...-“对数的概念”一课的教学设计与感悟.
- 格式:pdf
- 大小:814.09 KB
- 文档页数:4
对数的概念说课稿尊敬的各位评委、老师:大家好!今天我说课的内容是“对数的概念”。
下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。
一、教材分析“对数的概念”是高中数学必修 1 中的重要内容,它是指数运算的逆运算,为后续学习对数函数奠定了基础。
对数的概念不仅在数学中有着广泛的应用,在物理学、化学、生物学等其他学科中也经常出现。
通过对数的学习,学生能够进一步理解数学中的运算关系,提高数学思维能力和解决问题的能力。
本节课的教材内容编排合理,先通过具体的实例引出对数的概念,然后介绍了对数的性质和运算,最后通过例题和练习巩固所学知识。
教材注重从实际问题出发,引导学生逐步抽象出数学概念,符合学生的认知规律。
二、学情分析学生在之前已经学习了指数函数和指数运算,对指数的概念和性质有了一定的了解,这为学习对数的概念提供了知识储备。
但对数的概念较为抽象,学生在理解上可能会存在一定的困难。
因此,在教学过程中,要通过具体的实例和直观的图形,帮助学生理解对数的概念,引导学生从指数运算的角度去思考对数运算。
三、教学目标1、知识与技能目标(1)理解对数的概念,掌握对数的基本性质。
(2)能够熟练进行对数式与指数式的相互转化。
(3)会用对数的定义解决简单的数学问题。
2、过程与方法目标(1)通过对数概念的学习,培养学生的抽象思维能力和逻辑推理能力。
(2)通过对数式与指数式的相互转化,让学生体会数学中的转化思想。
3、情感态度与价值观目标(1)让学生感受数学与实际生活的紧密联系,激发学生学习数学的兴趣。
(2)通过对数的学习,培养学生严谨的科学态度和勇于探索的精神。
四、教学重难点1、教学重点(1)对数的概念。
(2)对数式与指数式的相互转化。
2、教学难点(1)对数概念的理解。
(2)对数性质的推导和应用。
五、教法与学法1、教法(1)启发式教学法:通过创设问题情境,引导学生思考,激发学生的学习兴趣和主动性。
对数的概念 教学设计教学目标:1、知识与技能(1)理解对数的概念,能够进行指数与对数的互化。
(2)渗透应用意识,培养归纳推理能力和逻辑思维能力,提高数学发现能力。
2、过程与方法培养从概念出发,进一步研究其性质的意识与能力3、情感态度与价值观让学生探究、研究、体会、感受对数概念的形成与发展的过程。
教材分析:一方面对数既是一个重要的概念,又是一种重要的运算,而且它是与指数紧密相连的,它们是对同一关系从不同角度的刻画,另一方面对数与对数运算的学习为下一节研究对数函数及其性质做了知识与思想上的准备,起到了承上启下的重要作用.教学重点:对数的概念及指数式与对数式互化教学难点:对数概念的理解教学过程引入?x 3242,22,12210=====则若已知:x像这样:已知底数和幂的值,怎样求指数呢?这就是我们这节课要学习的对数问题。
新课讲授1. 定义:如果a(a >0,a ≠1)的b 次幂等于N ,即N a b= ,那么数b 叫作以a 为底N 的对数,记作 bN a =log ,其中a 叫作对数的底数,N 叫作真数, b N a =log 读作以a 为底N 的对数 。
b N N a a b =−−−−−→←=log 求指数,用对数例如:2.探究(1)零与负数没有对数(因为在指数式中 N> 0 )(2)1log ,01log ==a a a (因为对任意的a>0且,1≠a 都有01log ,10==a a 所以。
同样易知1log =a a )(3)对数恒等式:如果把 N a b = 中的 b 写成N a log , 则有N aN a =log 如:323log 2=(4) 底数的取值范围(0,1)⋃(1,+∞),真数的取值范围(0,+∞).3、两个特殊的对数(1)常用对数:通常将以10为底的对数叫做常用对数 为了简便将.lg log 10N N N 简记的常用对数 5.3lg 5.3log 5lg 5log 1010简记,简记例如,(2)自然对数:在科学技术中常用以无理数e =2.718281828…为底数 以e 为底数的对数叫做自然对数。
对数的概念教学反思一、教学目标反思本节课的主要目标是让学生理解对数的概念,掌握对数的基本性质,并能进行简单的对数运算。
在教学过程中,我尽可能地引导学生自主探究,通过实例和练习加深学生对对数概念的理解。
同时,我也注重培养学生的数学思维能力和解决问题的能力。
然而,在教学过程中,我发现有些学生对对数的概念理解不够深入,对数的运算也较为生疏。
这可能是因为我在教学过程中没有足够重视学生的反馈,没有及时调整教学策略。
二、教学内容反思在教学过程中,我主要讲解了对数的定义、对数的基本性质、对数的运算等知识点。
在讲解过程中,我尽可能地结合实例和练习,让学生更好地理解对数的概念和应用。
同时,我也注重引导学生自主探究,通过小组讨论等方式,让学生主动参与到课堂中来。
然而,在教学过程中,我发现有些学生对于对数的理解仍然存在困难。
这可能是因为我在讲解过程中没有足够详细地解释对数的本质含义和应用场景,导致学生无法真正掌握对数的概念。
三、教学方法反思在教学过程中,我主要采用了讲解、实例、练习和小组讨论相结合的教学方法。
通过讲解让学生了解对数的基本概念和性质;通过实例让学生更好地理解对数的应用;通过练习让学生掌握对数的运算技巧;通过小组讨论让学生自主探究对数的相关知识。
然而,在教学过程中,我发现有些学生对于讲解和小组讨论的教学方法不太适应。
这可能是因为我在教学过程中没有充分考虑到学生的个性差异和认知水平,导致教学方法不够多样化,无法满足所有学生的学习需求。
四、教学改进建议为了更好地满足学生的学习需求和提高教学质量,我建议在未来的教学中采取以下改进措施:1. 注重学生的反馈,及时调整教学策略,确保教学内容符合学生的认知水平和学习需求。
2. 在讲解过程中更加注重对数的本质含义和应用场景的讲解,帮助学生深入理解对数的概念。
3. 尝试采用更加多样化的教学方法,如案例分析、角色扮演等,以满足不同学生的学习需求和提高学生的学习兴趣。
4. 加强对学生的练习和反馈,及时纠正学生在学习过程中的错误和理解偏差。
对数的概念教学设计课题对数的概念总课时 1 第1课时教材分析教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.教师要尽量发挥电脑绘图的教学功能,教材后面安排的“阅读”内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.学情分析学生在前面的学习过程中,已基本上掌握了指数函数的概念和性质,它是学习对数概念的基础。
在教学中应启发学生由指数与对数的关系中,认识对数并掌握指数式与对数式的互化,而且要简要明确对数运算是指数运算的逆运算, 三维教学目标1.理解对数的概念及性质,了解对数与指数的关系,培养学生分析、综合解决问题的能力;培养学生数学应用的意识和科学分析问题的精神和态度。
2.学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;通过对数的运算法则的学习,培养学生的严谨的思维品质;在学习过程中培养学生探究的意识;让学生感受对数运算性质的重要性,增加学生的成功感,增强学习的积极性。
3.会根据对数的概念及其简单性质求一些特殊的对数式的值。
重点、难点1、对数概念的理解2、对数式与指数式互化教学环节教学内容师生互动设计意图提出问题1.提出问题(P72思考题)中,哪一年的人口数要达到10亿、20亿、30亿……,该如何解决?即:1820301.01, 1.01, 1.01,131313x x x===在个式子中,x分别等于多少?象上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数(引出对数的概念).老师提出问题,学生思考回答.启发学生从指数运算的需求中,提出本节的研究对象——对数,由实际问题引入,激发学生的学习积极性.概念形成合作探究:若1.01x=1318,则x称作是以1.01为底的1318的对数.你能否据此给出一个一般性的结论?一般地,如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数.举例:如:24416,2log16==则,读作2是以4为底,16的对数.1242=,则41log22=,读作12是以4为底2的对数.合作探究师:适时归纳总结,引出对数的定义并板书.让学生经历从“特殊一一般”,培养学生“合情推理”能力,有利于培养学生的创造能力.概念深化1. 对数式与指数式的互化在对数的概念中,要注意:(1)底数的限制a>0,且a≠1(2)logxaa N N x=⇔=指数式⇔对数式幂底数←a→对数底数指数←x→对数幂←N→真数说明:对数式logaN可看作一记号,表示底为a(a>0,且a≠1),幂为N的指数工表示方程x a N=(a>0,且a≠1)的解.也可以看作一种运算,即已知底为a(a>0,且a≠1)幂为N,求幂指数的运算.因此,对掌握指数式与对数式的互化、而且要明确对数运算是指数运算的逆运算.通过本环节的教学,培养学生的用联系的关点观察问题.数式log a N 又可看幂运算的逆运算.2. 对数的简单性质:提问:因为a >0,a ≠1时,log x N a a N x =⇔=则 由1、a 0=1 2、a 1=a 如何转化为对数式②负数和零有没有对数? ③根据对数的定义,log a Na=?(以上三题由学生先独立思考,再个别提问解答)由以上的问题得到 ①011,a a a == (a >0,且a ≠1)② ∵a >0,且a ≠1对任意的力,10log N 常记为lg N .恒等式:log a Na =N3. 两类对数① 以10为底的对数称为常用对数,10log N 常记为lg N .② 以无理数e =2.71828…为底的对数称为自然对数,log e N 常记为ln N .以后解题时,在没有指出对数的底的情况下,都是指常用对数,如100的对数等于2,即lg1002=.应用例1 将下列指数式化为对数式,对数式例1分析:进行指数式和通过这二。
对数的概念教学设计一、内容与内容解析1.内容:对数的定义、表示法、性质,以及指、对数之间的关系.2.内容解析:16、17世纪之交,苏格兰数学家纳皮尔在研究天文学的过程中发明了对数,为数学家们在运算中赢得了时间与精力.对数发明20多年后法国数学家笛卡尔开始使用指数符号,数学家们开始关注指、对数之间的关系.直到18世纪,瑞士数学家欧拉才发现了指数与对数的互逆关系,他首先使用y= 来定义.至此,人们彻底揭示了对数本质,完善了指、对数的知识体系和数学运算体系.对数的发明先于指数,也成为数学史上的珍闻.事实上,对数的本质是一种运算.随着人们对指数的认识的不断深入,总会遇到诸如“在方程=2中求解x”的问题,即“已知底数和幂的值,求指数”.在数学运算体系的建立过程中,人们也经历了多次类似的情况,例如在加法运算中已知一个加数与和,求另一个加数时引入了“差”的概念;在乘法运算中已知一个因数与积,求另一个因数时引入了“商”的概念;在乘方运算中已知指数与幂,求底数时引入了“数的n次方根”的概念.在计算机发明以前,以10为底的对数在复杂的数值计算中是常用的工具,故有“常用对数”之名,常用对数是纳皮尔和他的朋友布里格斯一起商定得出的.另外,在科技、经济以及社会生活中经常使用以无理数e=2.71828…为底的对数,以e为底数,许多式子都能得到简化,用它是最“自然”的,所以称之为“自然对数”.欧拉指出:“对数源出于指数”,也就是说对数与指数之间存在必然的联系:当a>0,且a≠1时,.利用这一关系,我们可以实现对数式与指数式之间的互化.代数学的根源在于运算,“运算中的不变性、规律性”是发现“代数性质”的引路人,通过这种互化运算,我们可以得出对数的下列性质:(1)负数和0没有对数.当对数中的真数N为负数或者0时,对数没有意义.这是由于在实数范围内,正数的任何次幂都是正数.因而=N中的N总是正数.(2)(a>0,a≠1).指数式中存在着诸如及的性质,将这两个指数式化为对数式即可得到对数的上述性质.从对数的发明过程可以看到,社会生产、科学技术的需要是数学发展的主要动力.建立对数与指数之间联系的过程表明,使用较好的符号体系和运算规则不仅对数学的发展至关重要,而且可以大大减轻人们的思维负担.因此,本节课的教学重点是:以“指数与对数的关系”为指引,发现和应用对数的概念.二、目标与目标解析1.目标:(1)了解对数产生的历史及背景,体会对数概念提出的必要性,发展数学人文素养;(2)经历概念的形成过程,理解对数的概念,发展数学抽象核心素养;(3)理解指、对数的关系,掌握指、对数式的互化,发展数学运算核心素养.2.目标解析(1)学生知道对数发明的历史,能在求解诸如=2的方程中体会到对数概念提出的必要性;(2)学生能将所求方程中的x准确表示出来,能认识和表示常用对数和自然对数;(3)学生能清楚指出指、对数之间所具有的关系,在指、对数式中指明各个字母的意义,能熟练地进行指、对数的互化.通过两式的互化,能够得出和证明对数的性质.三、教学问题诊断分析本节课第一个学习难点是对数概念,虽然学生可以根据以往经验提出新概念建立的必要性,但是就像差、商、数的n次方根等概念的提出一样,每一次新概念的提出都与学生以前的认知产生矛盾,因此需要适应和熟悉,而这样的过程在对数这一概念上显得尤为漫长.在以往的学习过程中,涉及“差”的概念的减法是加法的逆运算,涉及“商”的概念的除法是乘法的逆运算,涉及“数的n 次方根”的概念的开方运算是乘方的逆运算,对于对数这一概念,可以类比以往的互逆运算的关系进行认识.即使这样,减法、除法、开方等运算还是比较直观、容易理解的,但是由于对数所处运算级别较高,因此在教学中需要反复训练,使得学生尽快熟悉.第二个学习难点是在对指、对数的关系的认识上,学生往往只在表面上认识了对数概念,没有紧扣定义,充分发掘定义中指、对数之间的关系.为此可以借助图表、式中连线等简单直观的方式对指、对数式进行对照,在此过程中学生可以进一步理解对数概念,揭示指、对数之间的关系,特别是在对字母x的认识中可以明确“对数即指数”这一本质;也可以借助已有知识进行突破,例如借助指数函数中的变量对应关系揭示指、对数之间的关系.四、教学支持条件本节课的教学用到了Geogebra数学软件,可以帮助学生对相关问题形成直观感受.五、教学过程设计(一)概念的引入问题1:在4.2.1的问题中,通过指数运算,我们能从y=中求出经过x年后B地景区的游客人次为2001年的倍数y.反之,如果要求经过多少年游客人次是2001年的2倍,3倍,4倍,…,那么该如何解决?师生活动:学生利用指数函数写出2=、3=、4=的方程,但是不会求解方程.追问1:若=2,这里的x存在吗?唯一吗?能否借助已有知识解释?你能表示它吗?师生活动:学生借助指数函数图象可以感受到x的存在,但不会对其表示.由指数函数图象可知x唯一存在,但利用已有知识不能解释.技术支持:利用Geogebra数学软件画出函数图象,通过对点的标记感受对数的真实存在.追问2:回顾为什么要学习减法、除法、开方运算?并类比思考如何解决上面这个问题?师生活动:学生回顾运算学习轨迹,得出答案.回顾一下同学们对于运算的学习轨迹:在加法运算a+x=N中求解x时定义了减法及它的运算结果“差”的概念;在乘法运算ax=N中求解x时定义了除法及它的运算结果“商”的概念;在乘方运算=N中求解x时定义了开方及它的运算结果“数的n次方根”的概念。
全国一等奖对数的概念教学设计一、教学目标1.理解对数的概念和性质。
2.能够正确地求解简单的对数运算。
3.培养学生的数学思维能力和解决问题的能力。
二、教学内容1.对数的概念2.对数的性质3.对数的运算三、教学过程第一步:导入(10分钟)1.引入对数的概念:可以通过举例子或问题引入,例如“我们知道1÷2=0.5,2的多少次方等于1÷2呢?”2.让学生根据问题思考,引导他们猜想2的多少次方等于1÷2,引出对数的概念。
第二步:概念讲解(20分钟)1. 对数的定义:如果a的x次方等于N,那么称x是以a为底N的对数,记作logₐN=x。
2.对数的意义:对数是一种指数运算的逆运算,它可以用来求解指数方程。
3. 对数的性质:将对数的定义列举出来,让学生猜测对数的性质,例如logₐ1=0,logₐa=1等。
4.通过举例子和问题,让学生验证对数的性质。
第三步:例题讲解与练习(30分钟)1. 解释对数的换底公式:logₐN=logᵦN/logᵦa。
2. 讲解对数的运算法则:logₐ(N×M)=logₐN+logₐM,以及logₐ(N/M)=logₐN-logₐM。
3.给学生提供一些例题进行讲解,让学生掌握对数的运算。
4.给学生一些练习题,巩固对数的运算法则。
第四步:应用拓展(15分钟)1.通过实际问题的引入,让学生了解对数在生活中的应用,例如震级为什么要用对数表示等。
2.提供一些拓展题,让学生进行解答和思考,培养他们的数学思维能力和解决问题的能力。
第五步:总结(5分钟)1.让学生归纳总结对数的概念和性质。
2.提问学生对对数的运算法则有什么理解和掌握。
四、教学评估1.在例题讲解与练习环节,教师可以通过观察学生解题的过程,检查学生对对数的运算法则的掌握情况。
2.在应用拓展环节,教师可以观察学生解答实际问题的能力来评估他们对对数的应用理解情况。
3.可以设计一个小测验来检查学生对对数的概念和性质的理解程度。
全国一等奖对数的概念教学设计教学设计:全国一等奖对数的概念一、教学目标:1.知识与技能:了解对数的概念和性质,掌握对数的运算规则和应用。
2.情感与态度:培养学生的数学观念,激发学生对数学的兴趣。
3.过程与方法:培养学生独立思考和解决问题的能力。
二、教学重点与难点:1.教学重点:对数的概念和性质,对数的运算规则和应用。
三、教学过程:1.导入(10分钟)教师通过展示数学竞赛获奖证书的图片,引起学生对全国数学竞赛一等奖的兴趣。
然后提问:你认为数学竞赛获奖证书上的对数概念和指数有什么关系?2.概念讲解(20分钟)教师通过引导学生回忆指数的概念和运算规则,然后引入对数的概念。
教师解释对数就是指数的逆运算,即a^x=b,那么x就是以a为底数,以b为真数的对数,记作 loga b。
教师通过具体的例子和公式展示对数的运算过程和性质。
3.讨论与练习(30分钟)教师将学生分成小组进行讨论和练习。
每个小组选择一个实际问题,通过对数的运算来解决问题。
例如:地一天的雨量为1000毫升,下雨的时间为10小时,问每小时的平均降雨量是多少?学生通过计算log10 1000/10得到结果。
然后小组间进行交流分享,并由代表小组汇报结果。
4.归纳总结(10分钟)教师引导学生总结对数的性质和运算规则,并解答学生提出的问题。
教师与学生一起完成对数的性质总结表格,例如:性质一:loga (mn) = loga m + loga n性质二:loga (m/n) = loga m - loga n性质三:loga (m^p) = ploga m5.拓展与应用(20分钟)教师提供更多的实际问题让学生练习对数的运用。
例如:城市的人口每年递增10%,请问经过n年后的人口是原来的多少倍?学生通过计算log1.1^(n-1)得到结果。
随后,学生再提出其他实际问题,并互相交流解决的方法。
6.作业布置(5分钟)教师布置练习题,要求学生自主完成,并鼓励学生提出更多实际问题和解决方法。
对数的概念教学设计对数的概念教学设计(精选6篇)作为一位杰出的教职工,通常会被要求编写教学设计,教学设计是实现教学目标的计划性和决策性活动。
写教学设计需要注意哪些格式呢?下面是小编为大家整理的对数的概念教学设计(精选6篇),欢迎阅读与收藏。
对数的概念教学设计1一、内容与解析(一)内容:对数函数的性质(二)解析:本节课要学的内容是对数函数的性质及简单应用,其核心(或关键)是对数函数的性质,理解它关键就是要利用对数函数的图象.学生已经掌握了对数函数的图象特点,本节课的内容就是在此基础上的发展.由于它是构造复杂函数的基本元素之一,所以对数函数的性质是本单元的重要内容之一.的重点是掌握对数函数的性质,解决重点的关键是利用对数函数的图象,通过数形结合的思想进行归纳总结。
二、目标及解析(一)教学目标:1.掌握对数函数的性质并能简单应用(二)解析:(1)就是指根据对数函数的两类图象总结并理解对数函数的定义域、值域、单调性、奇偶性、函数值的分布特征等性质,并能将这些性质应用到简单的问题中。
三、问题诊断分析在本节课的教学中,学生可能遇到的问题是底数a对对数函数图象和性质的影响,产生这一问题的原因是学生对参量认识不到位,往往将参量等同于自变量.要解决这一问题,就是要将参量的取值多元化,最好应用几何画板的快捷性处理这类问题,其中关键是应用好几何画板.四、教学支持条件分析在本节课()的教学中,准备使用(),因为使用(),有利于().五、教学过程问题1.先画出下列函数的简图,再根据图象归纳总结对数函数的相关性质。
设计意图:师生活动(小问题):1.这些对数函数的解析式有什么共同特征?2.通过这些函数的图象请从值域、单调性、奇偶性方面进行总结函数的性质。
3.通过这些函数图象请从函数值的分布角度总结相关性质4.通过这些函数图象请总结:当自变量取一个值时,函数值随底数有什么样的变化规律?问题2.先画出下列函数的简图,根据图象归纳总结对数函数的相关性质。
数学教案:对数函数教案及反思数学教案-对数函数教学目标1.把握对数函数的概念,图象和性质,且在把握性质的基础上能进行初步的应用.(1) 能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系准确描绘对数函数的图象.(2) 能把握指数函数与对数函数的实质去争论熟悉对数函数的性质,初步学会用对数函数的性质解决简洁的问题.2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类争论等思想,注意培育同学的观看,分析,归纳等规律思维力量.3.通过指数函数与对数函数在图象与性质上的对比,对同学进行对称美,简洁美等审美训练,调动同学学习数学的乐观性.教学建议教材分析(1) 对数函数又是函数中一类重要的基本初等函数,它是在同学已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述学问的应用,也是对函数这一重要数学思想的进一步熟悉与理解.对数函数的概念,图象与性质的学习使同学的学问体系更加完整,系统,同时又是对数和函数学问的拓展与延长.它是解决关于自然科学领域中实际问题的重要工具,是同学今后学习对数方程,对数不等式的基础.(2) 本节的教学重点是理解对数函数的定义,把握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,同学不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点.(3) 本节课的主线是对数函数是指数函数的反函数,全部的问题都应围围着这条主线绽开.而通过互为反函数的两个函数的关系由已知函数争论未知函数的性质,这种方法是第一次使用,同学不适应,把握不住关键,所以应当是本节课的难点.教法建议(1) 对数函数在引入时,就应从同学熟识的指数问题动身,通过对指数函数的熟悉逐步转化为对对数函数的熟悉,而且画对数函数图象时,既要考虑到对底数的分类争论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观看图象的特征,找出共性,归纳性质.(2) 在本节课中结合对数函数教学的特点,肯定要让同学动手做,动脑想,大胆猜,要以同学的争论为主,老师只是不断地反函数这条主线引导同学思索的方向.这样既增加了同学的参加意识又教给他们思索问题的方法,猎取学问的途径,使同学学有所思,思有所得,练有所获,,从而提高学习爱好.教学设计示例对数函数教学目标1. 在指数函数及反函数概念的基础上,使同学把握对数函数的概念,能准确描绘对数函数的图像,把握对数函数的性质,并初步应用性质解决简洁问题.2. 通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类争论的思想.3. 通过对数函数关于性质的争论,培育同学观看,分析,归纳的思维力量,调动同学学习的乐观性.教学重点,难点重点是理解对数函数的定义,把握图像和性质.难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质.教学方法启发争论式教学用具投影仪教学过程()一. 引入新课今日我们一起再来争论一种常见函数.前面的几种函数都是以形式定义的方式给出的,今日我们将从反函数的角度介绍新的函数.反函数的实质是争论两个函数的关系,所以自然我们应从大家熟识的函数动身,再争论其反函数.这个熟识的函数就是指数函数.提问:什么是指数函数?指数函数存在反函数吗?由同学说出是指数函数,它是存在反函数的.并由一个同学口答求反函数的过程:由得.又的值域为,所求反函数为.那么我们今日就是争论指数函数的反函数-----对数函数.2.8对数函数 (板书)一. 对数函数的概念1. 定义:函数的反函数叫做对数函数.由于定义就是从反函数角度给出的,所以下面我们的争论就从这个角度动身.如从定义中你能了解对数函数的什么性质吗?最初步的熟悉是什么?老师可提示同学从反函数的三定与三反去熟悉,从而找出对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故有着相同的限制条件.在此基础上,我们将一起来争论对数函数的图像与性质.二.对数函数的图像与性质 (板书)1. 作图方法提问同学筹备用什么方法来画函数图像?同学应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.同时老师也应指出用列表描点法也是可以的,让同学从中选出一种,最终确定用图像变换法画图.由于指数函数的图像按和分成两种不同的类型,故对数函数的图像也应以1为分界线分成两种状况和,并分别以和为例画图.具体操作时,要求同学做到:(1) 指数函数和的图像要尽量精确(关键点的位置,图像的变化趋势等).(2) 画出直线.(3) 的图像在翻折时先将特殊点对称点找到,变化趋势由靠近轴对称为渐渐靠近轴,而的图像在翻折时可提示同学分两段翻折,在左侧的先翻,然后再翻在右侧的部分.同学在笔记本履行具体操作,老师在同学履行后将关键步骤在黑板上演示一遍,画出和的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:2. 草图.老师画完图后再利用投影仪将和的图像画在同一坐标系内,如图:然后提出让同学依据图像说出对数函数的性质(要求从几何与代数两个角度说明)3. 性质(1) 定义域:(2) 值域:由以上两条可说明图像坐落于轴的右侧.(3) 截距:令得,即在轴上的截距为1,与轴无交点即以轴为渐近线.(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于轴对称.(5) 单调性:与关于.当时,在上是增函数.即图像是上升的当时,在上是减函数,即图像是下降的.之后可以追问同学有没有最大值和最小值,当得到否定答案时,可以再问能否看待何时函数值为正?同学看着图可以答出应有两种状况:当时,有;当时,有.同学回答后老师可指导同学巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书登记来.最终老师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特殊强调它们单调性的全都性) 对图像和性质有了肯定的了解后,一起来看看它们的应用.三.简洁应用 (板书)1. 争论相关函数的性质例1. 求下列函数的定义域:(1) (2) (3)先由同学依次列出相应的不等式,其中特殊要留意对数中真数和底数的条件限制.2. 利用单调性比较大小 (板书)例2. 比较下列各组数的大小(1) 与; (2) 与;(3) 与; (4) 与.让同学先说出各组数的特征即它们的底数相同,故可以构造对数函数利用单调性来比大小.最终让同学以其中一组为例写出具体的比较过程.三.巩固练习练习:若,求的取值范围.四.小结五.作业略板书设计2.8对数函数一. 概念1.定义2.熟悉二.图像与性质1.作图方法2.草图图1 图23.性质(1) 定义域(2)值域(3)截距(4)奇偶性(5)单调性三.应用1.相关函数的争论例1 例2练习探究活动(1) 已知是函数的反函数,且都有意向义.① 求;② 试比较与4 的大小,并说明理由.(2) 设常数则当满意什么关系时,的解集为答案:(1) ① ;②当时, 4 ;当时, 4(2) .。
对数概念教学设计通过观察、推导,让学生了解对数的概念,知道对数是怎么计算出来的,掌握对数的表示方法及其运算性质。
通过实例和推导过程,培养学生的观察、分析、归纳和推理能力,并让学生体验对数概念的形成过程。
通过实例和练习,让学生感受对数在数学中的应用价值,激发学习数学的兴趣和热情。
(一)重点:对数的概念及表示方法,对数的运算性质。
(二)难点:对数的概念及表示方法的理解和掌握。
(一)教学方法:实例引入、讲解、示范、练习、反馈纠正。
(一)复习导入:复习有理数指数幂的运算性质。
(二)实例引入:介绍考古学中的碳14测定年代法,引出对数的概念。
(三)推导过程:通过实例和推导,让学生了解对数的概念和表示方法,并掌握其运算性质。
(四)归纳小结:总结对数的概念、表示方法及运算性质,并让学生再次明确其重要性。
(五)练习反馈:设计不同层次的练习题,让学生进行自我检测,并对有困难的学生进行指导和帮助。
(一)课堂表现:观察学生在课堂上的表现,包括听讲、思考、回答问题等情况。
(二)作业情况:布置一定量的作业,了解学生对本节课内容的掌握情况。
(1)理解对数的概念,掌握对数的基本性质,能够运用对数进行简单的计算。
(2)通过对数概念的学习,培养学生的观察、比较、分析、综合、抽象和概括能力。
(3)通过主动探究,合作交流,感受探索的乐趣和成功的体验,体会数学的美。
重点:理解对数的概念,掌握对数的基本性质。
在现实生活中,经常遇到一种特殊的数量关系,即两个数的乘积或商等于另一个数.例如,在投资、储蓄、借款、生产、贸易、科技等领域都有这种特殊数量关系.这其中隐藏着什么数学奥秘呢?通过本节课的学习,让我们共同揭示它.(板书:对数的概念)在投资、储蓄、贸易、生产等领域都有一种特殊的数量关系:在等式a × b = c中,当等比数列 a, b, c成等差数列时,b就叫做a, c 的几何平均数.几何平均数和算术平均数统称为对数.我们把以10为底数的真分数叫十进对数,以e(e=…)为底数的真分数叫自然对数.(板书:对数的概念)请同学们看课本第46页的图1-回答下列问题:图中的三个量:我国国内生产总值、某产品年产量、我国年钢产量是按照怎样的关系排列的?(由小到大排列)观察这些数据的大小关系,大家发现了什么?(相邻两项的商是一个常数)如果第一个数据用 a表示,第二个数据用 b表示,第三个数据用 c表示,那么 a, b, c之间有怎样的数量关系?并指出什么叫做对数.(板书:对数的定义及运算)(1)请同学们看课本第46页的例读题并回答:这个题已知什么?求什么?用什么方法计算?说明理由.(板书:对数的运算性质及运算方法)(2)做一做:课本第47页练习第1题.(板书:对数函数及其性质)(3)归纳小结:通过本节课的学习,你有什么收获和感悟?请大胆发表自己的见解.(板书:学生谈收获与感悟)对数概念是数学中的基本概念之一,它是一种特殊的函数形式,反映了数的幂次数与对数之间的转化关系。