正弦函数和余弦函数和的图象与性质知识点复习及练习题
- 格式:doc
- 大小:271.50 KB
- 文档页数:2
专项训练:正弦函数与余弦函数的图象一、单选题1.同时具有性质:①最小正周期是;②图象关于直线对称;③在上是增函数的一个函数是 ( )A .B .C .D .2.定义在上的函数既是偶函数又是周期函数,若的最小正周期是,且当时,,则的值为( ). A .B .C .D .3.函数的部分图象如图,则、可以取的一组值是( )A .B .C .D .4.函数,是A . 最小正周期为的奇函数B . 最小正周期为的偶函数C . 最小正周期为的奇函数 D . 最小正周期为的偶函数5.函数f (x )=4x -3tan x 在,22ππ⎛⎫- ⎪⎝⎭上的图象大致为( )A .B .C .D .6.如图是函数()(),(0)2f x cos x ππϕϕ<<=+的部分图象,则f (3x 0)=( )A .12 B . -12 C .3. 37.已知f (x )=sin(ωx +φ)(ω>0,|φ|〈2π)的最小正周期为π,若其图象向左平移π3个单位长度后关于y 轴对称,则( )A . ω=2,φ=π3B . ω=2,φ=π6C . ω=4,φ=π6D . ω=2,ω=-π68.函数y =sin2x +cos2x 最小正周期为A .B .C . πD . 2π9.函数f (x )=sin(ωx +φ) 0,2πωϕ⎛⎫>< ⎪⎝⎭的部分图象如图所示,若x 1,x 2∈,63ππ⎛⎫- ⎪⎝⎭,且f (x 1)=f (x 2),则f (x 1+x 2)=( )A .12B . 22C .32D . 1 10.下列函数中,周期为π,且在,42ππ⎡⎤⎢⎥⎣⎦上为减函数的是( )A . sin 2y x π⎛⎫=+ ⎪⎝⎭B . cos 2y x π⎛⎫=+ ⎪⎝⎭ C . cos 22y x π⎛⎫=+ ⎪⎝⎭ D . sin 22y x π⎛⎫=+ ⎪⎝⎭11.函数y =-sin x ,x ∈π3,22π⎡⎤-⎢⎥⎣⎦的简图是( )A .B .C .D .12.函数f (x )=sin π23x ⎛⎫+ ⎪⎝⎭的图象的对称轴方程可以为 ( )A . x=π12B . x=5π12 C . x=π3 D . x=π613.已知函数的部分图象如图所示,则函数的解析式为 ( )A .B .C .D .14.函数()22sin sin 44f x x x ππ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭是( )。
1.4.2 正弦函数、余弦函数的性质(二)课时目标 1.掌握y =sin x ,y =cos x 的最大值与最小值,并会求简单三角函数的值域或最值.2.掌握y =sin x ,y =cos x 的单调性,并能用单调性比较大小.3.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的单调区间.______时,y min =-1一、选择题1.若y =sin x 是减函数,y =cos x 是增函数,那么角x 在( ) A .第一象限B .第二象限 C .第三象限D .第四象限2.若α,β都是第一象限的角,且α<β,那么( ) A .sin α>sin βB .sin β>sin αC .sin α≥sin βD .sin α与sin β的大小不定 3.函数y =sin 2x +sin x -1的值域为( )A.[]-1,1B.⎣⎡⎦⎤-54,-1 C.⎣⎡⎦⎤-54,1D.⎣⎡⎦⎤-1,54 4.函数y =|sin x |的一个单调增区间是( )A.⎝⎛⎭⎫-π4,π4B.⎝⎛⎭⎫π4,3π4C.⎝⎛⎭⎫π,3π2D.⎝⎛⎭⎫3π2,2π 5.下列关系式中正确的是( ) A .sin 11°<cos 10°<sin 168° B .sin 168°<sin 11°<cos 10° C .sin 11°<sin 168°<cos 10° D .sin 168°<cos 10°<sin 11°6.下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( )A .y =sin(2x +π2)B .y =cos(2x +π2)C .y =sin(x +π)D .y =cos(x +π)7.函数y =sin(π+x ),x ∈⎣⎡⎦⎤-π2,π的单调增区间是____________. 8.函数y =2sin(2x +π3)(-π6≤x ≤π6)的值域是________.9.sin1,sin2,sin3按从小到大排列的顺序为__________________.10.设|x |≤π4,函数f (x )=cos 2x +sin x 的最小值是______.三、解答题11.求下列函数的单调增区间.(1)y =1-sin x2;(2)y =log 12(cos2x ).12.已知函数f (x )=2a sin ⎝⎛⎭⎫2x -π3+b 的定义域为⎣⎡⎦⎤0,π2,最大值为1,最小值为-5,求a 和b 的值.能力提升13.已知sin α>sin β,α∈⎝⎛⎭⎫-π2,0,β∈⎝⎛⎭⎫π,32π,则( ) A .α+β>πB .α+β<πC .α-β≥-32πD .α-β≤-32π14.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23B.32C .2D .31.4.2 正弦函数、余弦函数的性质(二)答案知识梳理R R [-1,1] [-1,1] 奇函数 偶函数 2π 2π [-π2+2k π,π2+2k π](k ∈Z ) [π2+2k π,3π2+2k π] (k ∈Z ) [-π+2k π,2k π] (k ∈Z ) [2k π,π+2k π] (k ∈Z ) x =π2+2k π (k ∈Z ) x =-π2+2k π (k ∈Z ) x =2k π (k ∈Z ) x =π+2k π (k ∈Z )作业设计 1.C 2.D3.C [y =sin 2x +sin x -1=(sin x +12)2-54当sin x =-12时,y min =-54;当sin x =1时,y max =1.]4.C [由y =|sin x |图象易得函数单调递增区间⎣⎡⎦⎤k π,k π+π2,k ∈Z ,当k =1时,得⎝⎛⎭⎫π,32π为y =|sin x |的单调递增区间.]5.C [∵sin168°=sin (180°-12°)=sin12°, cos 10°=sin (90°-10°)=sin 80° 由三角函数线得sin 11°<sin 12°<sin 80°, 即sin 11°<sin 168°<cos 10°.]6.A [因为函数周期为π,所以排除C 、D.又因为y =cos(2x +π2)=-sin 2x 在⎣⎡⎦⎤π4,π2上为增函数,故B 不符合.故选A.] 7.⎣⎡⎦⎤π2,π 8.[0,2]解析 ∵-π6≤x ≤π6,∴0≤2x +π3≤2π3.∴0≤sin(2x +π3)≤1,∴y ∈[0,2]9.b <c <a解析 ∵1<π2<2<3<π,sin(π-2)=sin 2,sin(π-3)=sin 3.y =sin x 在⎝⎛⎭⎫0,π2上递增,且0<π-3<1<π-2<π2, ∴sin(π-3)<sin 1<sin(π-2),即sin 3<sin 1<sin 2. ∵b <c <a . 10.1-22解析 f (x )=cos 2x +sin x =1-sin 2x +sin x=-(sin x -12)2+54∵|x |≤π4,∴-22≤sin x ≤22.∴当sin x =-22时,f (x )min =1-22. 11.解 (1)由2k π+π2≤x 2≤2k π+32π,k ∈Z ,得4k π+π≤x ≤4k π+3π,k ∈Z .∴y =1-sin x2的增区间为[4k π+π,4k π+3π] (k ∈Z ).(2)由题意得cos2x >0且y =cos2x 递减.∴x 只须满足:2k π<2x <2k π+π2,k ∈Z .∴k π<x <k π+π4,k ∈Z .∴y =log 12(cos2x )的增区间为⎝⎛⎫k π,k π+π4,k ∈Z . 12.解 ∵0≤x ≤π2,∴-π3≤2x -x 3≤23π,∴-32≤sin ⎝⎛⎭⎫2x -π3≤1,易知a ≠0. 当a >0时,f (x )max =2a +b =1, f (x )min =-3a +b =-5.由⎩⎪⎨⎪⎧ 2a +b =1-3a +b =-5,解得⎩⎪⎨⎪⎧a =12-63b =-23+123. 当a <0时,f (x )max =-3a +b =1, f (x )min =2a +b =-5.由⎩⎪⎨⎪⎧ -3a +b =12a +b =-5,解得⎩⎪⎨⎪⎧a =-12+63b =19-123. 13.A [∵β∈⎝⎛⎭⎫π,32π, ∴π-β∈⎝⎛⎭⎫-π2,0,且sin(π-β)=sin β. ∵y =sin x 在x ∈⎝⎛⎭⎫-π2,0上单调递增, ∴sin α>sin β⇔sin α>sin(π-β) ⇔α>π-β⇔α+β>π.]14.B [要使函数f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最小值是-2,则应有T 4≤π3或34T ≤π4,即2π4ω≤π3或6πω≤π,解得ω≥32或ω≥6. ∴ω的最小值为32,故选B.]。
(完整版)正弦函数的图像及性质练习题正弦函数是数学中重要的三角函数之一。
它的图像呈现周期性变化的波形,具有一些特殊的性质。
以下是一些关于正弦函数图像及性质的练题,帮助加深对该函数的理解。
练题1画出正弦函数$f(x) = \sin(x)$在$x$轴上的一个完整周期的图像。
标明原点$(0,0)$和与$x$轴交点$(2\pi,0)$。
练题2正弦函数的图像在何种情况下与$x$轴相切?给出一个具体的例子。
练题3在一个完整周期内,正弦函数的最大值是多少?最小值是多少?它们出现在图像的什么位置?练题4对于正弦函数$f(x) = \sin(ax)$,$a$的取值会如何影响函数图像的周期和振幅?给出两个具体的例子。
练题5将正弦函数$f(x) = \sin(x)$的图像上所有点的横坐标的值增加$\pi/2$,得到新的函数图像$g(x)$。
$g(x)$与$f(x)$有什么关系?画出$g(x)$的图像。
练题6正弦函数的图像具有的对称性是什么?说明是关于哪个点对称,并给出一个具体的例子。
练题7对于一般的正弦函数$f(x) = a\sin(bx+c)+d$,$a$、$b$、$c$和$d$的取值会如何影响函数图像的振幅、周期、平移和垂直方向的偏移?给出一个具体的例子。
练题8正弦函数有无界范围吗?是否可以取到任意实数值?解释你的答案。
练题9正弦函数在实际问题中的应用有哪些?举出一个具体的例子,并分析为什么正弦函数适用于该问题。
以上是一些关于正弦函数图像及性质的练题,希望能够帮助你巩固对该函数的理解。
通过解答这些题目,你可以更好地掌握正弦函数的特点和应用。
请注意,这些题目只涉及正弦函数的基本性质和应用,更深入的研究还需要进一步的研究和探索。
第一章 三角函数 §1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象课时目标 1.了解正弦函数、余弦函数的图象.2.会用“五点法”画出正弦函数、余弦函数的图象.1.正弦曲线、余弦曲线2.“五点法”画图画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是_________________________; 画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是__________________________. 3.正、余弦曲线的联系依据诱导公式cos x =sin ⎝⎛⎭⎫x +π2,要得到y =cos x 的图象,只需把y =sin x 的图象向________平移π2个单位长度即可.知识点归纳:1.正、余弦曲线在研究正、余弦函数的性质中有着非常重要的应用,是运用数形结合思想解决三角函数问题的基础.2.五点法是画三角函数图象的基本方法,要熟练掌握,与五点法作图有关的问题是高考常考知识点之一.一、选择题1.函数y =sin x (x ∈R )图象的一条对称轴是( ) A .x 轴 B .y 轴C .直线y =xD .直线x =π22.函数y =cos x (x ∈R )的图象向右平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式为( )A .-sin xB .sin xC .-cos xD .cos x3.函数y =-sin x ,x ∈[-π2,3π2]的简图是( )4.在(0,2π)内使sin x >|cos x |的x 的取值范围是( ) A.⎝⎛⎭⎫π4,3π4 B.⎝⎛⎦⎤π4,π2∪⎝⎛⎦⎤5π4,3π2 C.⎝⎛⎭⎫π4,π2 D.⎝⎛⎭⎫5π4,7π4 5.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是( )A .4B .8C .2πD .4π 6.方程sin x =lg x 的解的个数是( )A .1B .2C .3D .4 题 号 1 2 3 4 5 6 答 案 7.函数y =sin x ,x ∈R 的图象向右平移π2个单位后所得图象对应的函数解析式是__________.8.函数y =2cos x +1的定义域是________________. 9.方程x 2-cos x =0的实数解的个数是________.10.设0≤x ≤2π,且|cos x -sin x |=sin x -cos x ,则x 的取值范围为________. 三、解答题11.利用“五点法”作出下列函数的简图: (1)y =1-sin x (0≤x ≤2π); (2)y =-1-cos x (0≤x ≤2π).12.分别作出下列函数的图象.(1)y=|sin x|,x∈R;(2)y=sin|x|,x∈R.能力提升13.求函数f(x)=lg sin x+16-x2的定义域.14.函数f(x)=sin x+2|sin x|,x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点,求k 的取值范围.§1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象答案知识梳理2.(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫32π,-1,(2π,0) (0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫32π,0,(2π,1) 3.左 作业设计1.D 2.B 3.D 4.A [∵sin x >|cos x |,∴sin x >0,∴x ∈(0,π),在同一坐标系中画出y =sin x ,x ∈(0,π)与y =|cos x |,x ∈(0,π)的图象,观察图象易得x ∈⎝⎛⎭⎫π4,34π.] 5.D [作出函数y =2cos x ,x ∈[0,2π]的图象,函数y =2cos x ,x ∈[0,2π]的图象与直线y =2围成的平面图形,如图所示的阴影部分.利用图象的对称性可知该平面图形的面积等于矩形OABC 的面积,又∵|OA |=2,|OC |=2π, ∴S 平面图形=S 矩形OABC =2×2π=4π.]6.C [用五点法画出函数y =sin x ,x ∈[0,2π]的图象,再依次向左、右连续平移2π个单位,得到y =sin x 的图象.描出点⎝⎛⎭⎫110,-1,(1,0),(10,1)并用光滑曲线连接得到y =lg x 的图象,如图所示.由图象可知方程sin x =lg x 的解有3个.]7.y =-cos x解析 y =sin x 2π−−−−−−→向右平移个单位y =sin ⎝⎛⎭⎫x -π2 ∵sin ⎝⎛⎭⎫x -π2=-sin ⎝⎛⎭⎫π2-x =-cos x ,∴y =-cos x . 8.⎣⎡⎦⎤2k π-23π,2k π+23π,k ∈Z 解析 2cos x +1≥0,cos x ≥-12,结合图象知x ∈⎣⎡⎦⎤2k π-23π,2k π+2π3,k ∈Z . 9.2解析 作函数y =cos x 与y =x 2的图象,如图所示, 由图象,可知原方程有两个实数解.10.⎣⎡⎦⎤π4,5π4解析 由题意知sin x -cos x ≥0,即cos x ≤sin x ,在同一坐标系画出y =sin x ,x ∈[0,2π]与 y =cos x ,x ∈[0,2π]的图象,如图所示:观察图象知x ∈[π4,54π].11.解 利用“五点法”作图 (1)列表:X 0 π2 π 3π2 2π sin x 0 1 0 -1 0 1-sin x1121描点作图,如图所示.(2)列表:X0 π2 π 3π2 2π cos x 1 0 -1 0 1 -1-cos x-2-1-1-2描点作图,如图所示.12.解 (1)y =|sin x |=⎩⎪⎨⎪⎧sin x (2k π≤x ≤2k π+π)-sin x (2k π+π<x ≤2k π+2π) (k ∈Z ).其图象如图所示,(2)y =sin|x |=⎩⎪⎨⎪⎧sin x (x ≥0)-sin x (x <0),其图象如图所示,13.解 由题意,x 满足不等式组⎩⎪⎨⎪⎧ sin x >016-x 2≥0,即⎩⎪⎨⎪⎧-4≤x ≤4sin x >0,作出y =sin x 的图象,如图所示.结合图象可得:x ∈[-4,-π)∪(0,π).14.解 f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x x ∈[0,π],-sin x x ∈(π,2π].图象如图,若使f (x )的图象与直线y =k 有且仅有两个不同的交点,根据上图可得k 的取值范围是(1,3).。
6.1 正弦函数和余弦函数的图像与性质一、复习引入1 、复习( 1 )函数的观点在某个变化过程中有两个变量x 、y ,若对于x 在某个实数会合 D 内的每一个确立的值,依据某个对应法例f, y 都有独一确立的实数值与它对应,则y 就是x 的函数,记作y f x ,x D 。
( 2 )三角函数线设随意角的极点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆订交于点P( x, y),过P 作x轴的垂线,垂足为M;过点A(1,0) 作单位圆的切线,设它与角的终边(当在第一、四象限角时)或其反向延伸线(当为第二、三象限角时)订交于T .规定:当OM与x 轴同向时为正当,当OM与 x 轴反向时为负值;当MP与y 轴同向时为正当,当MP 与y 轴反向时为负值;当 AT与y 轴同向时为正当,当AT 与y 轴反向时为负值;依据上边规定,则OM x , MP y ,由正弦、余弦、正切三角比的定义有:sin y yMP ;ry1cos x xOM ;rx1tany MP ATAT ;x OM OA这几条与单位圆相关的有向线段MP ,OM , AT 叫做角的正弦线、余弦线、正切线。
二、讲解新课【问题驱动 1 】——联合我们刚学过的三角比,就以正弦(或余弦 )为例,对于每一个给定的角和它的正弦值(或余弦值 )之间能否也存在一种函数关系?若存在,请对这类函数关系下一个定义;若不存在,请说明原因.1、正弦函数、余弦函数的定义( 1)正弦函数:y sin x, x R ;( 2)余弦函数: y cos x, x R【问题驱动 2 】——怎样作出正弦函数y sin x, x R 、余弦函数 y cos x, x R 的函数图象?2 、正弦函数y sin x, x R 的图像( 1) y sin x, x0,2的图像【方案 1 】——几何描点法步骤 1 :平分、作正弦线——将单位圆平分,作三角函数线(正弦线)得三角函数值;步骤 2 :描点——平移定点,即描点x,sin x ;步骤 3 :连线——用圆滑的曲线按序连接各个点小结:几何描点法作图精准,但过程比较繁。
正弦函数和余弦函数和的图象与性质:R R函数()()sin +B 0,0y x ωϕω=A +A >>的性质:①振幅:A ;②周期:2πωT =;③相位:x ωϕ+;④初相:ϕ.()max min 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<.随堂练习1、函数522y sin x π⎛⎫=-⎪⎝⎭是( ) A 、奇函数 B 、偶函数 C 、非奇非偶函数 D 、以上都不对2、函数y =sin (x +2π)(x ∈[-2π,2π])是( )A.增函数B.减函数C.偶函数D.奇函数3、在(0,2π)内,使sinx >cosx 成立的x 取值范围为( ) A.(4π,2π)∪(π,45π) B.(4π,π) C.(4π,45π)D.(4π,π)∪(45π,23π)4、在[0,2π]上满足sin x ≥21的x 的取值范围是( )A .[0,6π] B .[6π,65π] C .[6π,32π]D .[65π,π] 5、下列函数中,周期为π,且在[,]42ππ上为减函数的是( ) (A )sin(2)2y x π=+(B )cos(2)2y x π=+ (C )sin()2y x π=+ (D )cos()2y x π=+ 6、已知函数()sin (0,)2y x πωϕωϕ=+><的部分图象如题(6)图所示,则( )A. ω=1 ϕ=6π B. ω=1 ϕ=- 6πC. ω=2 ϕ= 6πD. ω=2 ϕ= -6π7、已知函数f (x )=21cos 2x +23sin x cos x +1,x ∈R .(1)求f (x )的最小正周期(2)当函数f (x )取得最大值时,求自变量x 的集合;(3)求f (x )的单调区间。
(4)该函数的图象可由y =sinx (x ∈R )的图象经过怎样的平移和伸缩变换得到?课后作业1、在下列各区间中,函数y =sin (x +4π)的单调递增区间是( )A.[2π,π] B.[0,4π] C.[-π,0] D.[4π,2π]2、函数y =cos 2x -3cosx +2的最小值为 3、24y sin(x )π=-的单增区间为________ ____.4、当-2π≤x ≤2π时,函数f (x )=3sinx +cosx 值域为______ ____5、函数f (x)=2sinxcosx 最小正周期为6.若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2ϕπ<)的最小正周期是π,且(0)f =,则7.要得到sin 2x y =的图象,只需将函数cos 24x y π⎛⎫=- ⎪⎝⎭的图象。
正弦函数、余弦函数的图象知识点正弦函数、余弦函数的图象五点法五点法思考为什么把正弦、余弦曲线向左、右平移2π的整数倍个单位长度后图象形状不变?答案由诱导公式一知sin(x+2kπ)=sin x,cos(x+2kπ)=cos x,k∈Z可得.【基础演练】【基础演练】1.函数y=sin(-x),x∈[0,2π]的简图是()解析y=sin(-x)=-sin x,y=-sin x与y=sin x的图象关于x轴对称,故选B.2.用“五点法”画函数y=1+12sin x的图象时,首先应描出五点的横坐标是() A.0,π4,π2,3π4,π B.0,π2,π,3π2,2πC.0,π,2π,3π,4π D.0,π6,π3,π2,2π3解析 所描出的五点的横坐标与函数y =sin x 的五点的横坐标相同,即0,π2,π,3π2,2π,故选B.3.在同一平面直角坐标系内,函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象( ) A .重合 B .形状相同,位置不同 C .关于y 轴对称 D .形状不同,位置不同答案 B解析 根据正弦曲线的作法可知函数y =sin x ,x ∈[0,2π]与y =sin x ,x ∈[2π,4π]的图象只是位置不同,形状相同. 4.在[0,2π]内,不等式sin x <-32的解集是( ) A .(0,π) B.⎝⎛⎭⎫π3,4π3 C.⎝⎛⎭⎫4π3,5π3 D.⎝⎛⎭⎫5π3,2π 解析 画出y =sin x ,x ∈[0,2π]的草图如下.当sin x =-32时,x =4π3或x =5π3, 可知不等式sin x <-32在[0,2π]上的解集是⎝⎛⎭⎫4π3,5π3.故选C. 5.函数y =cos x +4,x ∈[0,2π]的图象与直线y =4的交点的坐标为________.解析 由⎩⎪⎨⎪⎧y =cos x +4,y =4得cos x =0,当x ∈[0,2π]时,x =π2或3π2,∴交点坐标为⎝⎛⎭⎫π2,4,⎝⎛⎭⎫3π2,4.【典型例题】考点一:正弦函数、余弦函数图象的初步认识 例1 (1)下列叙述正确的个数为( )①y =sin x ,x ∈[0,2π]的图象关于点P (π,0)成中心对称; ②y =cos x ,x ∈[0,2π]的图象关于直线x =π成轴对称;③正弦、余弦函数的图象不超过直线y =1和y =-1所夹的范围. A .0 B .1 C .2 D .3解析 分别画出函数y =sin x ,x ∈[0,2π]和y =cos x ,x ∈[0,2π]的图象,由图象(略)观察可知①②③均正确.答案 D(2)函数y =sin |x |的图象是( )答案 B解析 y =sin |x |=⎩⎪⎨⎪⎧sin x ,x ≥0,-sin x ,x <0,结合选项可知选B.反思感悟 解决正弦、余弦函数图象的注意点对于正弦、余弦函数的图象问题,要画出正确的正弦曲线、余弦曲线,掌握两者的形状相同,只是在坐标系中的位置不同,可以通过相互平移得到.跟踪训练1 下列关于正弦函数、余弦函数的图象的描述,不正确的是( ) A .都可由[0,2π]内的图象向上、向下无限延展得到 B .都是对称图形 C .都与x 轴有无数个交点D .y =sin(-x )的图象与y =sin x 的图象关于x 轴对称 答案 A解析 由正弦、余弦函数图象知,B ,C ,D 正确.考点二:用“五点法”作三角函数的图象 例2 用“五点法”作出下列函数的简图: (1)y =sin x -1,x ∈[0,2π]; (2)y =-2cos x +3,x ∈[0,2π]. 解 (1)列表:描点并将它们用光滑的曲线连接起来,如图.(2)列表:描点、连线得出函数y=-2cos x+3,x∈[0,2π]的图象.反思感悟作形如y=a sin x+b(或y=a cos x+b),x∈[0,2π]的图象的三个步骤跟踪训练2利用“五点法”作出函数y=2+cos x(0≤x≤2π)的简图.解列表:描点并将它们用光滑的曲线连接起来,如图.考点三:正弦函数、余弦函数图象的应用 例3 不等式2sin x -1≥0,x ∈[0,2π]解集为( ) A.⎣⎡⎦⎤0,π6 B.⎣⎡⎦⎤0,π4 C.⎣⎡⎦⎤π6,π D.⎣⎡⎦⎤π6,5π6答案 D解析 因为2sin x -1≥0,所以sin x ≥12.在同一直角坐标系下,作函数y =sin x ,x ∈[0,2π]以及直线y =12的图象.由函数的图象知,sin π6=sin 5π6=12.所以根据图象可知,sin x ≥12的解集为⎣⎡⎦⎤π6,5π6. 延伸探究1.在本例中把“x ∈[0,2π]”改为“x ∈R ”,求不等式2sin x -1≥0的解集. 解 在x ∈[0,2π]上的解集为⎣⎡⎦⎤π6,5π6.所以x ∈R 时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪π6+2k π≤x ≤5π6+2k π,k ∈Z . 2.试求关于x 的不等式12<sin x ≤32.解 作出正弦函数y =sin x 在[0,2π]上的图象,作出直线y =12和y =32,如图所示.由图可知,在[0,2π]上当π6<x ≤π3或2π3≤x <5π6时,不等式12<sin x ≤32成立,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪π6+2k π<x ≤π3+2k π或2π3+2k π≤x <5π6+2k π,k ∈Z . 反思感悟 利用三角函数图象解三角不等式sin x >a (cos x >a )的步骤 (1)作出相应的正弦函数或余弦函数在[0,2π]上的图象. (2)确定在[0,2π]上sin x =a (cos x =a )的x 值. (3)写出不等式在区间[0,2π]上的解集. (4)根据公式一写出定义域内的解集.跟踪训练3 求函数y =1-2cos x 的定义域. 解 依题意有1-2cos x ≥0,即cos x ≤12.作出余弦函数y =cos x ,x ∈[0,2π]以及直线y =12的图象,如图所示,由图象可以得到满足条件的x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪π3+2k π≤x ≤5π3+2k π,k ∈Z .根据函数图象求范围典例 函数f (x )=sin x +2|sin x |,x ∈[0,2π]的图象与直线y =k 有且仅有两个不同的交点,则k 的取值范围是________. 答案 (1,3)解析 f (x )=⎩⎪⎨⎪⎧3sin x ,0≤x ≤π,-sin x ,π<x ≤2π.图象如图所示.结合图象可知1<k <3.[素养提升] 关于方程根的个数问题,往往运用数形结合的方法构造函数,转化为函数图象交点的个数问题来解决,体现了直观想象的核心素养.1.(多选)用五点法画y =3sin x ,x ∈[0,2π]的图象时,下列哪个点不是关键点( ) A.⎝⎛⎭⎫π6,32 B.⎝⎛⎭⎫π2,3 C .(π,0) D .(2π,3) 答案 AD解析 五个关键点的横坐标依次是0,π2,π,3π2,2π.代入计算得B ,C 是关键点.2.已知函数f (x )=sin ⎝⎛⎭⎫x +π2,g (x )=cos ⎝⎛⎭⎫x -π2,则f (x )的图象( ) A .与g (x )的图象相同 B .与g (x )的图象关于y 轴对称C .向左平移π2个单位长度,得g (x )的图象D .向右平移π2个单位长度,得g (x )的图象答案 D解析 f (x )=sin ⎝⎛⎭⎫x +π2,g (x )=cos ⎝⎛⎭⎫x -π2=cos ⎝⎛⎭⎫π2-x =sin x , f (x )的图象向右平移π2个单位长度得到g (x )的图象.3.在[0,2π]上,函数y =2sin x -2的定义域是( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎦⎤π4,3π4 C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤3π4,π解析 依题意得2sin x -2≥0,即sin x ≥22.作出y =sin x 在[0,2π]上的图象及直线y =22,如图所示.由图象可知,满足sin x ≥22的x 的取值范围是⎣⎡⎦⎤π4,3π4,故选B. 4.函数y =1+sin x ,x ∈[0,2π]的图象与直线y =12交点的个数是( )A .0B .1C .2D .3 答案 C解析 由函数y =1+sin x ,x ∈[0,2π]的图象(如图所示),可知其与直线y =12有2个交点.5.函数f (x )=sin x -1,x ∈[0,2π]的零点为________. 答案 π2解析 令f (x )=0,∴sin x =1,∴又x ∈[0,2π],∴x =π2.6.已知函数f (x )=2cos x +1,若f (x )的图象过点⎝⎛⎭⎫π2,m ,则m =________;若f (x )<0,则x 的取值集合为________.答案 1 ⎩⎨⎧⎭⎬⎫x ⎪⎪2π3+2k π<x <4π3+2k π,k ∈Z 解析 当x =π2时,f (x )=2cos π2+1=1,∴m =1.f (x )<0,即cos x <-12,作出y =cos x 在x ∈[0,2π]上的图象,如图所示.由图知x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪2π3+2k π<x <4π3+2k π,k ∈Z . 7.根据y =cos x 的图象解不等式:-32≤cos x ≤12,x ∈[0,2π]. 解 函数y =cos x ,x ∈[0,2π]的图象如图所示:根据图象可得不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪π3≤x ≤5π6或7π6≤x ≤5π3.8.(多选)函数y =sin x -1,x ∈[0,2π]与y =a 有一个交点,则a 的值为( ) A .-1 B .0 C .1 D .-2 答案 BD解析 画出y =sin x -1的图象.如图.依题意a =0或a =-2.9.函数y =cos x +|cos x |,x ∈[0,2π]的大致图象为( )答案 D解析 由题意得y =⎩⎨⎧2cos x ,0≤x ≤π2或3π2≤x ≤2π,0,π2<x <3π2.10.函数f (x )=lg cos x +25-x 2的定义域为________________. 答案 ⎣⎡⎭⎫-5,-3π2∪⎝⎛⎭⎫-π2,π2∪⎝⎛⎦⎤3π2,5 解析 由题意,得x 满足不等式组⎩⎪⎨⎪⎧ cos x >0,25-x 2≥0,即⎩⎪⎨⎪⎧cos x >0,-5≤x ≤5,作出y =cos x 的图象,如图所示.结合图象可得x ∈⎣⎡⎭⎫-5,-3π2∪⎝⎛⎭⎫-π2,π2∪⎝⎛⎦⎤3π2,5.11.函数y =2cos x ,x ∈[0,2π]的图象和直线y =2围成的一个封闭的平面图形的面积是________. 答案 4π解析 如图所示,将余弦函数的图象在x 轴下方的部分补到x 轴的上方,可得一个矩形,其面积为2π×2=4π.12.若方程sin x =1-a 2在x ∈⎣⎡⎦⎤π3,π上有两个实数根,求a 的取值范围. 解 在同一直角坐标系中作出y =sin x ,x ∈⎣⎡⎦⎤π3,π的图象,y =1-a2的图象,由图象可知,当32≤1-a2<1,即当-1<a ≤1-3时,y =sin x ,x ∈⎣⎡⎦⎤π3,π的图象与y =1-a 2的图象有两个交点,即方程sin x =1-a 2在x ∈⎣⎡⎦⎤π3,π上有两个实数根.。
1-4-1正弦函数、余弦函数的图象一、选择题 1.对于正弦函数y =sin x 的图象,下列说法错误的是( )A .向左右无限伸展B .与y =cos x 的图象形状相同,只是位置不同C .与x 轴有无数个交点D .关于y 轴对称 2.从函数y =cos x ,x ∈[0,2π)的图象来看,对应于cos x =12的x 有( )A .1个值B .2个值C .3个值D .4个值 3.函数y =1-sin x ,x ∈[0,2π]的大致图象是()4.下列选项中是函数y =-cos x ,x ∈[π2,5π2]的图象上最高点的坐标的是( )A .(π2,0)B .(π,1)C .(2π,1)D .(5π2,1)5.函数y =cos x +|cos x |,x ∈[0,2π]的大致图象为( )6.如图所示,函数y =cos x |tan x |(0≤x <3π2且x ≠π2)的图象是()7.如图,曲线对应的函数是()A .y =|sin x|B .y =sin|x |C .y =-sin|x |D .y =-|sin x |8.下列函数的图象与图中曲线一致的是()A .y =|sin x |B .y =|sin x |+12C .y =|sin2x |D .y =|sin2x |+129.在(0,2π)内,使sin x ≥|cos x |成立的x 的取值范围为( )A .[π4,3π4]B .[π4,5π4]C .[5π4,7π4]D .[π4,π2]10.方程sin x =x10的根的个数是( )A .7B .8C .6D .5 二、填空题11.已知函数f (x )=3+2cos x 的图象经过点(π3,b ),则b =________.12.方程sin x =lg x 的解有________个. 13.sin x >0,x ∈[0,2π]的解集是________.14.函数f (x )=⎩⎪⎨⎪⎧sin x ,x ≥0,x +2,x <0,则不等式f (x )>12的解集是______.三、解答题15.用“五点法”作出函数y =2-sin x ,x ∈[0,2π]的图象.16.利用“五点法”作出y =sin(x -π2),x ∈[π2,5π2]的图象.17.根据函数图象解不等式sin x >cos x ,x ∈[0,2π]. 18.画出正弦函数y =sin x ,(x ∈R )的简图,并根据图象写出-12≤y ≤32时x 的集合.1-4-2-1周期函数一、选择题1.定义在R 上的函数f (x ),存在无数个实数x 满足f (x +2)=f (x ),则f (x )( ) A .是周期为1的周期函数 B .是周期为2的周期函数 C .是周期为4的周期函数 D .不一定是周期函数 2.函数y =sin 24x π⎛⎫-+ ⎪⎝⎭的最小正周期为( ) A .π B .2π C .4π D.π23.下列函数中,周期为π2的是( )A .y =sin x2 B .y =sin2xC .y =cos x4 D .y =cos4x4.下列函数中,不是周期函数的是( ) A .y =|cos x | B .y =cos|x | C .y =|sin x | D .y =sin|x |5.函数y =2cos 3x πω⎛⎫- ⎪⎝⎭的最小正周期是4π,则ω等于( )A .2 B.12 C .±2 D .±126.函数y =7sin 35x π⎛⎫- ⎪⎝⎭的周期是( )A .2πB .πC .π3 D.π67.函数y =cos(k 4x +π3)(k >0)的最小正周期不大于2,则正整数k 的最小值应是( )A .10B .11C .12D .13 8.定义在R 上的周期函数f (x )的一个周期为5,则f (2011)=( )A .f (1)B .f (2)C .f (3)D .f (4) 9.定义在R 上周期为4的函数,则f (2)=( ) A .1 B .-1 C .0 D .2 10.定义在R 上的函数f (x )既是偶函数,又是周期函数,若f (x )的最小正周期为π,且当x ∈0,2π⎡⎤⎢⎥⎣⎦时,f (x )=sin x ,则f 53π⎛⎫⎪⎝⎭等于( ) A .-12 B .1 C .-32 D.32二、填空题11.若函数y =4sin ωx (ω>0)的最小正周期是π,则ω=________. 12.已知函数f (x )是定义在R 上周期为6的奇函数,且f (-1)=-1,则f (5)=________.13.若函数f (x )=2cos(ωx +π3)(ω>0)的最小正周期为T ,且T ∈(1,3),则正整数ω的最大值是________.14.设函数f (x )=3sin(ωx +π6),ω>0,x ∈(-∞,+∞),且以π2为最小正周期.若412f απ⎛⎫+ ⎪⎝⎭=95,则sin α的值为________. 三、解答题15.求下列函数的周期.(1)f (x )=sin 43x π⎛⎫+⎪⎝⎭(x ∈R ); (2)y =|sin x |(x ∈R ).16.函数f (x )满足f (x +2)=-1f (x ),求证:f (x )是周期函数,并求出它的一个周期. 17.已知函数y =12sin x +12|sin x |.(1)画出函数的简图.(2)这个函数是周期函数吗?如果是,求出它的最小正周期. 18.已知函数y =5cos ()2136k x ππ+⎛⎫-⎪⎝⎭(其中k ∈N ),对任意实数a ,在区间[a ,a +3]上要使函数值54出现的次数不少于4次且不多于8次,求k 值.1-4-2-2正、余弦函数的性质一、选择题1.有下列三个函数:①y =x 3+1;②y =sin3x ;③y =x +2x,其中奇函数的个数是( )A .0B .1C .2D .3 2.使cos x =1-m 有意义的m 的取值范围为( )A .m ≥0B .0≤m ≤2C .-1<m <1D .m <-1或m >1 3.函数y =cos2x 在下列哪个区间上是减函数( ) A .[-π4,π4] B .[π4,3π4]C .[0,π2]D .[π2,π]4.y =2sin x 2的值域是( )A .[-2,2]B .[0,2]C .[-2,0]D .R 5.函数y =sin x2+cos x是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数6.已知a ∈R ,函数f (x )=sin x -|a |,x ∈R 为奇函数,则a 等于( )A .0B .1C .-1D .±1 7.下列函数中,周期为π,且在[π4,π2]上为减函数的是( )A .y =sin(2x +π2)B .y =cos (2x +π2)C .y =sin(x +π2)D .y =cos(x +π2)8.已知A ={x |y =sin x },B ={y |y =sin x },则A ∩B等于( )A .{y =sin x }B .{x |-1≤x ≤1}C .{x |x =2π}D .R9.函数y (x )=-cos x ln x 2的部分图象大致是图中的()10.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积为( )A .4B .8C .2πD .4π 二、填空题11.比较大小:sin 3π5______cos π5.12.函数y =sin(x -π6),x ∈[0,π]的值域为________.13.函数y =cos x 在区间[-π,a ]上为增函数,则a 的范围是________. 14.函数y =3sin 26x π⎛⎫+ ⎪⎝⎭的单调递减区间是_____. 三、解答题15.求函数y =sin x ,x ∈,4ππ⎡⎤⎢⎥⎣⎦的最大值和最小值.16.求函数y =13cos 24x π⎛⎫- ⎪⎝⎭+1的最大值,及此时自变量x 的取值集合. 17.已知函数f (x )=log 12|sin x |.(1)求其定义域和值域; (2)判断其奇偶性; (3)求其周期; (4)写出单调区间.18.已知ω是正数,函数f (x )=2sin ωx 在区间 [-π3,π4]上是增函数,求ω的取值范围.1-4-3正切函数的性质与图象一、选择题1.下列叙述正确的是( )A .函数y =cos x 在(0,π)上是增函数B .函数y =tan x 在(0,π)上是减函数C .函数y =cos x 在(0,π)上是减函数D .函数y =sin x 在(0,π)上是增函数 2.函数y =3tan 24x π⎛⎫+⎪⎝⎭的定义域是( ) A.{|,}2x x k k ππ≠+∈ B.3{|,}28k x x k ππ≠-∈ C.{|,}28k x x k ππ≠+∈ D.{|,}2k x x k π=≠∈ 3.函数y =tan x +1tan x是( ) A .奇函数 B .偶函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数 4.下列直线中,与函数y =tan (2)4x π+的图象不相交的是( )A .x =π2B .y =π2C .x =π8D .y =π85.下列不等式中,正确的是( )A .tan 4π7>tan 3π7B .tan 2π5<tan 3π5C .tan 13()7π-<tan 15()8π- D .tan 13()4π->tan 12()5π- 6.当-π2<x <π2时,函数y =tan|x |的图象( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .不是对称图形7.在区间(-3π2,3π2)范围内,函数y =tan x 与函数y =sin x 的图象交点的个数为( )A .2B .3C .4D .5 8.函数y =tan(sin x )的值域是( )A .[-π4,π4]B .[-22,22]C .[-tan1,tan1]D .[-1,1]9.已知函数y =tan ωx 在,22ππ⎛⎫-⎪⎝⎭内是减函数,则( )A .0<ω≤1B .-1≤ω<0C .ω≥1D .ω≤-1 10.函数f (x )=tan 23x π⎛⎫-⎪⎝⎭在一个周期内的图象是二、填空题11.函数y =tan x -3的定义域是________. 12.函数y =-2tan 34x π⎛⎫+⎪⎝⎭的单调递减区间是 .13.三个数cos10°,tan58°,sin168°的大小关系是 . 14.若tan 26x π⎛⎫-⎪⎝⎭≤1,则x 的取值范围是____.三、解答题15.求下列函数的单调区间:(1)y =tan 4x π⎛⎫- ⎪⎝⎭; (2)y =13tan2x +1; (3)y =3tan 64x π⎛⎫- ⎪⎝⎭16.求函数2tan 10tan 1,,43y x x x ππ⎡⎤=-+-∈⎢⎥⎣⎦的值域.17.已知函数f (x )=tan ωx (ω>0)的图象的相邻两支截直线y =π4所得线段长为π4,求f (π4)的值.18.已知函数f (x )=3tan(12x -π3).(1)求f (x )的定义域、值域;(2)讨论f (x )的周期性,奇偶性和单调性.1-4-1正弦函数、余弦函数的图象一、选择题1.D 2.B 3.B 4.B 5.D[析]32cos ,[0,][,2]22cos cos 30,[,]22x x y x x x πππππ⎧∈⎪⎪=+=⎨⎪∈⎪⎩ ,6.C [析]3sin ,[0,)[,)220,(,)2x x y x πππππ⎧∈⎪⎪=⎨⎪∈⎪⎩7.C 8.B 9.A [析] 在同一坐标系中画出函数sin y x =,x ∈(0,2π)与函数y =|cos x |,x ∈(0,2π)的图象,如图所示,则当sin x ≥|cos x |时,π4<x <3π4.10.A [析] 画出函数y =sin x ,y =x10的图象如图.两图象的交点个数为7,故方程sin x =x10的根有7个.二、填空题11.4 [析] b =f (π3)=3+2cos π3=4. 12.313.(0,π) [析] 如图所示是y =sin x ,x ∈[0,2π]的图象,由图可知满足题意的解集是(0,π). 14.350,22,266x x or k x k k ππππ⎧⎫-<<+<<+∈⎨⎬⎩⎭[解析] 在同一平面直角坐标系中画出函数f (x )和函数y =12的图象,如图所示,当f (x )>12时,函数f (x )的图象位于函数y =12的图象上方,此时有-32<x <0或π6+2k π<x <5π6+2k π(k∈N ).三、解答题15.略 16.略17.[解析] 在同一坐标系中画出函数y =sin x 和y =cos x 在x ∈[0,2π]上的图象,如图所示,可知,当π4<x <5π4时,sin x >cos x ,即不等式的解集是(π4,5π4).18.[解]过(0,-12)、(0,32)点分别作x 轴的平行线,从图象可看出它们分别与正弦曲线交于(7π6+2k π,-12),k ∈Z ,(π6+2k π,-12),k ∈Z 点和(π3+2k π,32),k ∈Z ,(2π3+2k π,32),k ∈Z 点,那么曲线上夹在对应两点之间的点的横坐标的集合即为所求,即当-12≤y ≤32时x 的集合为:{x |-π6+2k π≤x ≤π3+2k π,k ∈Z }∪{x |2π3+2k π≤x ≤7π6+2k π,k ∈Z }.1-4-2-1周期函数一、选择题1.D 2.C [解析] T =2π⎪⎪⎪⎪-12=4π. 3.D [解析] T =2π4=π24.D 5.D [解析] 4π=2π|ω|,∴ω=±12. 6.C [解析] T =12·2π3=π3.7.D [解析] T =2πk 4=8πk ≤2 ∴k ≥4π又k ∈N *∴k 最小为13,故选D8.A [解析] f (2011)=f (402×5+1)=f (1). 9.C [解析] ∵f (x )是奇函数,∴f (-2)=-f (2)又f (x )是4为周期的函数,∴f (-2)=f (-2+4)=f (2).∴f (2)=-f (2)∴f (2)=0,故选C.10.D [解析] f ⎝⎛⎭⎫5π3=f ⎝⎛⎭⎫5π3-π=f ⎝⎛⎭⎫2π3=f ⎝⎛⎭⎫23π-π=f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3=sin π3=32. 二、填空题11.2 12.-1 13.6 [解析] T =2πω,又1<T <3,∴1<2πω<3. ∴12π<1ω<32π.∴2π3<ω<2π.则正整数ω的最大值为6.14.±45 [解析] ∵f (x )的最小正周期为π2,ω>0,∴ω=2ππ2=4.∴f (x )=3sin ⎝⎛⎭⎫4x +π6.由f ⎝⎛⎭⎫α4+π12=3sin ⎝⎛⎭⎫α+π3+π6=3cos α=95,∴cos α=35.∴sin α=±1-cos 2α=±45.三、解答题 15.[分析] 解答本题(1)可结合周期函数的定义求解;(2)可通过画函数图象求周期.[解析] (1)∵f (x )=sin ⎝⎛⎭⎫14x +π3,∴f (x +8π)=sin ⎣⎡⎦⎤14(x +8π)+π3 =sin ⎝⎛⎭⎫14x +π3+2π =sin ⎝⎛⎭⎫14x +π3=f (x ).∴f (x )=sin ⎝⎛⎭⎫14x +π3的周期为8π. (2)函数y =|sinx |的图象如图所示.由图象知T =π.[点评] 求三角函数的周期,通常有三种方法.(1)定义法.根据函数周期的定义求函数的周期.如本例(1).(2)公式法.一般地,对于y =A sin(ωx +φ)或y =A cos(ωx +φ)(其中A ,ω,φ是常数且A ≠0,ω≠0)形式的函数,其周期为T ,则T =2π|ω|.本例(1)可用公式求解如下:T =2π14=8π.(3)图象法,即大致画出函数的图象观察.如本例(2).其中公式法是最常用而且简单的方法.16.[解析] ∵f (x +4)=f ((x +2)+2)=-1f (x +2)=f (x ),∴f (x )是周期函数,且4是它的一个周期.17.[解析] (1)y =12sin x +12|sin x |=⎩⎪⎨⎪⎧sin x ,x ∈[2k π,2k π+π](k ∈Z ),0,x ∈[2k π-π,2k π](k ∈Z ). 函数图象如图所示.(2)由图象知该函数是周期函数,其图象每隔2π重复一次,则函数的周期是2π.18.[解析] 由5cos(2k +13πx -π6)=54,得cos(2k +13πx -π6)=14.∵函数y =cos x 在每个周期内出现函数值为14的有两次,而区间[a ,a +3]长度为3,为了使长度为3的区间内出现函数值14不少于4次且不多于8次,必须使3不小于2个周期长度且不大于4个周期长度.即2×2π2k +13π≤3,且4×2π2k +13π≥3.∴32≤k ≤72.又k ∈N ,故k =2,3.1-4-2-2正、余弦函数的性质一、选择题 1.C [解析] 函数y =x 3+1不是奇函数也不是偶函数;函数y =sin3x 和y =x +2x是奇函数.2.B [解析] ∵-1≤cos x ≤-1,∴-1≤1-m ≤1.∴0≤m ≤2.3.C [解析] ∵y =cos2x ,∴2k π≤2x ≤2k π+π(k∈Z ),即k π≤x ≤k π+π2(k ∈Z ),亦即[k π,k π+π2](k∈Z )为y =cos2x 的单调递减区间.而C ,[0,π2]显然满足上述区间,故选C.[点评] 求形如y =A sin(ωx +φ)(其中A ≠0,ω>0)的函数的单调区间,可以通过解不等式的方法来解答,列不等式的原则是:①把“ωx +φ(ω>0)”视为一个“整体”(若ω<0,可利用三角函数的诱导公式化x 系数为正).②A >0(A <0)时,所列不等式的方向与y =sin x (x ∈R ),y =cos x (x ∈R )的单调区间对应的不等式的方向相同(反).4.A [解析] ∵x 2≥0,∴sin x 2∈[-1,1],∴y =2sin x 2∈[-2,2].5.A [解析] 定义域为R ,f (-x )=sin (-x )2+cos (-x )=-sin x2+cos x=-f (x ),则f (x )是奇函数.6.A [解析] 解法一:易知y =sin x 在R 上为奇函数,∴f (0)=0,∴a =0.解法二:∵f (x )为奇函数,∴f (-x )=-f (x ),即sin(-x )-|a |=-sin x +|a |,-sin x -|a |=-sin x +|a |.∴|a |=0,即a =0.7.A [解析] 选项A :y =sin(2x +π2)=cos2x ,周期为π,在[π4,π2]上为减函数;选项B :y =cos(2x+π2)=-sin2x ,周期为π,在[π4,π2]上为增函数;选项C :y =sin(x +π2)=cos x ,周期为2π;选项D :y =cos(x +π2)=-sin x ,周期为2π.故选A.8.B [解析] A =R ,B ={y |-1≤y ≤1},则A ∩B ={y |-1≤y ≤1}. 9.A [解析] 函数的定义域是(-∞,0)∪(0,+∞),f (-x )=-cos(-x )ln(-x )2=-cos x ln x 2=f (x ),则函数f (x )是偶函数,其图象关于y 轴对称,排除选项C 和D ;当x ∈(0,1)时,cos x >0,0<x 2<1,则ln x 2<0,此时f (x )>0,此时函数f (x )的图象位于x 轴的上方,排除选项B.10.D [解析] 如图所示.由图可知,S 1=S 2,S 3=S 4,因此函数y =2cos x (0≤x ≤2π)的图象与直线y =2所围成的图形面积即为矩形OABC 的面积.∵|OA |=2,|OC |=2π,∴S 矩形=2×2π=4π. 二、填空题11.> 12.[-12,1] 13.(-π,0] [解析]由y =cos x 在[-π,a ]上是增函数,则-π<a ≤0.14.⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ) [解析] 令π2+2k π≤2x +π6≤3π2+2k π,k ∈Z , 则k π+π6≤x ≤k π+2π3,k ∈Z . 三、解答题15.[解析] 函数y =sin x 在区间⎣⎡⎦⎤π4,π2上是增函数,在区间⎣⎡⎦⎤π2,π上是减函数,所以函数y =sin x在区间⎣⎡⎦⎤π4,π2上的最大值是sin π2=1,最小值是sin π4=22;函数y =sin x 在区间⎣⎡⎦⎤π2,π上的最大值是sin π2=1,最小值是sinπ=0. 所以函数y =sin x ,x ∈⎣⎡⎦⎤π4,π的最大值是1,最小值是0.16.[解析] ∵x ∈R ,∴-1≤cos ⎝⎛⎭⎫2x -π4≤1. ∴23≤13cos ⎝⎛⎭⎫2x -π4+1≤43. ∴函数y =13cos ⎝⎛⎭⎫2x -π4+1的最大值是43.此时2x -π4=2k π(k ∈Z ),∴x =k π+π8.即此时自变量x 的取值集合是 ⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+π8,k ∈Z .17.[解析] (1)由|sin x |>0得sin x ≠0,∴x ≠k π(k ∈Z ).即函数定义域为{x ∈R |x ≠k π,k ∈Z }.又0<|sin x |≤1,∴log 12|sin x |≥0.∴函数的值域为[0,+∞).(2)∵f (x )的定义域关于原点对称,且f (-x )=log 12|sin(-x )|=log 12|-sin x |=log 12|sin x |=f (x ).∴f (x )为偶函数.(3)函数f (x )是周期函数,∵f (x +π)=log 12|sin(x +π)|=log 12|-sin x |=log 12|sin x |=f (x ),∴f (x )的周期T =π.(4)∵y =log 12u 在(0,+∞)上是减函数,u =|sin x |在⎝⎛⎦⎤k π,k π+π2(k ∈Z )上是增函数, 在⎣⎡⎭⎫k π-π2,k π(k ∈Z )上是减函数. ∴f (x )在⎣⎡⎭⎫k π-π2,k π(k ∈Z )上是增函数, 在⎝⎛⎦⎤k π,k π+π2(k ∈Z )上是减函数. 即f (x )的单调增区间是⎣⎡⎭⎫k π-π2,k π(k ∈Z ), 单调减区间是⎝⎛⎦⎤k π,k π+π2(k ∈Z ). 18.[解析] 由2k π-π2≤ωx ≤2k π+π2(k ∈Z )得-π2ω+2k πω≤x ≤π2ω+2k πω(k ∈Z ). ∴f (x )的单调递增区间是⎣⎡⎦⎤-π2ω+2k πω,π2ω+2k πω(k ∈Z ). 据题意,⎣⎡⎦⎤-π3,π4 ⎣⎡⎦⎤-π2ω+2k πω,π2ω+2k πω(k ∈Z ).从而有⎩⎪⎨⎪⎧-π2ω≤-π3π2ω≥π4ω>0,解得0<ω≤32.故ω的取值范围是(0,32].1-4-3正切函数的性质与图象一、选择题1.C 2.C [解析] 要使函数有意义,则2x +π4≠k π+π2(k ∈Z ),则x ≠k 2π+π8(k ∈Z ). 3.A [解析]定义域是{|,}2x x k k ππ≠+∈{|,}x x k k π≠∈ ={|,}2k x x k π≠∈ .又f (-x )=tan(-x )+1tan (-x )=-1(tan )tan x x+=-f (x ),即函数y =tan x +1tan x是奇函数.4.C [解析] 由2x +π4=k π+π2得,x =k π2+π8 (k∈Z ),令k =0得,x =π8.5.D [解析] 433tan tan()tan 777πππ=-<; 322t a n t a n ()t a n 555πππ=-<, 1315t a n ()t a n ,t a n ()t a n ,7788ππππ-=-=1315t a n t a n t a n ()t a n (),7878ππππ>∴->- 13tan()tan(3)tan()tan4444πππππ-=--=-=-12222tan()tan(2)tan()tan 5555πππππ-=--=-=-又2tan tan 54ππ>,所以1213t a n ()t a n ()54ππ->-, 6.C 7.B 8.C 9.B [解析] 若ω使函数tan y x ω=在(,)22ππ-内是减函数,则有ω<0,并且周期T =π|ω|≥π2-()2π-=π.则-1≤ω<0.10.A[解析]3()tan()tan(),36363f ππππ=-=-=-则()f x 的图象过点3(,)33π-,排除选项C ,D ;2()tan()tan 00333f πππ=-==,则()f x 的图象过点2(,0)3π,排除选项B.故选A. 二、填空题11.⎩⎨⎧⎭⎬⎫x ⎪⎪π3+k π≤x <π2+k π,k ∈Z [解析] 要使函数有意义,自变量x 的取值应满足tan x -3≥0,即tan x ≥ 3.解得π3+k π≤x <π2+k π,k ∈Z .12.⎝⎛⎭⎫k π3-π4,k π3+π12(k ∈Z )[解析] 求此函数的递减区间,也就是求y =2tan ⎝⎛⎭⎫3x +π4的递增区间,由k π-π2<3x +π4<k π+π2,k ∈Z 得:k π3-π4<x <k π3+π12,∴减区间是⎝⎛⎭⎫k π3-π4,k π3+π12,k ∈Z . 13.sin168°<cos10°<tan58° [解析] ∵sin168°=sin12°<sin80°=cos10°<1=tan45°<tan58°,∴sin168°<cos10°<tan58°.14.⎝⎛⎭⎫-π6+k π2,5π24+k π2(k ∈Z ) [解析] 令z =2x -π6,在⎝⎛⎭⎫-π2,π2上满足tan z ≤1的z 的值是-π2<z ≤π4,在整个定义域上有-π2+k π<z ≤π4+k π,解不等式-π2+k π<2x -π6≤π4+k π,得-π6+k π2<x ≤5π24+k π2,k ∈Z .三、解答题15.(1)由k π-π2<x -π4<k π+π2得k π-π4<x <k π+3π4(k ∈Z ), 所以函数的单调递增区间是⎝⎛⎭⎫k π-π4,k π+3π4,k ∈Z .(2)由k π-π2<2x <k π+π2得k π2-π4<x <k π2+π4(k ∈Z ),所以函数的单调递增区间是⎝⎛⎭⎫k π2-π4,k π2+π4(k ∈Z ).(3)y =3tan ⎝⎛⎭⎫π6-x 4=-3tan ⎝⎛⎭⎫x 4-π6,由k π-π2<x4-π6<k π+π2得4k π-4π3<x <4k π+8π3,所以函数的单调递减区间是⎝⎛⎭⎫4k π-4π3,4k π+8π3(k ∈Z ). 16.[解析] 由x ∈⎣⎡⎦⎤π4,π3,得tan x ∈[]1,3, ∴y =-tan 2x +10tan x -1=-(tan x -5)2+24. 由于1≤tan x ≤3,∴8≤y ≤103-4, ∴函数的值域是[8,103-4].17.[解析] ∵ω>0,∴函数f (x )=tan ωx 的周期为πω,且在每个独立区间内都是单调函数,∴两交点之间的距离为πω=π4,∴ω=4,f (x )=tan4x ,∴f (π4)=tanπ=0.18.已知函数f (x )=3tan(12x -π3).(1)求f (x )的定义域、值域;(2)讨论f (x )的周期性,奇偶性和单调性.[解析] (1)由12x -π3≠π2+k π,k ∈Z ,解得x ≠5π3+2k π,k ∈Z .∴定义域为{x |x ≠5π3+2k π,k ∈Z },值域为R .(2)f (x )为周期函数,周期T =π12=2π.f (x )为非奇非偶函数.由-π2+k π<12x -π3<π2+k π,k ∈Z ,解得-π3+2k π<x <5π3+2k π,k ∈Z .∴函数的单调递增区间为(-π3+2k π,5π3+2k π)(k ∈Z ).。
正弦函数和余弦函数和的图象与性质:
sin y x =
cos y x =
图象
定义域 R R
值域
[]1,1-
[]1,1-
最值
当22
x k π
π=+
()k ∈Z 时,max 1y =;
当22
x k π
π=-
()k ∈Z 时,min 1y =-. 当()2x k k π=∈Z 时,max 1y =;
当2x k ππ=+()k ∈Z 时,min 1y =-.
周期性 2π
2π 奇偶性 奇函数 偶函数
单调性
在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数. 在[]()2,2k k k πππ-∈Z 上是增函数;在
[]2,2k k πππ+()k ∈Z 上是减函数. 对称性
对称中心()(),0k k π∈Z
对称轴()2
x k k π
π=+
∈Z 对称中心(),02
k k ππ⎛⎫+∈Z
⎪⎝
⎭
对称轴()x k k π=∈Z
函数()()sin +B 0,0y x ωϕω=A +A >>的性质:
①振幅:A ;②周期:2π
ω
T =
;③相位:x ωϕ+;④初相:ϕ.
()max min 12y y A =
-,()
max min 12y y B =+,()21122
x x x x T
=-<.
随堂练习
1、函数522y sin x π⎛⎫
=-
⎪⎝⎭
是( ) A 、奇函数 B 、偶函数 C 、非奇非偶函数 D 、以上都不对
2、函数y =sin (x +
2π
)(x ∈[-
2π
,2
π])是( )
A.增函数
B.减函数
C.偶函数
D.奇函数
3、在(0,2π)内,使sinx >cosx 成立的x 取值范围为( ) A.(
4
π,
2
π)∪(π,
45π) B.(4π,π) C.(4π,45π)D.(4π,π)∪(45π,2
3π) 函
数
性 质
4、在[0,2π]上满足sin x ≥2
1
的x 的取值范围是( ) A .[0,6π] B .[6π,65π] C .[6π,32π
] D .[6
5π,π]
5、下列函数中,周期为π,且在[,]42
ππ
上为减函数的是( )
(A )sin(2)2y x π
=+
(B )cos(2)2y x π=+ (C )sin()2y x π=+ (D )cos()2
y x π
=+ 6、已知函数()sin (0,)2
y x π
ωϕωϕ=+><的部分图象如题(6)图所示,则( )
A. ω=1 ϕ=
6π B. ω=1 ϕ=- 6π
C. ω=2 ϕ= 6π
D. ω=2 ϕ= -6
π
7、已知函数f (x )=2
1cos 2
x +23sin x cos x +1,x ∈R .
(1)求f (x )的最小正周期(2)当函数f (x )取得最大值时,求自变量x 的集合;(3)求f (x )的单调区间。
(4)该函数的图象可由y =sinx (x ∈R )的图象经过怎样的平移和伸缩变换得到?
课后作业
1、在下列各区间中,函数y =sin (x +
4
π
)的单调递增区间是( )
A.[
2
π,π] B.[0,
4
π] C.[-π,0] D.[
4
π,
2
π]
2、函数y =cos 2
x -3cosx +2的最小值为 3、24
y sin(
x )π
=-的单增区间为________ ____.
4、当-
2
π≤x ≤
2
π时,函数f (x )=3sinx +cosx 值域为______ ____
5、函数f (x)=2sinxcosx 最小正周期为
6.若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2
ϕπ
<)的最小正周期是π,且(0)3f =,则
7.要得到sin 2x y =的图象,只需将函数cos 24x y π⎛⎫
=- ⎪⎝⎭
的图象。