ACB =90°,点E 在边AB 上,AE =2BE ,D 为AC 的中点,且∠CED =90°.①求证:△CED 的外接圆是△ABC 的AC 边上的伴随圆; ②DE的值为 .参考答案说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.9 8.13 9.-3 10.y =-(x +2)2+3 11.2312.2π 13.m ≥-1 14. 2 2 15.322 16.4 2 -1三、解答题(本大题共11小题,共88分) 17.(8分)(1)解:x 2-4x -5=0 x 2-4x +4=5+4(x -2)2=9 ········································································································ 1分x -2=±3 ········································································································ 2分 ∴ x 1=5,x 2=-1. ··························································································· 4分 (2)解:x 2-4=2x (x -2) x 2-4=2x 2-4xx 2-4x +4=0 ··································································································· 5分 (x -2)2=0 ········································································································ 6分 ∴ x 1=x 2=2. ··································································································· 8分 18.(8分)(1)7;8 ········································································································ 2分 (2)s 2甲=(7-8)2+(7-8) 2+(10-8)2+(9-8)2+(7-8)25=1.6环2. ······························ 4分s 2乙=(8-8)2+(8-8) 2+ (7-8)2+(8-8)2+(9-8)25=0.4环2. ······································ 6分(3)选择乙.因为甲乙两人平均数相同均为8,说明两人实力相当,但s 2乙<s 2甲,乙的成绩更加稳定,所以选乙. ······················································································· 8分19.(8分)(1)14. ·········································································································· 2分(2)解:随机抽取两名运动员,共有6种等可能性结果:(甲,乙)、(甲,丙)、(甲,丁)、(乙,丙)、(乙,丁)、(丙,丁).其中满足“有甲运动员”(记为事件A )的结果只有3种,所以P (A )=12. ·································································································· 8分20.(7分)(1)证明:∵ ∠BCE +∠BDE =180°, ∠EDA +∠BDE =180°,∴ ∠EDA =∠BCE . ·························································································· 1分 又 ∠A =∠A , ································································································· 2分 ∴ △ADE ∽△ACB . ·························································································· 3分 (2)∵ △ADE ∽△ACB , ∴ AD AC =AE AB, ·········································· 4分 ∴AD AE =ACAB, ······································· 5分 又 ∠A =∠A , ········································ 6分 ∴ △AEB ∽△ADC . ································· 7分21.(8分)(1)将(0,3)、 (3,0)代入,得⎩⎨⎧3=c ,0=-9+3b +c································································································· 1分解得⎩⎨⎧c =3,b =2····································································································· 2分∴ y =-x 2+2x +3 ····························································································· 3分 ∴ 顶点坐标为(1,4) ························································································ 4分 (2)-1<x <3. ······························································································ 6分 (3)-2或0 ···································································································· 8分 22.(7分)(1)解:∵∠BAC =90°,AB =AC ,∴ ∠B =∠C =45°. ··························································································· 1分 ∴ 在△BDE 中,∠BED +∠BDE =180°-∠B =135°, ∵ ∠EDF =45°,∴ ∠BDE +∠CDF =135°,∴ ∠BED =∠CDF . ·························································································· 3分 ∵ ∠B =∠C ,∴ △EBD ∽△DCF . ·························································································· 5分 (2 ········································································································ 7分23.(8分)(1)解:设每千克的销售价增加x 元,根据题意,得(60+x -50) (60-2x )=750 ··················································································· 2分 ∴ x 1=5,x 2=15. ····························································································· 3分 60+5=65或60+15=75 ···················································································· 4分 答:销售单价为65或75元时获得利润750元. (2)解:每千克的销售价增加x 元,利润为w 元.w =(60+x -50) (60-2x ) ···················································································· 6分 =-2(x -10)2+800 ···························································································· 7分 ∵ a =-2<0,∴ 当x =10时,w 有最大值800. ········································································ 8分 60+10=70答:当销售单价为70元时获得最大利润,为800元. 24.(8分) (1)连接BD .∵ AB 为⊙O 的直径,CD ⊥AB ,∴ ⌒BC = ⌒BD , ························································· 1分 ∴ ∠BDC =∠BCD .∵ 四边形ABDE 为⊙O 的内接四边形,∴ ∠BDE +∠BAE =180°,即∠BDC +∠CDF +∠BAE ····· 2分∵ DE ⊥CD , ∴ ∠CDF =90°, ∴ ∠BDC +∠BAE =90°.∵ ∠BCD =∠F AE , ·························································································· 3分 ∴ ∠BAE +∠F AE =90°,即∠F AB =90°, ∴ AF ⊥AB . 又 点A 在⊙O 上,∴ AF 与⊙O 相切. ·························································································· 4分 (2)过点O 作OG ⊥DF 垂足为G . ∵ ∠F AB =∠D =∠APD =90°, ∴ 四边形APDF 是矩形, ∴ ∠F =90°.∵ ∠F AB =∠F =∠OGF =90°, ∴ 四边形AOGF 是矩形,∴ AF =OG ,AO =GF . ···················································· 5分 设OE =OA =r ,则GE =r -1.在Rt △OGE 中,由勾股定理得OG 2+GE 2=OE 2, ···················································· 6分 即4+(r -1)2=r 2, ···························································································· 7分 解得r =5 2 . ····································································································· 8分25.(8分)(1)令y =0,即(x -2)(x -m )=0 ········································································· 1分 ∴ x 1=2,x 2=m . ····························································································· 2分 当m =2时,x 1=x 2,方程有两个相等的实数根; 当m ≠2时,x 1≠x 2,方程有两个不等的实数根. ∴ 不论m 为何值,方程总有实数根;∴ 不论m 为何值,该函数的图像与x 轴总有公共点. ·············································· 3分 (2)m =2或m >3或m <-1. ··········································································· 6分 (3)-1<m <1或m >3. ·················································································· 8分 26.(8分)。
人教版九年级英语上册期末综合测试卷第一部分听力(四大题,20分)一、短对话理解(共5小题;每小题1分,满分5分)1. What did Tom's aunt give him?A. B. C.2. Where does the man usually look through the newspapers?A. B. C.3. When will the woman give a report?A. Next Monday.B. Next Tuesday.C. Next Wednesday.4. Where will the boy go in half an hour?A. To the zoo.B. To the Great Wall.C. To the swimming pool.5. How will the man help the woman?A. By taking out the rubbish.B. By preparing for the report.C. By writing the speech report.二、长对话理解(共5小题;每小题1分,满分5分)听下面一段对话,回答第6、7小题。
6. What does the girl want to do?A. See a doctor.B. Learn to dance.C. Help others.7. What is the girl good at?A. Drawing.B. Singing.C. Dancing.听下面一段对话,回答第8至10小题。
8. When did they get to the park?A. At seven o'clock.B. At eight o'clock.C. At nine o'clock.9. How did the boy go to the park?A. By train.B. By car.C. By bus.10. What did the boy do in the park?A. He drew a picture.B. He fed an elephant.C. He saw a bird show.三、短文理解(共5小题;每小题1分,满分5分)11. Where does Betty come from?A. America.B. England.C. Japan.12. Why did Betty come to Beijing?A. To visit her relatives.B. To tour around it.C. To study Chinese.13. What wasn't Betty used to in Beijing at first?A. The weather.B. The food.C. The language.14. How did Betty feel about learning Chinese?A. Interesting.B. Easy.C. Difficult.15. Who helped Betty when she was sad?A. Her friend.B. Her classmate.C. Her teacher.四、信息转换(共5小题;每小题1分,满分5分)第二部分语言知识运用(三大题,35分)五、单项填空(共10小题;每小题1分,满分10分)21. —What's the name of this tea? It tastes delicious.—It's Houkui, a kind of green tea. It is ____ in the south of Anhui.A. punishedB. preparedC. pollutedD. produced22. Just now you were ____ to Helen. I think you should say sorry to her.A. impoliteB. necessaryC. popularD. strange23. —The ____ Chinese culture is more and more popular around the world.—So it is! Tons of foreigners are learning Tang and Song poetry(唐诗宋词) now.A. modernB. successfulC. necessaryD. traditional24. —What time is it now?—I can't tell you the time ____,but I know it's too late.A. loudlyB. wiselyC. exactlyD. cheaply25. —Whose chemistry book is this?—It ____ be Ann's because her name is on it.A. mustB. mightC. mustn'tD. can't26. The earth is the planet ____ provides us with everything we need—fresh air, cleanwater and so on. It's our duty to protect it.A. whatB. whoC. whoseD. which27. —Many DIY cards ____ to mothers on Mother's Day every year.—How creative!A. were sentB. are sentC. have sentD. will send28. —Sorry, there are no tickets left for today's dance show.—OK. ____,I'd like to book a ticket for tomorrow's show.A. By the wayB. All in allC. In that caseD. As a result29. —Gina, I wonder ____ in the street when I come to pick you up.—Well, there's a big tree by the front gate and it's covered in lovely white flowers at the moment.A. how I will find your houseB. how will I find your houseC. when I will find your houseD. when will I find your house30. —I'm a poor singer. I don't think I can join your singing group.—____!We just sing for fun.A. Good luckB. Come onC. No wayD. Of course六、完形填空(共20小题;每小题1分,满分20分)AOne day, Mi ss Ellis gave her pupils a task of being “happiness collectors”. It __31__ that kids should try to bring happiness to those around them. Most students chose to buy gifts for friends. But Carla just walked around with her __32__ and took pictures of people.The next day at school, Carla turned up __33__ a bag and said, “In this bag is all the happiness I've __34__ so far. ”Everyone was looking forward to seeing it, but Carla didn't show anyone what was in the bag. Instead, she pulled out a small box and gave it to Miss Ellis.Miss Ellis slowly opened the box and looked inside. Then a big smile showed onher face and at that moment Carla took a __35__ of her. Other students really wanted to know what __36__ made Miss Ellis happy.Miss Ellis __37__ the box to them. They found there was a photo of a big __38__. Everyone who had seen it felt __39__. And in return, every student sent out big smiles of their own to reply.Carla __40__ to tell a simple truth that every time you smile, you are sending happiness to others.31. A. seemed B. meantC. believedD. allowed32. A. paper B. giftC. foodD. camera33. A. carrying B. reachingC. breakingD. searching34. A. saved B. fixedC. collectedD. bought35. A. photo B. noteC. restD. look36. A. seriously B. clearlyC. excitedlyD. exactly37. A. passed B. explainedC. threwD. returned38. A. tree B. houseC. smileD. star39. A. important B. proudC. politeD. happy40. A. refused B. managedC. forgotD. promisedBTher e is a famous Chinese saying that goes, “Good wine needs no bush (酒香不怕巷子深). ” It __41__ that as long as your wine is good enough, people will come to buy it even if you don't advertise it. Sometimes we also __42__ it when we want to say that if you're good enough, other people will know it one day even if you don't speak a lot. So a lot of people don't think speaking __43__ are important. However, they __44__ play an important part in our life.With good speaking skills, you can make people __45__ you quickly. And you need to __46__ with others through speaking in life. Without good speaking skills, the conversations between you and others may not be __47__. Then how can you make others understand your ideas and find out what you are good at? Or at least, it may take much more __48__ for them to do so. As a result, although you are very excellent, you will find it __49__ to have a good job or get a good position in your team.In a word, speaking skills are very __50__. We should pay attention to speaking skills so that others can see our skills and hear our voice.41. A. holds B. fearsC. meansD. warns42. A. mention B. realizeC. performD. achieve43. A. dreams B. skillsC. reasonsD. chances44. A. suddenly B. recentlyC. quicklyD. actually45. A. listen to B. ask forC. learn aboutD. hear from46. A. communicate B. understandC. influenceD. experience47. A. traditional B. dangerousC. expensiveD. comfortable48. A. tour B. timeC. hopeD. luck49. A. busy B. trueC. hardD. lazy50. A. important B. personalC. commonD. natural七、补全对话(有两项多余)(共5小题;每小题1分,满分5分)A: Excuse me. I'm afraid I am lost. 51. ________________________________ B: Sure! Let me see. You're here now, near the biggest shopping mall, the center of the city.A: Oh…yes. Well, could you please tell me how I can get to the nearest bookstore from here?B: Sure. Just go along this street and turn right at the third crossing, and you'll see it on your left. 52. ________A: You mean it's across from City Cinema, right?B: Yes. 53. ________A: Well, can you tell me how long it will take to walk there?B: About twenty minutes. 54. ________ Ten minutes is enough if the traffic is good. A: Thank you. Oh, there is one more thing. 55. ________B: Perhaps at 9: 00 pm, but I'm not sure.A: Thank you very much.第三部分阅读(共两节,40分)八、阅读理解(共20小题;每小题2分,满分40分)第一节: A56. After reading the text, we can learn how to ____.A. use a helicopterB. draw a helicopterC. fly a paper helicopterD. make a paper helicopter57. Which question does this text explain?A. What things should we prepare?B. Who is interested in this activity?C. Why does the paper helicopter fall straight to the ground?D. How many steps should we do to draw a helicopter?58. What kind of text is this?A. An application.B. Instructions.C. A competition.D. An advertisement.BAt the age of 16, Einstein always played with a group of mischievous (顽皮捣蛋的) kids. Because he was so busy playing, he didn't study enough and failed his final exam.One morning, when Einstein was holding a fishing rod (钓鱼竿) and was about to go fishing with his friends, his father stopped him and said calmly, “Einstein, you spent so much time playing that you failed your exam. I'm worried about your future. ”“What are you worried about? Jack and Robert also failed, but don't they still get to go fishing?”“My boy, you can't think like that,” his dad said.“There is a story that people tell in our hometown. I will tell it to you now. ”“There were two cats playing on a roof. One cat got caught off guard and fell down the chimney (烟囱) while holding the other cat. When the two cats climbed out of the chimney, one of the cats had soot (烟灰) on its face, while the other cat's face was clean. Seeing the dirty cat, the clean cat thought its face must be dirty, so it quickly ran to the river and washed its face. The dirty cat saw the clean cat and thought its face was also clean, so it just swaggered down the street. ”“No one can be your ‘mirror’. You have to think for yourself. If you just do whateveryone else does, you will never learn,” added his father.After that, Einstein decided to pay more attention to his studies and less attention to what his friends were doing. This allowed him to be successful.59. What was Einstein's main problem according to his father?A. He was not good at math.B. He didn't play often enough.C. He played with mischievous kids.D. He didn't take his final exam.60. What do we know from the fable(寓言)?A. The dirty cat fell into the chimney first.B. The dirty cat washed its face clean.C. The clean cat didn't wash its face.D. Both cats made the wrong decision.61. What does the underlined word “swaggered” mean?A. 自信地走B. 快速地跑C. 感到愚蠢D. 羞愧离开62. What lesson did Einstein learn from his father?A. Friends are like a mirror of ourselves.B. Geniuses(天才) are one step away from being fools.C. Don't follow others when deciding how to behave.D. There are no shortcuts (捷径) to success.CYour Idea, Please!We asked you to help one of the readers by answering his question. Here's some good advice.*******************Negative (消极的)Thinker:I always have negative ideas like “I can't do this”. How can I start looki ng up?—Keller *******************Try to find something you look forward to, like an ice-cream or your birthday. It will make you happy to think this way.—Susan, 14, California Maybe you should think “I'll try” instead of “I can't”. And give yourself a reward (奖励)after you finish doing something.—Jacob, 11, New YorkI often think of all the things that I can do and want to have. They make me feel happy and confident. I hope this works for you.—Frank, 13, London To solve the problem, you should do difficult things step by step. For example, when you do your homework, try reading and thinking about the questions slowly before answering them. Everything is possible if you work hard and carefully.—Nina, 12, California63. Who give the similar advice to Keller on his problem?A. Susan and Nina.B. Susan and Frank.C. Jacob and Nina.D. Jacob and Susan.64. What does Jacob think is important in solving Keller's problem?A. Good communication.B. Hard work.C. Asking for help.D. Having a try.65. What should Keller do in Nina's opinion?A. He should do a lot of exercise.B. He should think more and do less.C. He should try to do something by himself.D. He should do something step by step.DThe Longtaitou Festival, or the Dragon-Head-Raising Festival, is a traditional Chinese festival. It falls on the second day of the second lunar month every year. People think it is the start of spring and farming. It's said that Dragon King has wokenup from the winter sleep and the rain will increase from that day on.There are several traditional ways to celebrate the festival in China. My grandfather always has his hair cut on that day. He thinks getting a haircut can help to get__rid__of the bad luck. There is also a saying that cutting the hair in the first lunar month may bring bad luck to the family. In fact, it's not true.Grandpa also tells me that people in Fujian usually eat tofu balls on that day. They often make tofu and vegetable balls for a good wish. People in Suzhou always eat a kind of sticky rice cake—chengyao cake. They think it can bring them good luck.How do you celebrate the festival in your hometown?66. When is the Longtaitou Festival?A. On the first day of the first lunar month.B. On the second day of the first lunar month.C. On the first day of the second lunar month.D. On the second day of the second lunar month.67. What does the underlined phrase “get rid of” in this text mean in Chinese?A. 遭遇B. 摆脱C. 隐藏D. 抛弃68. What do people eat in Fujian during the festival?A. Dumplings.B. Meatballs.C. Tofu balls.D. Chengyao cake.69. What does the text want to tell us?A. The traditions of the Longtaitou Festival.B. Special foods for the Longtaitou Festival.C. The importance of the Longtaitou Festival.D. History of celebrating the Longtaitou Festival.ELiving in a secret village in a forest, the lovely small Smurfs(蓝精灵) are one of the most popular cartoon characters around the world. Now they find a new home in China. It is a Smurfs Theme Park in Shanghai. The park is the first Smurfs ThemePark in China and the third in the world.When visitors get into the park, they must walk through a forest maze(迷宫) to arrive at the Smurfs Village. In the village, children can meet their favorite Smurfs, play in the mushroom(蘑菇) houses and go on rides. The bad Gargamel's house is here too. It is a scary house full of different sounds, lights and motion effects(动作效果). Children can go there to save the captured (被捕的) Smurfs.The theme park receives a lot of visitors every day. Not only children but also their parents show great interest in the park. These parents watched the cartoon in the 1980s and 1990s and have loved Smurfs just like their children do.70. The Smurfs Theme Park in Shanghai is the ____ one in the world.A. onlyB. firstC. secondD. third71. What does the second paragraph talk about?A. Why visitors like to visit the park.B. The rules visitors have to follow.C. The reason for building the park.D. What visitors can do in the park.72. Which of the following is TRUE?A. The Shanghai Smurfs Theme Park is popular among people.B. The Shanghai Smurfs Theme Park is the largest in the world.C. Children don't have to pay to get into the theme park.D. The idea of building the park started in the 1980s.第二节:阅读下面的短文,并用英语回答问题(请注意每小题后面的词数要求)。
人教版九年级数学期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分)1.计算,3(2)a -结果正确的是( )A .32a -B .36a -C .38a -D .38a2.据教育部统计,2022年高校毕业生约1076万人,用科学记数法表示1076万为( )A .4107610⨯B .61.07610⨯C .71.07610⨯D .80.107610⨯3.下列汽车标志中,是中心对称图形的是( ) A . B . C . D .4.如图所示,直线//EF GH ,射线AC 分别交直线EF 、GH 于点B 和点C ,AD EF ⊥于点D ,如果20A ∠=︒,则(ACH ∠= )A .160︒B .110︒C .100︒D .70︒5.如图,已知ABC ADE ∆≅∆,若70E ∠=︒,30D ∠=︒,则BAC ∠的度数是( )A .70︒B .80︒C .40︒D .30︒6.方程2210x x --=实数根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能确定7.在平面直角坐标系中,若点(1,)A a b -+与点(,3)B a b -关于原点对称,则点(,)C a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与ABC ∆相似的是( )A .B .C .D .9.已知正比例函数11(0)y k x k =≠的图象与反比例函数22(0)k y k x =≠的图象交于A ,B 两点,其中点A 在第二象限,横坐标为2-,另一交点B 的纵坐标为1-,则12(k k ⋅= )A .4B .4-C .1-D .110.已知(3,2)A --,(1,2)B -,抛物线2(0)y ax bx c a =++>顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论:①2c -;②当0x >时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为5-,则点C 横坐标的最大值为3;④当四边形ABCD 为平行四边形时,12a =. 其中正确的是( )A .①③B .②③C .①④D .①③④二.填空题(共5小题,每小题3分,共15分)11.因式分解:22416x y -= . 12.若2|2|(3)0x y -++=,则2()x y += .13.已知m ,()n m n ≠是一元二次方程220230x x +-=的两个实数根,则代数式22m m n ++的值为 .14.如图,A ,B ,C ,D 是O 上的四点,且点B 是AC 的中点,BD 交OC 于点E ,60OED ∠=︒,35OCD ∠=︒,那么AOC ∠的度数是 .15.如图,E 为正方形ABCD 内一点,5AD =,4AE =,将ADE ∆绕点A 顺时针旋转90︒到ABE ∆',则边DE 所扫过的区域(图中阴影部分)的面积为 .题14图 题15图三.解答题(一)(共3小题,每小题8分,共24分)16.(1)计算:0111(2021)()2cos45221π--++-︒+; (2)先化简,再求值:23210(1)19x x x x --⋅---,其中x 是1、2、3中的一个合适的数.17.如图,DE AB ⊥于E ,DF AC ⊥于F ,若BD CD =,BE CF =.求证:(1)AD 平分BAC ∠;(2)2AC AB BE =+.18.今年,我市某学校举办了为贫困生捐赠书包活动.该学校用2000元在某商店购进一批学生书包,随后发现书包数量不够,于是又购进第二批同样的书包,所购数量是第一批的3倍,每个书包比第一批购买时贵了4元,结果第二批用了6300元.(1)该学校第一批购进的学生书包每个多少元?(2)如果该商店第一批、第二批学生书包每个的进价分别是68元、70元,售给该学校的这些学生书包,该商店盈利多少元?四.解答题(二)(共3小题,每小题9分,共27分)19.某银行柜台在储户人数较多时常开放1、2、3、4号窗口办理日常业务,一般是先到取号机拿号,按顾客“先到达,先服务“的方式服务(1)求某储户在3号窗口办业务的概率是(2)储户乙取号时发现储户甲已办理完业务准备离开(储户甲、乙先后到达银行取号办理业务),请用树状图或列表法求储户甲、乙两人在同一柜台办理业务的概率.20.如图,在平行四边形ABCD 中,BD AB ⊥,延长AB 至点E ,使BE AB =,连接EC .(1)求证:四边形BECD 是矩形.(2)连接AC ,若3AD =,2CD =,求AC 的长.21.Rt ABO ∆的顶点A 是双曲线k y x =与直线(1)y x k =--+在第二象限的交点,AB 垂直x 轴于点B 且32ABO S ∆=. (1)求这两个函数解析式;(2)求AOC ∆的面积;(3)根据图象直接写出不等式(1)k x k x >-+的解集.五.解答题(三)(共2小题,每小题12分,共24分)22.如图,AB 是⊙O 的直径,C 、D 是⊙O 上两点,连接CD ,C 是的中点,过点C 作AD 的垂线,垂足是E .连接AC 交BD 于点F .(1)求证:CE 是⊙O 的切线;(2)求证:△CDF ∽△CAD ;(3)若DF =2,CD =,求AC 值.23.如图,在平面直角坐标系中,抛物线21y ax bx =++交y 轴于点A ,交x 轴正半轴于点(4,0)B ,交直线AD 于点5(3,)2D ,过点D 作DC x ⊥轴于点C . (1)求抛物线的解析式;(2)点P 为x 轴正半轴上一动点,过点P 作PN x ⊥轴交直线AD 于点M ,交抛物线于点N ;若点P 在线段OC 上(不与O 、C 重合),连接CM ,求PCM ∆面积的最大值。
九年级数学第一学期期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分) 1.2022的相反数是( )A .2022B .2022-C .12022D .2022± 2.若代数式3125m x y -与822m nx y +-是同类项,则( )A .73m =,83n =-B .3m =,4n =C .73m =,4n =- D .3m =,4n =-3.下列四组线段中,能组成直角三角形的是( ) A .1a =,3b =,3c = B .2a =,3b =,4c = C .2a =,4b =,5c =D .3a =,4b =,5c = 4.如图所示,直线//a b ,231∠=︒,28A ∠=︒,则1(∠= )A .61︒B .60︒C .59︒D .58︒5.下列关于事件发生可能性的表述,正确的是( )A .“在地面向上抛石子后落在地上”是随机事件B .掷两枚硬币,朝上面是一正面一反面的概率为13C .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D .彩票的中奖率为10%,则买100张彩票必有10张中奖6.某校10名学生参加课外实践活动的时间分别为:3,3,6,4,3,7,5,7,4,9(单位:小时),这组数据的众数和中位数分别为( ) A .9和7 B .3和3 C .3和4.5 D .3和5 7.一个正多边形的每一个内角都是150︒,则它的边数为( ) A .6 B .9 C .12 D .158.若不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m <B .3mC .3m >D .3m9.已知关于x 的一元二次方程22(21)0x m x m --+=有实数根,则m 的取值范围是( ) A .14m 且0m ≠ B .14m C .14m < D .14m >10.如图1,一个扇形纸片的圆心角为90︒,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .9632π-B .693π-C .91232π-D .94π二.填空题(共5小题,每小题3分,共15分) 11.将数据2022万用科学记数法表示为 .12.已知当3x =时,代数式35ax bx +-的值为20,则当3x =-时,代数式35ax bx +-的值是 .13.将抛物线229y x x =-+-向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为 .14.已知ABC ∆中,点O 是ABC ∆的外心,140BOC ∠=︒,那么BAC ∠的度数为 .15.如图,在正方形ABCD 中,顶点(5,0)A -,(5,10)C ,点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G ,将正方形ABCD 绕点O 顺时针旋转,每次旋转90︒,则第2023次旋转结束时,点G 的坐标为 .三.解答题(一)(共3小题,每小题8分,共24分) 16.计算(1)2()(2)x y x y x +--;(2)2219(1)244a a a a --÷--+.17.如图,90ACB ∠=︒,AC AD =.(1)过点D 作AB 的垂线DE 交BC 与点E ,连接AE .(尺规作图,并保留作图痕迹) (2)如果8BD =,10BE =,求BC 的长.18.如图,在四边形ABCD 中,AC 与BD 交于点O ,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,且BE DF =,ABD BDC ∠=∠.求证:四边形ABCD 是平行四边形.四.解答题(二)(共3小题,每小题9分,共27分) 19.阳光中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需要98元;若购买1副围棋和2副中国象棋需要36元.(1)求每副围棋和每副中国象棋各多少元;(2)阳光中学决定购买围棋和中国象棋共40副,总费用不超过538元,且围棋的副数不低于象棋的副数,问阳光中学有几种购买方案;(3)请求出最省钱的方案需要多少钱?20.我市某中学举行“中国梦⋅我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出两名去参加市中学生演讲比赛,已知A等级中男生只有1名,请用画树状图或列表的方法求出所选学生恰是一男一女的概率.21.22.某网店专售一款新型钢笔,其成本为20元/支,销售中发现,该商品每天的销售量y与销售单价x(元/支)之间存在如下关系:10400y x=-+,自武汉爆发了“新型冠状病毒”疫情该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,同时又让顾客得到实惠,当销售单价定位多少元时,捐款后每天剩余利润为550元?五.解答题(三)(共2小题,每小题12分,共24分)22.如图,以点O为圆心,AB长为直径作圆,在O上取一点C,延长AB至点D,连接DC,过点A作O的切线交DC的延长线于点E,且DCB DAC∠=∠.(1)求证:CD是O的切线;(2)若6AD=,2:3BC CA=,求AE的长.23.如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧). (1)求抛物线的解析式;(2)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及此时点M 的坐标; (3)在(2)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.答案一.选择题1. B .2. D .3. D .4. C .5. C .6. C .7. C .8. B .9. B .10. C . 二.填空题11. 72.02210⨯.12. 30-.13. 228y x x =---.14. 70︒或110︒.15. (4,3)-. 三.解答题16.解:(1)2()(2)x y x y x +--22222x xy y xy x =++-- 2y =;(2)2219(1)244a a a a --÷--+ 23(3)(3)2(2)a a a a a ---+=÷-- 23(2)2(3)(3)a a a a a --=⋅---+ 23a a -=--. 17.解:(1)如图所示即为所求作的图形. (2)ED 垂直AB , 90ADE EDB ∴∠=∠=︒,在Rt BDE ∆中,22221086DE BE BD =-=-=, 在Rt ADE ∆和Rt ACE ∆中, AC ADAE AE =⎧⎨=⎩, Rt ADE Rt ACE(HL)∴∆≅∆, 6EC ED ∴==, 16BC BE EC ∴=+=.18.证明:ABD BDC ∠=∠, //AB CD ∴.BAE DCF ∴∠=∠.在ABE ∆与CDF ∆中, 90BAE DCF AEB CFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩. ()ABE CDF AAS ∴∆≅∆. AB CD ∴=.∴四边形ABCD 是平行四边形.19.解:(1)设每副围棋x 元,每副中国象棋y 元,根据题意得:3598236x y x y +=⎧⎨+=⎩,∴1610x y =⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40)z -副, 根据题意得:1610(40)538m m +-,40m z -,2023m ∴,m 可以取20、21、22、23则有:方案一:购买围棋20副,购买中国象棋20副方案二:购买围棋21副,购买中国象棋19副方案:购买围棋22副,购买中国象棋18副方案四:购买围棋23副,购买中国象棋17副由4种方案;(3)由上一问可知共有四种方案:方案一:购买围棋20副,购买中国象棋20副;方案二:购买围棋21副,购买中国象棋19副;方案三:购买围棋22副,购买中国象棋18副;方案四:购买围棋23副,购买中国象棋17副;方案一需要20162010520x x +=; 方案二需要21161910526x x +=; 方案三需要22161810532x x +=; 方案四需要23161710538x x +=; 所以最省钱是方案一,需要520元.20.(1)解:根据题意得:总人数为:315%20÷=(人), 表示“D 等级”的扇形的圆心角为43607220⨯︒=︒;C等级所占的百分比为8100%40% 20⨯=,所以40m=,故答案为:20,72,40.(2)解:等级B的人数为20(384)5-++=(人),补全统计图,如图所示:(3)解:根据题意,列出表格,如下:男女1女2男女1、男女2、男女1男、女1女2、女1女2男、女2女1、女2共有6种等可能结果,其中恰是一男一女的有4种,所以恰是一男一女的概率为42 63 =.21.解:由题意可得(20)(10400)200550x x--+-=解得125x=,235x=因为要让顾客得到实惠,所以25x=答:当销售单价定为25元时,捐款后每天剩余利润为550元.22.(1)证明:连接OC,OE,如图,AB为直径,90ACB∴∠=︒,即190BCO∠+∠=︒,又DCB CAD∠=∠,1CAD∠=∠,1DCB∴∠=∠,90DCB BCO ∴∠+∠=︒,即90DCO ∠=︒, CD ∴是O 的切线;(2)解:EC ,EA 为O 的切线, EC EA ∴=,AE AD ⊥, OC OA =, OE AC ∴⊥,90BAC EAC ∴∠+∠=︒,90AEO EAC ∠+∠=︒, BAC AEO ∴∠=∠, tan tan BAC AEO ∴∠=∠,∴23BC AO AC AE ==, Rt DCO Rt DAE ∆∆∽,∴23CD OC OA DA AE AE ===, 2643CD ∴=⨯=, 在Rt DAE ∆中,设AE x =,222(4)6x x ∴+=+, 解得52x =. 即AE 的长为52.23.解:(1)直线33y x =--与x 轴、y 轴分别交于点A 、C , (1,0)A ∴-,(0,3)C -抛物线2y x bx c =++经过点(1,0)A -,(0,3)C -, ∴103b c c -+=⎧⎨=-⎩,解得23b c =-⎧⎨=-⎩,∴抛物线的解析式为223y x x =--.(2)设(E x ,223)(03)x x x --<<,则(,3)M x x -, 222393(23)3()24ME x x x x x x ∴=----=-+=--+,∴当32x =时,94ME =最大,此时3(2M ,3)2-. (3)存在.如图3,由(2)得,当ME 最大时,则3(2D ,0),3(2M ,3)2-,32DO DB DM ∴===; 90BDM ∠=︒,223332()()222OM BM ∴==+=. 点1P 、2P 、3P 、4P 在x 轴上, 当点1P 与原点O 重合时,则1322PM BM ==,1(0,0)P ; 当2322BP BM ==时,则232632322OP -=-=, 2632(2P -∴,0); 当点3P 与点D 重合时,则3332P M P B ==,33(2P ,0); 当4322BP BM ==时,则432632322OP +=+=, 4632(2P +∴,0). 综上所述,1(0,0)P ,2632(2P -,0),33(2P ,0),4632(2P +,0).。
人教版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤132.若△ABC ∽△A ′B ′C ′,其相似比为3:2,则△ABC 与△A ′B ′C ′的面积比为( ) A .3:2B .9:4C .2:3D .4:93.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52 C .32 D .2554.反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .无法判断5.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P 到CD 的距离是2 m ,则点P 到AB 的距离是( ) A .13mB .12m C .23m D .1 m6.如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( ) A .-1<x <0B .-1<x <1C .x <-1或0<x <1D .-1<x <0或x >17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm ,到屏幕的距离为60 cm ,且幻灯片中的图形的高度为6 cm ,则屏幕上图形的高度为( ) A .6 cmB .12 cmC .18 cmD .24 cm8.如图,在▱ABCD 中,E 为CD 上一点,连接AE ,BD ,且AE ,BD 交于点F ,S △DEF :S △ABF =4:25,则DE EC =( )A .2:3B .2:5C .3:5D .3:29.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2 km.从A 站测得船C 在北偏东45°的方向,从B 站测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .4 kmB .(2+2)kmC .22kmD .(4-2)km10.如图,边长为1的正方形ABCD 中,点E 在CB 的延长线上,连接ED 交AB 于点F ,AF =x (0.2≤x ≤0.8),EC =y .则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共30分)11.写出一个反比例函数y =k x(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12m ,那么这栋建筑物的高度为________m.15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1:1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比是________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.19.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =k x(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A (-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为________________.20.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C恰好落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG+DF =FG .其中正确的是________(把所有正确结论的序号都填上).三、解答题(21题4分,22题8分,23题10分,26题14分,其余每题12分,共60分) 21.计算:2cos 245°-(tan 60°-2)2-(sin 60°-1)0+(sin 30°)-2.22.如图所示是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)23.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =k x(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =kx(k ≠0)的图象上,请通过计算说明理由.24.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0)25.如图①,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过C 点的切线,垂足为D ,AB 的延长线交直线CD 于点E . (1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长;(3)如图②,连接OD 交AC 于点G ,若CG GA =34,求sin E 的值.26.已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B 落在CD 边上的点P 处.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,O A . ① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1:4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.B 2.B 3.D 4.C 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.1918.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD时,△QCP ∽△ADP ,此时x 4=22,∴x =4.19.y =-x +320.①③④ 点拨:∵△BCE 沿BE 折叠,点C 恰好落在边AD 上的点F 处,∴∠1=∠2,CE =FE ,BF =BC =10.在Rt △ABF 中,∵AB =6,BF =10,∴AF =102-62=8,∴DF =AD -AF =10-8=2.设EF =x ,则CE =x ,DE =CD -CE =6-x .在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6-x )2+22=x 2,解得x =103,∴DE =83.∵△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,∴∠BHG =∠A =90°,∠3=∠4,BH =BA =6,AG =HG ,∴∠EBG =∠2+∠3=12∠ABC =45°,∴①正确;HF =BF -BH =10-6=4,设AG =y ,则GH =y ,GF =8-y .在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8-y )2,解得y =3,∴AG =GH =3,GF =5.∵∠A =∠D ,AB DE =94,AG DF =32,∴AB DE ≠AG DF ,∴△ABG 与△DEF 不相似,∴②错误;∵S △ABG =12AB ·AG =12×6×3=9,S △FGH =12GH ·HF =12×3×4=6,∴S △ABG =32S △FGH ,∴③正确;∵AG +DF =3+2=5,而GF =5,∴AG +DF =GF ,∴④正确.三、21.解:原式=2×⎝ ⎛⎭⎪⎫222-(2-3)-1+⎝ ⎛⎭⎪⎫12-2=1-(2-3)-1+4=3+2.22.解:(1)圆柱 (2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570. 23.解:(1)∵四边形OABC 是平行四边形, ∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2). 将(1,2)代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2).由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.24.解:根据题意,得AB ⊥EF ,DE ⊥EF , ∴∠ABC =90°,AB ∥DE ,∴△ABF ∽△DEF ,∴AB DE =BF EF ,即AB 9=44+6,解得AB =3.6 m. 在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 25.(1)证明:连接OC ,如图①. ∵DC 切半圆O 于C ,∴OC ⊥DC , 又AD ⊥CD .∴OC ∥AD .∴∠OCA =∠DAC . ∵OC =OA ,∴∠OAC =∠OCA . ∴∠DAC =∠OAC ,即AC 平分∠DAB .(2)解:∵AB =4,∴OC =2.在Rt △OCE 中,∵OC =OB =12OE ,∴∠E =30°.∴∠COF =60°.∴在Rt △OCF 中,CF =OC ·sin60°=2×32= 3. (3)解:连接OC ,如图②.∵CO ∥AD ,∴△CGO ∽△AGD .∴CG GA =CO AD =34.不妨设CO =AO =3k ,则AD =4k .又易知△COE ∽△DAE ,∴CO AD =EO AE =34=EO3k +EO .∴EO =9k .在Rt △COE 中,sin E =CO EO =3k 9k =13.26.(1)①证明:如图①,∵四边形ABCD 是矩形, ∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1:4,且△OCP ∽△PDA ,∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5.即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .由(1)中可得PC =4,又∵BC =AD =8,∠C =90°. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题(每题3分,共30分)1.已知反比例函数y =k x的图象经过点P (-1,2),则这个函数的图象位于( )A .第二、三象限B .第一、三象限C .第三、四象限D .第二、四象限2.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )3.若Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A.53B.52C.32D.2554.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤135.如图,在等边三角形ABC 中,点D ,E 分别在AB ,AC 边上,如果△ADE ∽△ABC ,AD ∶AB=1∶4,BC =8 cm ,那么△ADE 的周长等于( ) A .2 cmB .3 cmC .6 cmD .12 cm(第5题) (第7题) (第8题)6.小芳和爸爸在阳光下散步,爸爸身高1.8 m ,他在地面上的影长为2.1 m .小芳比爸爸矮0.3 m ,她的影长为( ) A .1.3 mB .1.65 mC .1.75 mD .1.8 m7.一次函数y 1=k 1x +b 和反比例函数y 2=k 2x(k 1k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是( ) A .-2<x <0或x >1B .-2<x <1C .x <-2或x >1D .x <-2或0<x <18.如图,△ABO 缩小后变为△A ′B ′O ,其中A ,B 的对应点分别为A ′,B ′,点A ,B ,A ′,B ′均在图中格点上,若线段AB 上有一点P (m ,n ),则点P 在A ′B ′上的对应点P ′的坐标为( )A.⎝ ⎛⎭⎪⎫m2,n B .(m ,n )C.⎝ ⎛⎭⎪⎫m ,n 2 D.⎝ ⎛⎭⎪⎫m 2,n2 9.如图,在两建筑物之间有一旗杆GE ,高15 m ,从A 点经过旗杆顶点恰好看到矮建筑物的墙脚C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底部点G 为BC 的中点,则矮建筑物的高CD 为( ) A .20 mB .10 3 mC .15 3 mD .5 6 m(第9题) (第10题)10.如图,已知第一象限内的点A 在反比例函数y =3x的图象上,第二象限内的点B 在反比例函数y =k x 的图象上,且OA ⊥OB ,cos A =33,则k 的值为( ) A .-3B .-6C .- 3D .-2 3二、填空题(每题3分,共24分)11.计算:2cos 245°-(tan 60°-2)2=________.12.如图,山坡的坡度为i =1∶3,小辰从山脚A 出发,沿山坡向上走了200 m 到达点B ,则他上升了________m.(第12题) (第13题) (第14题) (第15题)13.如图,在△ABC 中,DE ∥BC ,DE BC =23,△ADE 的面积是8,则△ABC 的面积为________.14.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC =2,则sin B的值是__________.15.如图,一艘轮船在小岛A 的北偏东60°方向距小岛80 n mile 的B 处,沿正西方向航行3 h 后到达小岛A 的北偏西45°方向的C 处,则该船行驶的速度为__________n mile/h.16.如图是一个几何体的三视图,若这个几何体的体积是48,则它的表面积是________.(第16题) (第17题) (第18题)17.如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x上,点C ,D 在x 轴上,若四边形ABCD为矩形,则它的面积为________.18.如图,正方形ABCD 的边长为62,过点A 作AE ⊥AC ,AE =3,连接BE ,则tan E =________. 三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.如图,△ABC 三个顶点的坐标分别为A (4,6),B (2,2),C (6,4),请在第一象限内,画出一个以原点O 为位似中心,与△ABC 的相似比为12的位似图形△A 1B 1C 1,并写出△A 1B 1C 1各个顶点的坐标.(第19题)20.由几个棱长为1的小立方块搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小立方块的个数.(第20题)(1)请在方格纸中分别画出该几何体的主视图和左视图;(2)根据三视图,这个几何体的表面积为________个平方单位(包括底面积).21.如图,一棵大树在一次强台风中折断倒下,未折断树干AB与地面仍保持垂直的关系,而折断部分AC与未折断树干AB形成53°的夹角.树干AB旁有一座与地面垂直的铁塔DE,测得BE=6 m,塔高DE=9 m.在某一时刻太阳光的照射下,未折断树干AB落在地面的影子FB长为4 m,且点F,B,C,E在同一条直线上,点F,A,D也在同一条直线上.求这棵大树没有折断前的高度(结果精确到0.1 m,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0).(第21题)22.如图,在平面直角坐标系xOy 中,一次函数y =3x +2的图象与y 轴交于点A ,与反比例函数y =kx()k ≠0在第一象限内的图象交于点B ,且点B 的横坐标为1,过点A 作AC ⊥y 轴,交反比例函数y =k x(k ≠0)的图象于点C ,连接BC .求:(第22题)(1)反比例函数的解析式; (2)△ABC 的面积.23.如图,AB 是⊙O 的直径,过点A 作⊙O 的切线并在其上取一点C ,连接OC 交⊙O 于点D ,BD 的延长线交AC 于点E ,连接AD .(第23题)(1)求证△CDE ∽△CAD ;(2)若AB =2,AC =22,求AE 的长.24.如图,将矩形ABCD 沿AE 折叠得到△AFE ,且点F 恰好落在DC 上.(第24题)(1)求证△ADF ∽△FCE ;(2)若tan ∠CEF =2,求tan ∠AEB 的值.25.如图,直线y =2x +2与y 轴交于点A ,与反比例函数y =kx(x >0)的图象交于点M ,过点M 作MH ⊥x 轴于点H ,且tan ∠AHO =2. (1)求k 的值.(2)在y 轴上是否存在点B ,使以点B ,A ,H ,M 为顶点的四边形是平行四边形?如果存在,求出点B 的坐标;如果不存在,请说明理由.(3)点N (a ,1)是反比例函数y =k x(x >0)图象上的点,在x 轴上有一点P ,使得PM +PN 最小,请求出点P 的坐标.(第25题)答案一、1.D 2.C 3.D 4.B 5.C 6.C7.A 8.D9.A 点拨:∵点G是BC的中点,EG∥AB,∴EG是△ABC的中位线.∴AB=2EG=30.在Rt△ABC中,∠CAB=30°,则BC=AB·tan∠BAC=30×33=10 3.延长CD至F,使DF⊥AF.在Rt△AFD中,AF=BC=103,∠FAD=30°,则FD=AF·tan∠FAD=103×33=10.∴CD=AB-FD=30-10=20(m).10.B 点拨:∵cos A=33,∴可设OA=3a,AB=3a(a>0).∴OB=(3a)2-(3a)2=6a.过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵点A 在反比例函数y =3x的图象上,∴可设点A 的坐标为⎝ ⎛⎭⎪⎫m ,3m .∴OE =m ,AE =3m .易知△AOE ∽△OBF ,∴AE OF =OA OB ,即3m OF =3a 6a,∴OF =32m.同理,BF =2m ,∴点B 的坐标为⎝⎛⎭⎪⎫-32m,2m .把B ⎝⎛⎭⎪⎫-32m,2m 的坐标代入y =k x,得k =-6. 二、11.3-1 12.100 13.18 14.2315.40+403316.88 点拨:由题中的三视图可以判断,该几何体是一个长方体.从主视图可以看出,该长方体的长为6, 从左视图可以看出,该长方体的宽为2. 根据体积公式可知,该长方体的高为486×2=4,∴该长方体的表面积是2×(6×2+6×4+2×4)=88.17.2 点拨:如图,延长BA 交y 轴于点E ,则四边形AEOD ,BEOC 均为矩形.由点A 在双曲线y =1x 上,得矩形AEOD 的面积为1;由点B 在双曲线y =3x上,得矩形BEOC 的面积为3,故矩形ABCD 的面积为3-1=2.(第17题)18.23点拨:∵正方形ABCD 的边长为62,∴AC =12. 过点B 作BF ⊥AC 于点F ,则CF =BF =AF =6.设AC 与BE 交于点M ,∵BF ⊥AC ,AE ⊥AC ,∴AE ∥BF .∴△AEM ∽△FBM . ∴AM FM =AE FB =36=12.∴AM AF =13. ∴AM =13AF =13×6=2.∴tan E =AM AE =23.三、19.解:画出的△A 1B 1C 1如图所示.(第19题)△A 1B 1C 1的三个顶点的坐标分别为A 1(2,3),B 1(1,1),C 1(3,2). 20.解:(1)如图所示.(第20题) (2)2421.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE . ∴△ABF ∽△DEF . ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6.在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98.∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m.22.解:(1)∵点B 在一次函数y =3x +2的图象上,且点B 的横坐标为1,∴y =3×1+2=5. ∴点B 的坐标为(1,5).∵点B 在反比例函数y =k x (k ≠0)的图象上,∴5=k1,则k =5.∴反比例函数的解析式为y =5x.(2)∵一次函数y =3x +2的图象与y 轴交于点A ,当x =0时,y =2, ∴点A 的坐标为(0,2).∵AC ⊥y 轴, ∴点C 的纵坐标为2.∵点C 在反比例函数y =5x的图象上,当y =2时,2=5x ,x =52, ∴AC =52.过点B 作BD ⊥AC 于点D , ∴BD =y B -y C =5-2=3.∴S △ABC =12AC ·BD =12×52×3=154.23.(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°. ∴∠ABD +∠BAD =90°. 又∵AC 是⊙O 的切线, ∴AB ⊥AC ,即∠BAC =90°. ∴∠CAD +∠BAD =90°. ∴∠ABD =∠CAD . ∵OB =OD ,∴∠ABD =∠BDO =∠CDE . ∴∠CAD =∠CDE . 又∵∠C =∠C , ∴△CDE ∽△CAD . (2)解:∵AB =2, ∴OA =OD =1.在Rt △OAC 中,∠OAC =90°, ∴OA 2+AC 2=OC 2, 即12+(22)2=OC 2. ∴OC =3,则CD =2. 又由△CDE ∽△CAD ,得CD CE =CACD, 即2CE =222,∴CE = 2. ∴AE =AC -CE =22-2= 2. 24.(1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°.∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴∠AFE =∠B =90°.∴∠AFD +∠CFE =180°-∠AFE =90°. 又∵∠AFD +∠DAF =90°, ∴∠DAF =∠CFE . ∴△ADF ∽△FCE .(2)解:在Rt △CEF 中,tan ∠CEF =CF CE=2,设CE =a ,CF =2a (a >0), 则EF =CF 2+CE 2=5a .∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴BE =EF =5a ,BC =BE +CE =(5+1)a ,∠AEB =∠AEF . ∴AD =BC =(5+1)a . ∵△ADF ∽△FCE , ∴AF FE =AD CF =(5+1)a 2a =5+12. ∴tan ∠AEF =AFFE=5+12. ∴tan ∠AEB =tan ∠AEF =5+12. 25.解:(1)由y =2x +2可知A (0,2),即OA =2.∵tan ∠AHO =2,∴OH =1. ∵MH ⊥x 轴,∴点M 的横坐标为1. ∵点M 在直线y =2x +2上, ∴点M 的纵坐标为4.∴M (1,4).∵点M 在反比例函数y =k x(x >0)的图象上,∴k =1×4=4. (2)存在.如图所示.[第25(2)题]当四边形B 1AHM 为平行四边形时,B 1A =MH =4, ∴OB 1=B 1A +AO =4+2=6,即B 1(0,6). 当四边形AB 2HM 为平行四边形时,AB 2=MH =4, ∴OB 2=AB 2-OA =4-2=2, 此时B 2(0,-2).综上,存在满足条件的点B ,且点B 的坐标为(0,6)或(0,-2). (3)∵点N (a ,1)在反比例函数y =4x(x >0)的图象上,∴a =4,即点N 的坐标为(4,1).如图,作N 关于x 轴的对称点N 1,连接MN 1,交x 轴于点P ,连接PN ,此时PM +PN 最小.[第25(3)题]∵N 与N 1关于x 轴对称,N 点坐标为(4,1), ∴N 1的坐标为(4,-1).设直线MN 1对应的函数解析式为y =k ′x +b (k ′≠0), 由⎩⎪⎨⎪⎧4=k ′+b ,-1=4k ′+b ,解得⎩⎪⎨⎪⎧k ′=-53,b =173. ∴直线MN 1对应的函数解析式为y =-53x +173.令y =0,得x =175,∴点P 的坐标为⎝ ⎛⎭⎪⎫175,0.人教版初中数学九年级(下)期末综合测试卷及答案(三)一、选择题(每题3分,共30分)1.下列四个几何体中,主视图为三角形的是( )2.【教材P 6练习T 2变式】反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .第一、四象限3.若△ABC ∽△A ′B ′C ′,其相似比为32,则△ABC 与△A ′B ′C ′的周长比为( )A .3∶2B .9∶4C .2∶3D .4∶94.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52C .32D .2555.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P到CD 的距离是2 m ,则点P 到AB 的距离是( )A .13mB .12mC .23mD .1 m6.【教材P 22复习题T 10改编】如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( )A.-1<x<0 B.-1<x<1C.x<-1或0<x<1 D.-1<x<0或x>17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm,到屏幕的距离为60 cm,且幻灯片中的图形的高度为6 cm,则屏幕上图形的高度为( )A.6 cm B.12 cm C.18 cm D.24 cm8.如图,在▱ABCD中,E为CD上一点,连接AE,BD,且AE,BD交于点F,S△DEF∶S△ABF=4∶25,则DE∶EC=( )A.2∶3 B.2∶5 C.3∶5 D.3∶29.如图,在一笔直的海岸线l上有A,B两个观测站,AB=2 km.从A站测得船C在北偏东45°的方向,从B站测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD 的长)为( )A.4 km B.(2+2)km C.22km D.(4-2)km10.如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,AF=x (0.2≤x ≤0.8),EC =y ,则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共24分)11.写出一个反比例函数y =kx(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.【教材P 41练习T 1变式】在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12 m ,那么这栋建筑物的高度为________m. 15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1∶1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.【教材P 102习题T 5变式】如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =kx(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A(-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为____________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.三、解答题(19题6分,20题10分,24题14分,其余每题12分,共66分) 19.计算:3tan30°+cos 245°-(sin30°-1)0.20.【教材P 110复习题T 6变式】如图所示的是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)21.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =kx(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =k x(k ≠0)的图象上,请通过计算说明理由.22.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据: sin 53°≈0.798 6, cos 53°≈0.601 8,tan 53°≈1.327 0)23.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD ⊥CE ,垂足为D ,AC 平分∠DAB .(1)求证:CE 是⊙O 的切线;(2)若AD =4,cos ∠CAB =45,求AB 的长.24.【教材P 85复习题T 11拓展】已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B落在CD 边上的点P 处,然后展开.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,OA .① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1∶4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME ⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.A 2.C 3.A 4.D 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.y =-x +318.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD 时,△QCP∽△ADP ,此时x 4=22,∴x =4.三、19.解:原式=3×33+⎝ ⎛⎭⎪⎫222-1=12. 20.解:(1)圆柱(2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570.21.解:(1)∵四边形OABC 是平行四边形,∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2).将点B (1,2)的坐标代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2). 由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.22.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE , ∴△ABF ∽△DEF , ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6 m.在Rt △ABC 中,∵cos ∠BAC =AB AC,∠BAC =53°, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 23.(1)证明:连接OC .∵AC 平分∠DAB ,∴∠DAC =∠BAC . ∵OA =OC ,∴∠BAC =∠OCA , ∴∠DAC =∠OCA ,∴AD ∥OC , 又∵AD ⊥CE ,∴OC ⊥CE .又∵OC 是⊙O 的半径,∴CE 是⊙O 的切线.(2)解:连接BC .在Rt △ADC 中,cos ∠DAC =cos ∠CAB =45=AD AC =4AC ,∴AC =5,∵AB 为⊙O 的直径,∴∠ACB =90°. 在Rt △ABC 中,cos ∠CAB =AC AB =5AB =45,∴AB =254. 24.(1)①证明:如图①,∵四边形ABCD 是矩形,∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1∶4,且△OCP ∽△PDA , ∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5,即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .∵BC =AD =8,∠C =90°,PC =4. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,动点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷(四)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的。
黑龙江省哈尔滨南岗区2023-2024学年英语九年级第一学期期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
Ⅰ. 单项选择1、— How do you like the job now?—I’ve never making the decision because it’s worth effort.A.regretted B.risked C.realized2、Miss Wang told us noise in the library.A.to make B.not to make C.make D.not make3、Could you say it again? I can’t understand __________ you are talking about.A.how B.when C.what D.which4、your hat when raising the national flag.A.Take off B.Turn off C.Get off D.Fall off5、---What are you going to do this weekend?---______. If there is enough time, I may go to Shanghai with my friends.A.It doesn’t m atter B.It depends C.Don’t mention it D.Forget it6、The bus will stop in front of the school.A.correct B.right C.correctly D.rightly7、—You look so sad. What happened?一The exam to be much harder than I thought.A.broke out B.carried out C.put out D.turned out8、—What do you often do at weekends?—I often ________ my grandparents.A.visit B.visited C.have visited D.will visit9、There’s no ticker left for Lang Lang’s piano concert .you your sister can go to it .A.Both ; and B.Not only ; but alsoC.Either ; or D.Neither ; nor10、Don't wait for others to be polite. Show them __________ a friendly person you are.A.how B.what C.where D.whenⅡ. 完形填空11、完形填空阅读下面的短文,掌握其大意,然后从各题所给的四个选项中选出一个最佳答案。
北师大版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在△ABC 中,若⎪⎪⎪⎪⎪⎪sin A -12+⎝ ⎛⎭⎪⎫cos B -122=0,则∠C 的度数是( ) A.30° B.45° C.60° D.90° 2.抛物线y =x 2-3x +2的对称轴是直线( ) A.x =-3 B.x =3 C.x =-32 D.x =323.把抛物线y =-2x 2先向右平移1个单位长度,再向上平移2个单位长度后,所得抛物线对应的函数表达式为( )A.y =-2(x +1)2+2 B.y =-2(x +1)2-2 C.y =-2(x -1)2+2 D.y =-2(x -1)2-2 4.2cos 45°的值等于( ) A.1 B. 2 C. 3 D.25.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦, ∠ABD =58°,则∠BCD 等于( )A.116°B.32°C.58°D.64°6.如图是某水库大坝横断面示意图,其中CD ,AB 分别表示水库上、下底面的水平线,∠ABC =120°,BC 的长是50 m ,则水库大坝的高度h 是( )A.25 3 mB.25 mC.25 2 mD.5033m7.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列说法错误..的是( ) A.图象关于直线x =1对称B.函数y =ax 2+bx +c (a ≠0)的最小值是-52C.-1和3是方程ax 2+bx +c =0(a ≠0)的两个根D.当x <1时,y 随x 的增大而增大8.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接C D.若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为( )A.4π3- 3B.4π3-2 3C.π- 3D.2π3- 39.如图,半圆O 与等腰直角三角形两腰CA ,CB 分别切于D ,E 两点,直径FG 在AB 上,若BG =2-1,则△ABC 的周长为( )A.4+2 2B.6C.2+2 2D.410.如图,一艘渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20 n mile ,渔船将险情报告给位于A 处的救援船后,沿北偏西80°的方向向海岛C 靠近,同时,从A 处出发的救援船沿南偏西10°方向匀速航行,20 min 后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( )A.10 3 n mile/hB.30 n mile/hC.20 3 n mile/hD.30 3 n mile/h 二、填空题(每题3分,共30分)11.二次函数y =-x 2+bx +c 的部分图象如图所示,若y >0,则x 的取值范围是____________.12.如图,在△ABC 中,∠B =30°,AC =2,cos C =35,则AB 边的长为________.13.抛物线y =2x 2+6x +c 与x 轴的一个交点为(1,0),则这个抛物线的顶点坐标是____________.14.如图,扇形AOB 的圆心角为122°,C 是AB ︵上一点,则∠ACB =________.15.如图,直径为10的⊙A 经过点C (0,6)和点O (0,0),与x 轴的正半轴交于点D ,B 是y轴右侧圆弧上一点,则cos ∠OBC =________.16.已知⊙O 的半径为1,点P 与点O 之间的距离为d ,且关于x 的方程x 2-2x +d =0没有实数根,则点P 在__________(填“圆内”“圆上”或“圆外”).17.一个小球在空中的高度h(m )与时间t(s)满足关系式:h =20t -5t 2,那么这个小球所能达到的最大高度为________m .18.如图,在⊙O 中,AB 是⊙O 的直径,AB =8 cm ,AC ︵=CD ︵=BD ︵,M 是AB 上一动点,则CM+DM 的最小值是__________.(19.如图,某公园入口处有三级台阶,每级台阶高为18 cm ,深为30 cm ,为了方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起点为C ,现设计斜坡BC 的坡度i =1∶5,则AC 的长度是________cm.20.如图,在平面直角坐标系中有一正方形AOBC ,反比例函数y =k x的图象经过正方形AOBC对角线的交点,半径为(4-22)的圆内切于△ABC ,则k 的值为________.三、解答题(21题6分,22~24题每题8分,其余每题10分,共60分) 21.计算:2sin 30°-3tan 45°·sin 45°+4cos 60°.22.如图,已知二次函数y =a (x -h)2+3的图象经过O (0,0),A (2,0)两点. (1)写出该函数图象的对称轴;(2)若将线段OA 绕点O 逆时针旋转60°到OA ′,试判断点A ′是否为该函数图象的顶点.23.如图,AB 是半圆O 的直径,C ,D 是半圆O 上的两点,OD ∥BC ,OD 与AC 交于点E . (1)若∠D =70°,求∠CAD 的度数; (2)若AC =8,DE =2,求AB 的长.24.如图,在小山的东侧A 庄,有一热气球,由于受西风的影响,以35 m/min 的速度沿着与水平方向成75°角的方向飞行,40 min 时到达C 处,此时气球上的人发现气球与山顶P 点及小山西侧的B 庄在一条直线上,同时测得B 庄的俯角为30°.又在A 庄测得山顶P的仰角为45°,求A庄与B庄的距离及山高(结果保留根号).25.如图,以△ABC的边BC上一点O为圆心的圆经过A,C两点且与BC边交于点E.点D为下半圆弧的中点,连接AD交线段EO于点F,且AB=BF.(1)求证:AB是⊙O的切线;(2)若CF=4,DF=10,求⊙O的半径r及sin B.26.某景点试开放期间,团队收费方案如下:不超过30人时,人均收费120元;超过30人且不超过m(30<m≤100)人时,每增加1人,人均收费降低1元;超过m人时,人均收费都按照m人时的标准.设景点接待有x名游客的某团队,收取总费用为y元.(1)求y关于x的函数表达式.(2)景点工作人员发现:当接待某团队人数超过一定数量时,会出现随着人数的增加收取的总费用反而减少这一现象.为了让收取的总费用随着团队中人数的增加而增加,求m 的取值范围.27.在平面直角坐标系中,点O 为坐标原点,抛物线y =ax 2+bx +5经过点M (1,3)和N (3,5).(1)试判断该抛物线与x 轴交点的情况;(2)平移这条抛物线,使平移后的抛物线经过点A (-2,0),且与y 轴交于点B ,同时满足以A ,O ,B 为顶点的三角形是等腰直角三角形,请你写出平移过程,并说明理由.答案一、1.D 2.D 3.C 4.B 5.B 6.A 7.D 8.A9.A 点拨:连接OD ,OE ,易证得四边形ODCE 是正方形,△OEB 是等腰直角三角形,设OE=r ,由OB =2OE =2r ,可得方程:2-1+r =2r ,解此方程,即可求得r ,则△ABC 的周长为4+2 2.10.D 点拨:∵∠CAB =10°+20°=30°,∠CBA =80°-20°=60°,∴∠C =90°.∵AB =20 n mile ,∴AC =AB ·cos 30°=10 3 n mile.∴救援船航行的速度为103÷2060=303(n mile/h).二、11.-3<x <1 12.16513.⎝ ⎛⎭⎪⎫-32,-25214.119° 点拨:在扇形AOB 所在圆的优弧AB 上取一点D ,连接DA ,DB .∵∠AOB =122°,∴∠D =61°. ∵∠ACB +∠D =180°, ∴∠ACB =119°.15.4516.圆外 17.20 18.8 cm 19.210 点拨:过点B 作BD ⊥AC 于点D ,则AD =2×30=60(cm),BD =18×3=54(cm).由斜坡BC 的坡度i =1∶5,得CD =5BD =5×54=270(cm).∴AC =CD -AD =270-60=210(cm).20.4 点拨:设正方形OACB 的边长为a ,则AB =2a .根据直角三角形内切圆半径公式得a +a -2a2=4-22,故a =4.所以对角线交点坐标为(2,2),故k =xy =4.三、21.解:原式=2×12-3×1×22+4×12=1-322+2=3-322.22.解:(1)∵二次函数y =a (x -h )2+3的图象经过O (0,0),A (2,0)两点,∴抛物线的对称轴为直线x =1. (2)点A ′是该函数图象的顶点.理由:如图,作A ′B ⊥x 轴于点B .∵线段OA 绕点O 逆时针旋转60°到OA ′,∴OA ′=OA =2,∠AOA ′=60°.又∵A ′B ⊥x 轴,∴OB =12OA ′=1,A ′B =3OB = 3.∴A ′点的坐标为(1,3).∴点A ′是函数y =a (x -1)2+3图象的顶点. 23.解:(1)∵OA =OD ,∠D =70°,∴∠OAD =∠D =70°.∴∠AOD =180°-∠OAD -∠D =40°. ∵AB 是半圆O 的直径,∴∠C =90°. ∵OD ∥BC ,∴∠AEO =∠C =90°,即OD ⊥AC . ∴AD ︵=CD ︵. ∴∠CAD =12∠AOD =20°.(2)由(1)可知OD ⊥AC ,∴AE =12AC =12×8=4.设OA =x ,则OE =OD -DE =x -2. 在Rt △OAE 中,OE 2+AE 2=OA 2,即(x -2)2+42=x 2,解得x =5. ∴AB =2OA =10. 24.解:过点A 作AD ⊥BC ,垂足为D .在Rt △ADC 中,∠ACD =75°-30°=45°,AC =35×40=1 400(m). ∴AD =AC ·sin 45°=1 400×22=7002(m). 在Rt △ABD 中,∠B =30°, ∴AB =2AD =1 400 2 m. 过点P 作PE ⊥AB ,垂足为E , 则AE =PE ,BE =PEtan 30°=3PE .∴(3+1)PE =1 400 2. 解得PE =700(6-2)m.答:A 庄与B 庄的距离是1 400 2 m ,山高是700(6-2)m. 25.(1)证明:如图,连接AO ,DO .∵D 为下半圆弧的中点,∴∠EOD =90°. ∵AB =BF ,OA =OD ,∴∠BAF =∠BFA =∠OFD ,∠OAD =∠ADO .∴∠BAF +∠OAD =∠OFD +∠ADO =90°,即∠BAO =90°. ∴OA ⊥AB . ∴AB 是⊙O 的切线.(2)解:在Rt △OFD 中,OF =CF -OC =4-r ,OD =r ,DF =10.∵OF 2+OD 2=DF 2,∴(4-r )2+r 2=(10)2. ∴r 1=3,r 2=1(舍去).∴半径r =3.∴OA =3,OF =CF -OC =4-3=1,BO =BF +FO =AB +1. 在Rt △ABO 中,AB 2+AO 2=BO 2,∴AB 2+32=(AB +1)2.∴AB =4.∴BO =5. ∴sin B =AO BO =35.26.解:(1)y =⎩⎪⎨⎪⎧120x (0<x ≤30),[120-(x -30)]x (30<x ≤m ),[120-(m -30)]x (x >m )=⎩⎪⎨⎪⎧120x (0<x ≤30),-x 2+150x (30<x ≤m ),(150-m )x (x >m ). (2)由(1)可知,当0<x ≤30或x >m 时,y 都随着x 的增大而增大.当30<x ≤m 时,y =-x 2+150x =-(x -75)2+5 625, ∵-1<0,∴当x ≤75时,y 随着x 的增大而增大.∴为了让收取的总费用随着团队中人数的增加而增加,m 的取值范围为30<m ≤75. 27.解:(1)把M ,N 两点的坐标代入抛物线对应的函数表达式,可得:⎩⎪⎨⎪⎧a +b +5=3,9a +3b +5=5,解得⎩⎪⎨⎪⎧a =1,b =-3. ∴抛物线对应的函数表达式为y =x 2-3x +5. 令y =0,可得x 2-3x +5=0.∵Δ=(-3)2-4×1×5=9-20=-11<0, ∴该抛物线与x 轴没有交点.(2)∵△AOB 是等腰直角三角形,点A (-2,0),点B 在y 轴上,∴点B 的坐标为(0,2)或(0,-2).可设平移后的抛物线对应的函数表达式为y =x 2+mx +n .①当抛物线过A (-2,0),B (0,2)时,代入可得⎩⎪⎨⎪⎧n =2,4-2m +n =0,解得⎩⎪⎨⎪⎧m =3,n =2.∴平移后的抛物线对应的函数表达式为y =x 2+3x +2.∵该抛物线的顶点坐标为⎝ ⎛⎭⎪⎫-32,-14,而原抛物线的顶点坐标为⎝ ⎛⎭⎪⎫32,114,∴将原抛物线先向左平移3个单位长度,再向下平移3个单位长度,即可获得符合条件的抛物线.②当抛物线过A (-2,0),B (0,-2)时,代入可得⎩⎪⎨⎪⎧n =-2,4-2m +n =0,解得⎩⎪⎨⎪⎧m =1,n =-2. ∴平移后的抛物线对应的函数表达式为y =x 2+x -2.∵该抛物线的顶点坐标为⎝ ⎛⎭⎪⎫-12,-94,而原抛物线的顶点坐标为⎝ ⎛⎭⎪⎫32,114,∴将原抛物线先向左平移2个单位长度,再向下平移5个单位长度,即可获得符合条件的抛物线.北师大版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题。
九年级数学上册第一学期期末综合测试卷(沪科版2024年秋)一、选择题(本大题共10小题,每小题4分,满分40分)题序12345678910答案1.2cos45°的值等于()A.1 B.2 C.3D.22.下列函数中,一定是反比例函数的是()A.y=-2x-1B.y=kx-1C.y=4x D.y=1x-13.已知二次函数y=-3(x-2)2-3,下列说法正确的是()A.图象的对称轴为直线x=-2B.图象的顶点坐标为(2,3)C.函数的最大值是-3D.函数的最小值是-34.如图,在△ABC中,点D是AB边上一点,下列条件中,能使△ABC与△BDC 相似的是()A.∠B=∠ACD B.∠ACB=∠ADCC.AC2=AD·AB D.BC2=BD·AB(第4题)5.若点A(x1,2),B(x2,-1),C(x3,4)都在反比例函数y=8x的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1 C.x1<x3<x2D.x2<x1<x3 6.如图,△ABC∽△ADE,且BC=2DE,则S四边形BEDC:S△ABC的值为() A.1:4B.3:4C.2:3D.1:2(第6题)(第7题)7.如图,在△ABC中,∠C=45°,tan B=3,AD⊥BC于点D,AC=2 6.若E,F分别为AC,BC的中点,则EF的长为()A.233B.2C.3D.238.已知二次函数y=ax2+bx-2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a-b-2,则t的取值范围是()A.-2<t<0B.-3<t<0C.-4<t<-2D.-4<t<0 9.如图,在x轴的正半轴上依次截取OP1=P1P2=P2P3=…=P n-1P n=1,过点P1,P2,P3,…,P n分别作x轴的垂线,与反比例函数y=2x(x>0)的图象交于点Q1,Q2,Q3,…,Q n,连接Q1Q2,Q2Q3,…,Q n-1Q n,过点Q2,Q3,…,Q n分别向P1Q1,P2Q2,…,P n-1Q n-1作垂线段,构成的一系列直角三角形(图中阴影部分)的面积和等于()(第9题)A.2n+1B.2n C.n-1n D.n+22n10.如图,正方形ABCD的边长为2cm,点O为正方形的中心,点P从点A出发沿A-O-D运动,同时点Q从点B出发沿BC运动,连接BP,PQ,在移动的过程中始终保持PQ⊥BC.已知点P的运动速度为2cm/s,设点P的运动时间为t(s),△BPQ的面积为S(cm2),下列图象能正确反映出S与t的函数关系的是()(第10题)二、填空题(本大题共4小题,每小题5分,满分20分)11.如果α是锐角,sin α=cos 30°,那么α=________°.12.已知3a =4b ,则3a +2b a -b=________.13.已知点C 是线段AB 的黄金分割点,且AB =5+1,则AC 的长是________.14.如图,抛物线y =-x 2+2x +c 交x 轴于A (-1,0),B 两点,交y 轴于点C ,D 为抛物线的顶点.(第14题)(1)点D 的坐标为________;(2)若点C 关于抛物线对称轴的对称点为点E ,M 是抛物线对称轴上一点,且△DMB和△BCE 相似,则点M 的坐标为________.三、(本大题共2小题,每小题8分,满分16分)15.计算:27+-122-3tan 60°+(π-2)0.16.已知:如图,△ABD ∽△ACE .求证:(1)∠DAE =∠BAC ;(2)△DAE ∽△BAC .(第16题)四、(本大题共2小题,每小题8分,满分16分)17.如图,在12×12的正方形网格中,△CAB的顶点坐标分别为点C(1,1),A(2,3),B(4,2).(1)以点C(1,1)为位似中心,按21在位似中心的同侧将△CAB放大为△CA′B′,放大后点A,B的对应点分别为A′,B′,画出△CA′B′,并写出点A′,B′的坐标;(2)在(1)中,若P(a,b)为线段AB上任意一点,请直接写出变化后点P的对应点P′的坐标.(第17题)18.《九章算术》中有一道这样的题,原文如下:“今有邑,东西七里,南北九里,各中开门,出东门一十五里有木,问:出南门几何步而见木?”大意为:今有一座长方形小城(如图),东西向城墙长7里,南北向城墙长9里,各城墙正中均开一城门,走出东门15里处有棵大树,问:走出南门多少步恰好能望见这棵树?(注:1里=300步)(第18题)五、(本大题共2小题,每小题10分,满分20分)19.已知二次函数y=ax2+bx+c与x的一些对应值如下表:x…-101234…y=ax2+bx+c…3-13…(1)根据表格中的数据,该二次函数的表达式为__________;(2)填写表格中空白处的对应值,并利用五点作图法在下面的网格图中画出该二次函数y=ax2+bx+c的图象(不必重新列表);(3)根据图象回答:①当1≤x≤4时,y的取值范围是________________;②当x取什么值时,y>0?(第19题)(m≠0,x>0)的图象20.如图,一次函数y=kx+2(k≠0)的图象与反比例函数y=mx交于点A(2,n),与y轴交于点B,与x轴交于点C(-4,0).(1)直接写出k,m的值;(2)若P(a,0)为x轴上的一动点,当△APB的面积为72时,求a的值.(第20题)六、(本题满分12分)21.“山地自行车速降赛”是一种新兴的极限运动,这项运动的赛道需全部是下坡骑行路段.如图是某一下坡赛道,由AB,BC,CD三段组成,在同一平面内,其中AB段的俯角是30°,长为2m,BC段与AB段,CD段都垂直,长为1m,CD段长为3m,求此下坡赛道的垂直高度.(结果保留根号)(第21题)七、(本题满分12分)22.某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数表达式y=a(x-h)2+k.二次函数y=a(x-h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A,B,C的横坐标分别为4,10,12,点A,B的纵坐标分别为-16,20.(1)该二次函数的表达式y=a(x-h)2+k为__________;(2)分别求出前9个月公司累计获得的利润以及10月一个月内所获得的利润;(3)在1~12月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?(第22题)八、(本题满分14分)23.【项目化学习】背景:小明是学校的一名升旗手,他在考虑如何能让国旗在国歌结束时,刚好升至旗杆顶端?要解决此问题就要知道学校旗杆的高度,为此他与同学们进行了专题项目研究.主题:测量学校旗杆的高度.分析探究:旗杆的高度不能直接测量,需要借助一些工具,比如小镜子、标杆、皮尺、小木棒、自制的直角三角形硬纸板……确定方案后,画出测量示意图,并进行实地测量,得到具体数据,从而计算出旗杆的高度.成果展示:下面是部分测量方案及测量数据.方案一方案二工具皮尺标杆,皮尺测量方案选一名同学直立于旗杆影子的顶端处,测量该同学的身高和影长及同一时刻旗杆的影长.选一名同学作为观测者,在观测者与旗杆之间的地面上直立一根高度适当的标杆,使旗杆的顶端、标杆的顶端与观测者的眼睛恰好在一条直线上,这时测出观测者的脚到旗杆底端的距离,以及观测者的脚到标杆底端的距离,然后测出标杆的高.测量示意图测量数据线段AB表示旗杆,这名同学的身高CD=1.8m,这名同学的影长DE=1.44m,同一时刻旗杆的影长BD=10.32m.线段AB表示旗杆,标杆EF=2.6m,观测者的眼睛到地面的距离CD=1.7m,观测者的脚到旗杆底端的距离DB=16.8m,观测者的脚到标杆底端的距离DF=1.35m.……请你继续完善上述成果展示.任务一:写出“方案一”中求旗杆高度时所利用的知识:____________________________;(写出一个即可)任务二:根据“方案二”的测量数据,求学校旗杆AB的高度;任务三:写出一条你在活动中的收获、反思或困惑.答案一、1.B 2.C3.C4.D5.B6.B7.B8.D 9.C10.D 点拨:如图①,当点P 在OA 上时,0≤t ≤1,延长QP 交AD 于点E ,则PE ⊥AD ,由题意得BQ =t cm ,AP =2t cm ,易得AE =PE =t cm ,QE =AB =2cm ,∴PQ =(2-t )cm ,∴S =12BQ ·PQ =12t (2-t )=-12t 2+t ;(第10题)如图②,当点P 在OD 上时,1<t ≤2,由题意得PQ =BQ =t cm ,∴S =12t 2.二、11.6012.-1713.2或5-114.(1)(1,4)(2)(1,-2)三、15.解:原式=33+4-33+1=5.16.证明:(1)∵△ABD ∽△ACE ,∴∠BAD =∠CAE ,∴∠BAD +∠BAE =∠CAE +∠BAE ,∴∠DAE =∠BAC .(2)∵△ABD ∽△ACE ,∴AD AE =AB AC ,∴AD AB =AE AC,而∠DAE =∠BAC ,∴△DAE ∽△BAC .四、17.解:(1)如图,△CA ′B ′即为所求.其中A ′(3,5),B ′(7,3).(第17题)(2)P ′(2a -1,2b -1).18.解:如图,由题意,得AB =15里,AC =4.5里,CD =3.5里.(第18题)∵DE ⊥CD ,AC ⊥CD ,∴AC ∥DE ,∴△ACB ∽△DEC ,∴DE AC =DC AB ,即DE 4.5=3.515,解得DE =1.05里=315步.答:走出南门315步恰好能望见这棵树.五、19.解:(1)y =x 2-4x +3(2)x …-101234…y =ax 2+bx +c…83-13…函数图象如图所示.(第19题)(3)①-1≤y ≤3②当x <1或x >3时,y >0.20.解:(1)k 的值为12,m 的值为6.(2)易知B (0,2).∵P (a ,0)为x 轴上的一动点,∴PC =|a +4|,∴S △CBP =12PC ·OB =12×|a +4|×2=|a +4|,S △CAP =12PC ·y A =12×|a +4|×3=32|a +4|.∵S △CP A =S △ABP +S △CBP ,∴32|a +4|=72+|a +4|,解得a =3或-11.六、21.解:如图,延长AB 与直线l 2交于点E ,过点D 作DF ⊥BE 于点F ,过点A 作AG ⊥l 2于点G ,易得DF =BC =1m ,BF =CD =3m ,∠FED =30°.在Rt △DEF 中,tan 30°=DF EF,∴EF =3m ,∴AE =AB +BF +EF =2+3+3=(5+3)m.在Rt △AGE 中,AG =12AE =5+32m.答:此下坡赛道的垂直高度为5+32m.(第21题)七、22.解:(1)y =(x -4)2-16(2)当x =9时,y =(9-4)2-16=9,答:前9个月公司累计获得的利润为9万元;当x =10时,y =20.20-9=11(万元).答:10月一个月内所获得的利润为11万元.(3)设在1~12月中,第n 个月该公司一个月内所获得的利润为s 万元,则有s =(n -4)2-16-[(n -1-4)2-16]=2n -9.∵2>0,∴s 随n 的增大而增大.又∵n 的最大值为12,∴当n =12时,s 取最大值,为15.答:12月该公司一个月内所获得的利润最多,最多利润是15万元.八、23.解:任务一:相似三角形的判定与性质(答案不唯一)任务二:如图,过点C 作CG ⊥AB 于点G ,交EF 于点H ,则易得四边形CDBG 与四边形CDFH 是矩形,(第23题)∴CH =DF =1.35m ,CG =BD =16.8m ,CD =HF =GB =1.7m ,∴EH =EF -HF =2.6-1.7=0.9(m).由题意得EF ∥AB ,∴△CEH ∽△CAG ,∴CH CG =EH AG ,∴1.3516.8=0.9AG,∴AG =11.2m.∴AB =AG +BG =11.2+1.7=12.9(m).答:学校旗杆AB 的高度为12.9m.任务三:在利用阳光下的影子测量时,如果没有太阳光,会影响测量;测量数据不准确,在测量过程中为了避免误差太大,可以多次测量,取平均值作为最后的测量结果;在项目研究中感受到了数学与生活的联系等.(答案不唯一,表述合理即可)。
九年级物理(下册)期末综合能力测试卷及答案(时间:60分钟分数:100分)班级:姓名:分数:一、选择题(每题2分,共30分)1、如图甲所示,闭合开关,两灯泡均正常发光,且两个完全相同的电流表指针偏转均如图乙所示,通过灯泡L1和L2的电流分别为()A.1.2A,1.2A B.0.3A,0.3A C.1.2A,0.3A D.1.5A,0.3A 2、下列物体重力约为1N的是()A.一枚大头针 B.两个鸡蛋 C.一头奶牛D.一个篮球3、如图,分别在A、B、C处用同样大小的力推门,可以感受到在A点用力容易把门推开.这说明力的作用效果与下列哪个因素有关?()A.力的作用点B.力的大小C.力的方向D.力的单位4、《中国诗词大会》深受观众喜爱,下列诗词中涉及的物态变化现象解释正确的是()A.风雨送春归,飞雪迎春到——雪是升华形成的B.不知明镜里,何处得秋霜——霜是凝固形成的C.露从今夜白,月是故乡明——露是液化形成的D.岚雾今朝重,江山此地深——雾是汽化形成的5、小云家卫生间安装了换气扇和照明灯,换气扇和照明灯的电路连接如图所示,下列说法中正确的是()A.换气扇和照明灯不能同时工作B.换气扇和照明灯只能同时工作C.换气扇和照明灯工作时,通过它们的电流一定相等D.换气扇和照明灯工作时,它们两端的电压一定相等6、下列物体的长度值最符合实际的是()A.一枚硬币的厚度为5mm B.乒乓球的直径为10cmC.物理教科书的宽度为1.8dm D.课桌的高度为1.2m7、利用铅垂线和三角尺判断桌面是否水平,如图所示的做法正确的是()A.B.C. D.8、如图所示电路,电源电压不变,闭合开关,当滑动变阻器的滑片P向右移动的过程中,下列说法正确的是()A.电流表的示数变小B.电压表的示数变小C.小灯泡的亮度变暗D.电压表的示数不变9、如图所示是四冲程汽油机的一个工作循环示意图,其中属于做功冲程的是()A. B. C. D.10、以下描述中与光的折射现象有关的是( )A .形影相随,亲密无间B .海市蜃楼,虚无缥缈C .镜中生花,脱离实际D .水中捞月,一无所得11、一只可口可乐瓶,其侧壁有a 、b 两个小孔并用塞子塞住,瓶内盛有一定质量的酒精,如图所示,把可口可乐瓶放入水中,当瓶内、外液面相平时,拔出a 、b 两个小孔上的塞子,则( )A .a 、b 两个小孔均有水流入B .a 、b 两个小孔均有酒精流出.C .酒精从a 小孔流出.水从b 小孔流入D .水从a 小孔流入.酒精从b 小孔流出.12、图甲中用力F1水平拉着重为G 的物体在水平路面上匀速移动s 的距离。
2022-2023学年九上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.如图所示,该几何体的俯视图是( )A .B .C .D .2.如图,在ABC ∆中,10AB =,8AC =,6BC =,以边AB 的中点O 为圆心作半圆,使BC 与半圆相切,点,P Q 分别是边AC 和半圆上的动点,连接PQ ,则PQ 长的最大值与最小值的和是( )A .8B .9C .10D .123.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86分,方差如下表,你认为派谁去参赛更合适( ) 选手甲 乙 丙 丁 方差1.52.63.5 3.68A .甲B .乙C .丙D .丁 4.如图,厂房屋顶人字架(等腰三角形)的跨度BC =10m ,∠B =36°,D 为底边BC 的中点,则上弦AB 的长约为( )(结果保留小数点后一位sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)A .3.6mB .6.2mC .8.5mD .12.4m5.已知正多边形的一个内角是135°,则这个正多边形的边数是( )A .3B .4C .6D .86.如图,一张矩形纸片ABCD 的长AB a =,宽BC b.=将纸片对折,折痕为EF ,所得矩形AFED 与矩形ABCD 相似,则a :b (= )A .2:1B .2:1C .3:3D .3:27.二次根式x 3-中,x 的取值范围是( )A .x 3≥B .x 3>C .x 3≤D .x 3<8.方程5x 2=6x ﹣8化成一元二次方程一般形式后,二次项系数、一次项系数、常数项分别是( )A .5、6、﹣8B .5,﹣6,﹣8C .5,﹣6,8D .6,5,﹣89.如图,正方形ABCD 的边长为2cm ,动点P ,Q 同时从点A 出发,在正方形的边上,分别按A D C →→,A B C →→的方向,都以1/cm s 的速度运动,到达点C 运动终止,连接PQ ,设运动时间为x s ,APQ ∆的面积为2y cm ,则下列图象中能大致表示y 与x 的函数关系的是( )A .B .C .D .10.不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是().A.3个都是黑球B.2个黑球1个白球C.2个白球1个黑球D.至少有1个黑球二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系xOy中,P是直线y=2上的一个动点,⊙P的半径为1,直线OQ切⊙P于点Q,则线段OQ取最小值时,Q点的坐标为_____.12.若一个扇形的圆心角是120°,且它的半径是18cm,则此扇形的弧长是_______cm13.如图,D是反比例函数kyx=(k<0)的图象上一点,过D作DE⊥x轴于E,DC⊥y轴于C,一次函数y=﹣x+m与323y x=-+的图象都经过点C,与x轴分别交于A、B两点,四边形DCAE的面积为4,则k的值为_______.14.用一个半径为10的半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为_____.15.如图,△ABC内接于⊙O,∠ACB=35º,则∠OAB=º.16.如果A地到B地的路程为80千米,那么汽车从A地到B地的速度x千米/时和时间y时之间的函数解析式为______. 17.已知线段a、b、c,其中c是a、b的比例中项,若a=2cm,b=8cm,则线段c=_____cm.18.如图,⊙O为△ABC的内切圆,D、E、F分别为切点,已知∠C=90°,⊙O半径长为1cm,BC=3cm,则AD 长度为__cm.三、解答题(共66分)19.(10分)解方程:()12410x x -+=.()2()()229241x x -=+20.(6分)如图,在O 中,弦CD 垂直于直径AB ,垂足为E ,连结AC ,将ACE ∆沿AC 翻转得到ACF ∆,直线FC 与直线AB 相交于点G .(1)求证:FG 是O 的切线;(2)若B 为OG 的中点,①求证:四边形OCBD 是菱形;②若23CE =,求O 的半径长. 21.(6分)已知正比例函数12y x =的图象与反比例函数2(0k y k x =≠的图象交于一点M ,且M 点的横坐标为1. (1)求反比例函数的解析式;(2)当25x ≤≤时,求反比例函数2(0k y k x=≠的取值范围 22.(8分)如图,在△ABC 中,D 为BC 边上的一点,且∠CAD=∠B,CD=4,BD=2,求AC 的长23.(8分)阅读下列材料,关于x 的方程:x +1x =c +1c 的解是x 1=c ,x 2=1c ;x ﹣1x =c ﹣1c 的解是x 1=c ,x 2=﹣1c;x +2x=c +2c 的解是x 1=c ,x 2=2c ;x +3x =c +3c 的解是x 1=c ,x 2=3c ;…… (1)请观察上述方程与解的特征,比较关于x 的方程x +a x =c +a c (a ≠0)与它们的关系猜想它的解是什么,并利用“方程的解”的概念进行验证.(2)可以直接利用(1)的结论,解关于x的方程:x+33x-=a+33a-.24.(8分)某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)如果商店销售这种商品,每天要获得1500元利润,那么每件商品的销售价应定为多少元?(3)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?25.(10分)已知二次函数y=ax2+bx+3的图象经过点 (-3,0),(2,-5).(1)试确定此二次函数的解析式;(2)请你判断点P(-2,3)是否在这个二次函数的图象上?26.(10分)某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车可达1440辆次;若停车费超过5元,则每超过1元,每天来此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费﹣每天的固定支出)(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?参考答案一、选择题(每小题3分,共30分)1、C【解析】从上往下看,总体上是一个矩形,中间隔着一个竖直的同宽的小矩形,而挖空后长方体内的剩余部分用虚线表示为左右对称的两条靠近宽的线,选项C中图象便是俯视图.故选:C.2、C【分析】如图,设⊙O与BC相切于点E,连接OE,作OP2⊥AC垂足为P2交⊙O于Q2,此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,如图当Q2在AB边上时,P2与A重合时,P2Q2最大值,由此不难解决问题.【详解】解:如图,设⊙O与BC相切于点E,连接OE,作OP2⊥AC垂足为P2交⊙O于Q2,此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,∵AB=20,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=90°,∵∠OP2A=90°,∴OP2∥BC.∵O为AB的中点,∴P2C=P2A,OP2=12BC=2.又∵BC是⊙O的切线,∴∠OEB=90°,∴OE∥AC,又O为AB的中点,∴OE=12AC=4=OQ2.∴P2Q2最小值为OQ2-OP2=4-2=2,如图,当Q2在AB边上时,P2与A重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=AO+OQ2=5+4=9,∴PQ长的最大值与最小值的和是20.故选:C.【点睛】本题考查切线的性质,三角形中位线定理,勾股定理的逆定理以及平行线的判定等知识,解题的关键是正确找到点PQ 取得最大值、最小值时的位置,属于中考常考题型.3、A【分析】根据方差的意义即可得.【详解】方差越小,表示成绩波动性越小、越稳定观察表格可知,甲的方差最小,则派甲去参赛更合适故选:A .【点睛】本题考查了方差的意义,掌握理解方差的意义是解题关键.4、B【分析】先根据等腰三角形的性质得出BD =12BC =5m ,AD ⊥BC ,再由cos B =BD AB,∠B =36°知AB =cos BD B ,代入计算可得.【详解】∵△ABC 是等腰三角形,且BD =CD , ∴BD =12BC =5m ,AD ⊥BC , 在Rt △ABD 中,∵cos B =BD AB,∠B =36°, ∴AB =cos BD B =5cos36︒≈6.2(m ),故选:B . 【点睛】本题考查解直接三角形的应用,解题的关键是根据等腰三角形的性质构造出直角三角形Rt △ABD ,再利用三角函数求解.5、D【分析】根据正多边形的一个内角是135°,则知该正多边形的一个外角为45°,再根据多边形的外角之和为360°,即可求出正多边形的边数.【详解】解:∵正多边形的一个内角是135°,∴该正多边形的一个外角为45°,∵多边形的外角之和为360°, ∴边数=360845︒=︒, ∴这个正多边形的边数是1.故选:D .【点睛】本题考查了正多边形的内角和与外角和的知识,知道正多边形的外角之和为360°是解题关键.6、B【分析】根据折叠性质得到AF =12AB =12a ,再根据相似多边形的性质得到AB AD AD AF =,即12a b b a =,然后利用比例的性质计算即可.【详解】解:∵矩形纸片对折,折痕为EF ,∴AF =12AB =12a , ∵矩形AFED 与矩形ABCD 相似, ∴AB AD AD AF =,即12a b b a =, ∴a ∶b.所以答案选B.【点睛】本题考查了相似多边形的性质:相似多边形对应边的比叫做相似比.相似多边形的对应角相等,对应边的比相等. 7、A【解析】根据二次根式有意义的条件:被开方数为非负数解答即可.∴x-3≥0,解得x≥3.故选A.【点睛】本题考查了二次根式有意义的条件.熟记二次根式的被开方数是非负数是解题关键.8、C【解析】根据一元二次方程的一般形式进行解答即可.【详解】5x 2=6x ﹣8化成一元二次方程一般形式是5x 2﹣6x+8=0,它的二次项系数是5,一次项系数是﹣6,常数项是8,故选C .【点睛】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.9、A【分析】根据题意结合图形,分情况讨论:①02x ≤≤时,根据12APQ S AQ AP ∆=⋅,列出函数关系式,从而得到函数图象;②24x ≤≤时,根据''''APQ CP Q ABQ AP D ABCD S S S S S ∆∆∆∆=---正方形列出函数关系式,从而得到函数图象,再结合四个选项即可得解.【详解】①当02x ≤≤时,∵正方形的边长为2cm , ∴21122APQ y S AQ AP x ∆==⋅=; ②当24x ≤≤时,APQ y S ∆=''''CP Q ABQ AP D ABCD S S S S ∆∆∆=---正方形()()()21112242222222x x x =⨯---⨯⨯--⨯⨯- 2122x x =-+, 所以,y 与x 之间的函数关系可以用两段二次函数图象表示,纵观各选项,只有A 选项图象符合,故选A .【点睛】本题考查了动点问题的函数图象,根据题意,分别求出两个时间段的函数关系式是解题的关键.10、D【分析】根据白球两个,摸出三个球必然有一个黑球.【详解】解:A 袋子中装有4个黑球和2个白球,摸出的三个球中可能为两个白球一个黑球,所以A 不是必然事件; B .C .袋子中有4个黑球,有可能摸到的全部是黑球,B 、C 有可能不发生,所以B 、C 不是必然事件;D .白球只有两个,如果摸到三个球不可能都是白梂,因此至少有一个是黑球,D 正确.故选D .【点睛】本题考查随机事件,解题关键在于根据题意对选项进行判断即可.二、填空题(每小题3分,共24分)11、(3±,32). 【分析】连接PQ 、OP ,如图,根据切线的性质得PQ ⊥OQ ,再利用勾股定理得到21OP -当OP 最小时,OQ 最小,然后求出OP 的最小值,得到OQ 的最小值,于是得到结论.【详解】连接PQ 、OP ,如图,∵直线OQ 切⊙P 于点Q ,∴PQ ⊥OQ ,在Rt △OPQ 中,OQ 22OP PQ -21OP -当OP 最小时,OQ 最小,当OP ⊥直线y =2时,OP 有最小值2,∴OQ 221-3设点Q 的横坐标为a ,∴S △OPQ =12×1312×2×|a , ∴a =3, ∴Q 223(3)2⎛⎫- ⎪ ⎪⎝⎭32, ∴Q 点的坐标为(32±,32), 故答案为(3,32). 【点睛】 本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了勾股定理.12、12π 【分析】根据弧长公式180n r l π=代入可得结论. 【详解】解:根据题意,扇形的弧长为12018==12180180n r l πππ⨯⨯=, 故答案为:12π.【点睛】本题主要考查弧长的计算,解决本题的关键是要熟练掌握弧长公式.13、-1【详解】解:∵2y x =+的图象经过点C ,∴C (0,1), 将点C 代入一次函数y=-x+m 中,得m=1,∴y=-x+1,令y=0得x=1,∴A (1,0),∴S △AOC =12×OA×OC=1, ∵四边形DCAE 的面积为4,∴S 矩形OCDE =4-1=1,∴k=-1故答案为:-1.14、5【解析】试题解析:∵半径为10的半圆的弧长为:12×2π×10=10π ∴围成的圆锥的底面圆的周长为10π设圆锥的底面圆的半径为r ,则2πr=10π解得r=515、55【解析】分析:∵∠ACB 与∠AOB 是AB 所对的圆周角和圆心角,∠ACB =35º,∴∠AOB=2∠ACB=70°.∵OA=OB ,∴∠OAB=∠OBA=18070255︒-︒=︒. 16、80y x= 【分析】根据速度=路程÷时间,即可得出y 与x 的函数关系式.【详解】解:∵速度=路程÷时间, ∴80y x= 故答案为:80y x =【点睛】本题考查了根据行程问题得到反比例函数关系式,熟练掌握常见问题的数量关系是解答本题的关键.17、4【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c 是a 、b 的比例中项,线段a =2cm ,b =8cm ,∴ac=cb,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍去),∴线段c=4cm.故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.18、3【分析】如图,连接OD、OE、OF,由切线的性质和切线长定理可得OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,接着证明四边形OECF为正方形,则CE=OE=CF=OF=1cm,所以BE=BD=2cm,由勾股定理可求AD的长.【详解】解:如图,连接OE,OF,OD,∵⊙O为△ABC内切圆,与三边分别相切于D、E、F,∴OD⊥AB,OE⊥BC,OF⊥AC,AF=AD,BE=BD,∴四边形OECF为矩形而OF=OE,∴四边形OECF为正方形,∴CE=OE=CF=OF=1cm,∴BE=BD=2cm,∵AC2+BC2=AB2,∴(AD+1)2+9=(AD+2)2,∴AD=3cm,故答案为:3【点睛】本题考查了三角形的内切圆与内心,切线的性质,切线长定理,勾股定理,正方形的判定和性质,熟悉切线长定理是本题的关键.三、解答题(共66分)19、(1)x 1=2+3,x 2=2﹣3;(2)x 1=45,x 2=1. 【分析】解一元二次方程常用的方法有因式分解法和公式法,方程2410x x -+=在整式范围内不能因式分解,所以选择公式法即可求解;而方程229(2)4(1)x x -=+移项后方程左边可以利用平方差公式进行因式分解,易求出此方程的解.【详解】解:(1)x 2﹣4x+4=3,(x ﹣2)2=3,x ﹣2=±3,所以x 1=2+3,x 2=2﹣3;(2)9(x ﹣2)2﹣4(x+1)2=0,[3(x ﹣2)+2(x+1)][3(x ﹣2)﹣2(x+1)]=0,3(x ﹣2)+2(x+1)=0或3(x ﹣2)﹣2(x+1)=0,所以x 1=45,x 2=1. 【点睛】本题考查的是一元二次方程的解法,根据方程的特点和每一种解法的要点,选择合适的方法进行求解是关键.20、(1)见解析;(2)①见解析,②1【分析】(1)连接OC ,由OA=OC 得∠OAC=∠OCA ,结合折叠的性质得∠OCA=∠FAC ,于是可判断OC ∥AF ,然后根据切线的性质得直线FC 与⊙O 相切;(2)①连接OD 、BD ,利用直角三角形斜边上的中线的性质可证得CB=OC=OD=BD ,再根据菱形的判定定理即可判定;②首先证明△OBC 是等边三角形,在Rt △OCE 中,根据222OC OE CE =+,构建方程即可解决问题;【详解】(1)如图,连接OC ,∵OA=OC ,∴∠OAC=∠OCA ,由翻折的性质,有∠OAC=∠FAC ,∠AEC=∠AFC=90°,∴∠FAC=∠OCA ,∴OC ∥AF ,∴∠OCG=∠AFC=90°,故FG 是⊙O 的切线;(2)①如图,连接OD 、BD ,∵CD 垂直于直径AB ,∴OC=OD ,BC=BD ,又∵B 为OG 的中点, ∴12CB OG =, ∴CB=OB ,又∵OB=OC ,∴CB=OC ,则有CB=OC=OD=BD ,故四边形OCBD 是菱形;②由①知,△OBC 是等边三角形,∵CD 垂直于直径AB ,∴30OCE ∠=, ∴12OE OC =, 设⊙O 的半径长为R ,在Rt △OCE 中,有222OC OE CE =+,即2221()(23)2R R =+,解之得:4R =,⊙O 的半径长为:1.【点睛】本题属于圆综合题,考查了切线的判定,等边三角形的判定和性质,直角三角形斜边上的中线的性质,勾股定理等知识,解题的关键是学会添加常用辅助线,学会利用方程的思想解决问题.21、(1)22y x=;(2)215x ≤≤. 【分析】(1)根据M 点的横坐标为1,求出k 的值,得到反比例函数的解析式;(2)求出x=2,x=5时y 的取值,再根据反比例函数的增减性求出y 的取值范围.【详解】(1)正比例函数12y x =的图象与反比例函数()20k y k x=≠的图象交于一点M ,且M 点的横坐标为1. 1,2212M M M x y x ∴===⨯=,122M M k x y ∴=⋅=⨯=,∴反比例函数的解析式为22y x =; (2)在反比例函数22y x =中,当22,1x y ==, 当225,5x y ==, 在反比例函数22y x=中,20k =>, ∴当0x >时,2y 随x 的增大而减小,∴当25x ≤≤时,反比例函数()20k y k x =≠的取值范围为215x ≤≤. 【点睛】此题考查了三个方面:(1)函数图象上点的坐标特征;(2)用待定系数法求函数解析式;(3)反比例函数的增减性.22、AC =【分析】根据相似三角形的判定定理可得△CAD ∽△CBA ,列出比例式即可求出AC.【详解】解:∵CD=4,BD=2,∴BC=CD +BD=6∵∠CAD=∠B,∠C=∠C∴△CAD ∽△CBA ∴AC DC BC AC=∴26424AC BC CD =•=⨯=解得:AC =或-即AC =【点睛】此题考查的是相似三角形的判定及性质,掌握有两组对应角相等的两个三角形相似和相似三角形的对应边成比例是解决此题的关键.23、(1)方程的解为x 1=c ,x 2=a c ,验证见解析;(2)x =a 与x =363a a --都为分式方程的解. 【分析】(1)根据材料即可判断方程的解,然后代入到方程的左右两边检验即可;(2)将方程左右两边同时减去3,变为题干中的形式,即可得出答案.【详解】(1)方程的解为x 1=c ,x 2=a c , 验证:当x =c 时,∵左边=c +a c ,右边=c +a c, ∴左边=右边,∴x =c 是x +a x=c +a c 的解, 同理可得:x =a c 是x +a x=c +a c 的解; (2)方程整理得:(x ﹣3)+33x -=(a ﹣3)+33a -, 解得:x ﹣3=a ﹣3或x ﹣3=33a -,即x =a 或x =363a a --, 经检验x =a 与x =363a a --都为分式方程的解. 【点睛】本题主要为材料理解题,理解材料中方程的根的由来是解题的关键.24、 (1)180y x =-+;(2) 每件商品的销售价应定为130元或150元;(3)售价定为140元/件时,每天最大利润1600W =元.【分析】(1)待定系数法求解可得;(2)根据“每件利润×销售量=总利润”列出一元二次方程,解之可得;(3)根据以上相等关系列出函数解析式,配方成顶点式,利用二次函数性质求解可得.【详解】(1)设y 与x 之间的函数关系式为()0y kx b k =+≠,由所给函数图象可知:1305015030k b k b +=⎧⎨+=⎩, 解得:1180k b =-⎧⎨=⎩. 故y 与x 的函数关系式为180y x =-+;(2)根据题意,得:()()1001801500x x --+=,整理,得:2280195000x x -+=,解得:130x =或150x =,答:每件商品的销售价应定为130元或150元;(3)∵180y x =-+,∴()()()100100180W x y x x =-=--+228018000x x =-+- 2(140)1600x =--+,∴当140x =时,1600W =最大,∴售价定为140元/件时,每天最大利润1600W =元.【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式,理解题意确定相等关系,并据此列出函数解析式.25、(1)y=﹣x 2﹣2x+1;(2)点P (﹣2,1)在这个二次函数的图象上,【分析】(1)根据给定点的坐标,利用待定系数法求出二次函数解析式即可;(2)代入x=-2求出y 值,将其与1比较后即可得出结论.【详解】(1)设二次函数的解析式为y=ax 2+bx+1;∵二次函数的图象经过点(﹣1,0),(2,﹣5),则有:933428a b a b -=-⎧⎨+=-⎩ 解得;12a b =-⎧⎨=-⎩∴y=﹣x 2﹣2x+1.(2)把x=-2代入函数得y=﹣(﹣2)2﹣2×(﹣2)+1=﹣4+4+1=1,∴点P (﹣2,1)在这个二次函数的图象上,【点睛】考查待定系数法求二次函数解析式,二次函数图象上点的坐标特征,掌握待定系数法求二次函数解析式是解题的关键.26、(1)y=1440x﹣800;每辆次小车的停车费最少不低于3元;(2)y=﹣120x2+2040x﹣800;(3)每辆次小车的停车费应定为8元,此时的日净收入为7840元.【分析】(1)根据题意和公式:日净收入=每天共收取的停车费﹣每天的固定支出,即可求出y与x的关系式,然后根据日净收入不低于2512元,列出不等式,即可求出x的最小整数值;(2)根据题意和公式:日净收入=每天共收取的停车费﹣每天的固定支出,即可求出y与x的关系式;(3)根据x的取值范围,分类讨论:当x≤5时,根据一次函数的增减性,即可求出此时y的最大值;当x>5时,将二次函数一般式化为顶点式,即可求出此时y的最大值,从而得出结论.【详解】解:(1)由题意得:y=1440x﹣800∵1440x﹣800≥2512,∴x≥2.3∵x取整数,∴x最小取3,即每辆次小车的停车费最少不低于3元.答:每辆小车的停车费最少不低于3元;(2)由题意得:y=[1440﹣120(x﹣5)]x﹣800即y=﹣120x2+2040x﹣800(3)当x≤5时,∵1440>0,∴y随x的增大而增大∴当x=5时,最大日净收入y=1440×5﹣800=6400(元)当x>5时,y=﹣120x2+2040x﹣800=﹣120(x2﹣17x)﹣800=﹣120(x﹣172)2+7870∴当x=172时,y有最大值.但x只能取整数,∴x取8或1.显然,x取8时,小车停放辆次较多,此时最大日净收入为y=﹣120×14+7870=7840(元)∵7840元>6400元∴每辆次小车的停车费应定为8元,此时的日净收入为7840元.答:每辆次小车的停车费应定为8元,此时的日净收入为7840元.【点睛】此题考查的是一次函数和二次函数的综合应用,掌握实际问题中的等量关系、一次函数的增减性和利用二次函数求最值是解决此题的关键.。
九年级期末综合测试题1.右图漫画《列宁同志清扫地球》形象生动地展现了俄国十月革命这一人类历史上的重要事件。
对此漫画解读准确的应包括①赞扬了列宁领导十月革命的伟大功绩②十月革命建立了人类历史上第一个社会主义国家③十月革命对世界历史发展产生了重大影响④社会主义制度取得了对资本主义制度的决定性胜利A①③④B.②③④C.①②③D.①②③④2.《凡尔赛和约》对德国的惩罚和削弱包括①重新划分德国的疆界,削减其领土②以“委任统治”的形式瓜分德国的海外殖民地③严格限制德国军备④捷克斯洛伐克的苏台德区和与奥地利接壤的南部地区割让给德国⑤德国必须对协约国支付大量赔款A.①②③④B.②③④⑤C.①②③⑤D.①③④⑤3.“俄国革命经事实证明是自由资本主义的救世主:一方面使西方赢得了反希特勒德国的第二次世界大战的胜利,另一方面悖谬地通过苏联表面上对大萧条所具备的免疫力,促使人们放弃对自由市场正统观念的信念,为资本主义进行自我改革提供了驱动力。
”苏联“对大萧条所具备的免疫力”主要得益于A.战时共产主义政策B.新经济政策C.斯大林模式D.赫鲁晓夫改革4.读下面《主要资本主义国家工业生产下降情况表》,判断其其最可能是哪一历史事件带A.殖民争霸B.1929—1933年经济危机C.第一次世界大战D.第二次世界大战5.罗斯福上台后,颁布了《全国工业复兴法》,该法包括三方面内容:一是建立国家复兴管理局。
二是由国家举办各种公共工程,减少失业大军。
三是适当提高劳工地位,改善劳工待遇。
下列关于该法的表述,不正确的是A.该法旨在复兴美国工业,不涉及其他问题B.该法属于国家立法C.该法有效缓和了社会矛盾D.该法建立了公平竞争等方面的规则6.下列名词承载着惨酷的历史意蕴,是法西斯势力所犯下的反人类罪的黑色象征① “奥斯威辛集中营”② “南京大屠杀”③ “731细菌部队”④“格尔尼卡大屠杀”其中属于“日本制造”的有A.①②③ B.②③ C.①④ D.②③④7.20世纪30年代,“凡尔赛—华盛顿体系”面临的最大威胁是A.世界经济危机的冲击B.民族解放运动的高涨C.苏联综合国力的增强D.法西斯国家的扩张8.下面是某中学历史兴趣小组制作的一个反映世界史上重要会议的年代尺。
在这个年代尺上标出的会议中,决定对德国实行军事占领彻底摧毁军国主义和纳粹制度及苏联参加对日本作战的是9.杜鲁门总统声称:“不论在什么地方,不论直接或间接的侵略威胁了和平,都与美国的安全有关,美国政府都应进行干预”。
这表明A.美苏“冷战”正式开始B.两极格局正式形成C.美国的安全到处都是直接或间接受危害D.世界大战即将爆发10.从1946年—1977年的31年间,美国对西欧的直接投资增长了近60倍,跨国公司飞速发展,造成美国战后这一经济特点的主要原因有①战时的资本积累②政府有效的财政政策③科学技术的进步④马歇尔计划的推动A.①②③ B.①②③④ C.②③④ D.①②③11.“赫鲁晓夫大权在握之后,吹捧他的言辞充斥于讲坛、报纸和杂志。
据统计,报章刊登斯大林的照片每年不过几十次,而赫鲁晓夫则年逾百张。
1963年全国性大报共刊登的这位第一书记的照片达124张,而在1964年头十个月里则达到140张。
”(北师大版教材九下)材料说明A.赫鲁晓夫进行个人崇拜B.赫鲁晓夫实行集权政治C.赫鲁晓夫改革取得重大成效D.人们对赫鲁晓夫改革由衷地赞美12、1999年科索沃战争爆发后,有报纸评论说:“这是北约成立以来首次在未经联合国授权的情况下,对一个主权国家采取的大规模军事行动。
”这里的主权国家是指A、伊拉克B、南联盟C、阿富汗D、阿尔巴尼亚A.“非洲独立年”B.黑暗大陆C.美国“后院”D.东欧消费者的天堂14.1993年,巴以双方在华盛顿签署了巴勒斯坦首先在部分地区实现自治的原则宣言,中东地区出现和平的曙光,1995年11月,对中东和平做出很大贡献的以色列总理拉宾被以色列右翼极端分子暗杀。
以上材料说明A.中东和平进程破灭B.中东和平进程艰难曲折C.阿以矛盾不可调和,只有通过战争来解决D.犹太人抵制和平进程15.斯塔夫理阿诺斯的《全球通史》说道:“几十年前还统治全球的欧洲大陆的前途这时似乎是暗淡的、危险的。
但20世纪50年代后,东欧和西欧各国却惊人地东山再起。
这一复兴同中国日益增长的实力和自信一起导致了一种全新的世界政治格局。
”这里所说的“全新的世界政治格局”指A.雅尔塔体系B.美苏对峙C.欧洲国家的联合D.多极化趋势16.扩大就业是全世界共同关注的一个社会问题。
科技创新为人类提供了更多的就业机会,造就了许多新职业。
下列职业出现的先后顺序是①汽车驾驶员②空姐③火车司机④网络管理员A.①④②③B.③①②④C.③②①④D.①④③②17.观察漫画,下列观点表述有误的是A.经济全球化是当代世界经济发展的重要趋势B.发达国家首先推动并一直起着主导作用C.发展中国家面临着发达国家经济和技术优势的巨大挑战D.美国为经济全球化背负沉重负担【2012中指练六】18.20世纪以来,国际形势风云变幻。
如今,国与国之间日益成为相互依存、密不可分的整体。
阅读材料回答向题。
材料一:从巴黎和会到华盛倾会议,列强建立起“凡尔赛―华盛顿体系”,确立了战后世界新秩序。
——《北师大九年级(下)》材料二:识读图片材料三:“英雄的苏联军民不仅捍卫了祖国的主权和尊严,而且为世界反法西斯战争做出不可磨灭的历史贡献。
”“许多优秀俄罗斯儿女在中国大地上献出宝贵生命,中俄两图一1947年杜鲁门在国会发表咨文图二北约和华约对峙图国人民在反法西斯战争中结下深厚友谊。
”——胡锦涛主席在俄罗斯纪念卫国战争胜利60周年活动上讲话材料四:20世纪90年代以来,随着美苏争霸的两极格局的解体,世界上各种力量出现新的分化和组合,国际关系呈现出……的发展趋势。
面对国际形势变化的新特点,中国政府把握机遇,积极参与双边和多边领域的时话与合作。
——《华师大八年级(下)》请回答:(1)材料一中,为确立战后世界新秩序,列强签署了哪两个主要条约?简述后一条约的主要内容。
(1)《凡尔赛和约》、《九国公约》;《九国公约》内容:尊重中国主权独立及领土和行政的完整;中国保证各国在华“机会均等”,对外“门户开放”。
(2)在历史研究课上,某同学搜集到以上两幅图片,请你判断他研究的主题应该是什么?请任选其中一幅图片,对所反映的历史事实作一简要说明。
(2)两极格局的形成;杜鲁门主义出台标志冷战开始;华沙条约组织(或华约组织)的建立,两极格局最终形成。
(3)材料三中胡主席肯定了苏联人民在反法西斯战争中的历史贡献,二战中苏德战场的转折点是哪一次战役?“许多优秀俄罗斯儿女在中国大地上献出宝贵生命”指哪一事件?(3)斯大林格勒保卫战。
1945年8月8日,苏联对日宣战,出兵中国东北(4)请你将材料四的省略部分填写完整。
当前,人类依然面临众多的危机与挑战,你认为怎样才能有效地解决这些问题?多极化。
各国应加强区域经济合作,顺应经济全球化趋势,合作共赢。
(言之成理即可。
)【2012中指练六】19.2011年是苏联解体20周年,作为社会主义大国,它的解体令人扼腕叹息。
20年来,在俄罗斯社会和广大历史学家的意识中发生了许多重大变化,出现了一些对苏联重大历史事件和历史人物重新评价的一些观点。
阅读材料,回答问题。
材料一:俄罗斯绝大多数学者仍然认为,列宁和“十月革命”不仅改变了俄国,也改变了世界,改变了资本主义本身。
人们应该以历史的态度来对待历史。
在普遍百姓心目中,列宁是穷苦人的救星,是公正的象征。
在社会分配严重两极分化的今天,普遍百姓更加怀念社会主义时代的福利。
材料二:吴恩远在《俄罗斯最新历史教科书关于苏联历史评价的一些新观点》中指出:斯大林确实放弃了新经济政策,但判断这个“放弃”正确与否,不能仅仅看他是否符合列宁的教导,而要看它是否合乎当时的实践。
材料三:由俄罗斯教育部审定的《20世纪祖国史》中对赫鲁晓夫有这样的评价:赫鲁晓夫在苏联历史上的作用就像他的黑白两色大理石的墓碑,具有两面性。
材料四:历史学家尤·叶梅利亚诺夫撰文写道,“对斯大林作用的评价不应该脱离当时的时代。
那时候主要注重实际成就,不太注重为了促进经济增长付出了多大代价这样的问题。
当斯大林逝世之际,他给俄罗斯留下什么?俄罗斯当时是世界上数一数二的强国!那些指责斯大林的人(戈尔巴乔夫等)却用其双手毁灭了这个超级大国!”请回答:(1)我们认为列宁是伟大的无产阶级革命家、社会主义建设道路的开拓者。
请用所学史实加以说明。
(1)革命家:列宁领导十月革命,建立了世界上第一个社会主义国家;开拓者:列宁实施新经济政策,探索了建设社会主义的道路等。
(2)斯大林放弃了新经济政策后采取什么措施发展经济?取得什么成就?(2)启动工业化进程,实施发展国民经济的两个五年计划。
成就:9000多个企业投入生产,发展了机械制造、冶金、航空、电力等部门,到1937年苏联工业产值跃居欧洲第一、世界第二位,由一个农业国变为工业国。
迅速实现了工业化,为反法西斯战争的胜利奠定了物质基础,苏联成为世界强国。
(3)结合所学知识说明“赫鲁晓夫在苏联历史上的作用具有两面性”。
(3)积极:改革取得了一定的经济成效,在一定程度上冲击了斯大林模式。
不足:改革没有从根本上突破斯大林模式;与美国争霸,影响了经济建设(4)简述“戈尔巴乔夫等”是如何“用其双手毁灭了这个超级大国”的?你认为应该如何评价历史人物?(4)戈尔巴乔夫在经济改革上没有取得预期成果;政治上:主张以“人道的民主的社会主义”取代科学社会主义,使改革走进误区。
1991年,苏联解体。
要用一分为二的观点看待历史人物,实事求是、客观公正、放在特定的历史背景下评价等。
【2012中指练六】20.在世界历史舞台上,大国的发展带动着世界经济发展的进程,影响着国际格局的调整。
阅读下列材料回答问题。
材料一:“14日,星期二,无事。
”这是路易十六对1979年7月14日的描述,显然这一天在国王看来十分平常,甚至有些平淡。
但是,路易十六认为无事的这一天,却成为一个改写该国历史的最重要的日子。
7月15日早晨,路易十六听到了大臣的汇报。
他吃惊而困惑地问:“怎么,造反啦?”大臣回答说:“不,陛下,是一场革命。
”材料二:美国在19世纪已经具有世界经济大国的实力……二战又使美国成为当之无愧的世界霸主。
在发展过程中,面对来自国内外的各种挑战,积极应对,有效调整。
材料三:日本是二战的祸首之一,它在给世界带来灾难的同时,本国也遭到了沉重的打击。
可是,日本不仅很快清除了战争废墟,还实现了经济的飞速发展。
(1)材料一中的“革命”是法国历史上的哪次革命运动?这次革命对欧洲和世界历史发展产生了怎样的影响?(1)革命:法国大革命或1789年法国革命或法国资产阶级大革命。