完整六年级分数与比的应用题
- 格式:doc
- 大小:68.18 KB
- 文档页数:3
人教版六年级数学上册分数比应用题30题11.小明有一块长方形的花坛,长为12米,宽为6米。
他决定在花坛四周铺上一圈白色的瓷砖,每块瓷砖的边长为0.5米。
请问他需要多少块瓷砖?解析:首先计算花坛的周长,周长等于2(长+宽)。
花坛的周长为2(12+6)=36米。
然后计算需要铺瓷砖的数量,瓷砖的边长为0.5米,所以每米需要2块瓷砖。
因此需要的瓷砖数量为36*2=72块。
2.小明的妈妈从超市买了一桶果汁,桶内装有5升的果汁。
小明每天早上喝一杯果汁,每杯果汁的容量是200毫升。
请问这桶果汁够他喝几天?解析:首先将桶内的果汁容量转换为毫升,5升等于5000毫升。
然后计算小明每天喝的果汁数量,200毫升。
最后计算桶内果汁可以供应的天数,即5000/200=25天。
3.一根绳子长12米,小红和小明分别拉起绳子的两端,并且从绳子两边同时开始往中间走,他们每走1米就会握手一次。
请问他们会握手几次?解析:首先计算小红和小明一共可以走的距离,即12米。
然后计算每走1米需要握手一次,所以他们会握手12次。
4.某班有40名学生,其中男生和女生的比例为2:3。
请问班上男生和女生的人数分别是多少?解析:首先计算班上男生和女生的比例,男生:女生=2:3。
然后计算男生和女生的总份数,即2+3=5份。
最后根据比例计算男生和女生的人数,男生人数为40/5*2=16人,女生人数为40/5*3=24人。
5.小明考试得了72分,班级平均分为68分。
请问小明得了班级平均分的几分之几?解析:首先计算小明得分与班级平均分之差,即72-68=4分。
然后计算小明得了班级平均分的几分之几,即4/68=1/17。
6.某书店某天卖出了800本书,其中中文教材的数量占总销量的1/5,英文教材的数量占总销量的2/5。
请问中文教材和英文教材的销量分别是多少本?解析:首先计算中文教材和英文教材的销量比例,中文教材:英文教材=1/5:2/5。
然后计算中文教材和英文教材的总销量份数,即1/5+2/5=3/5。
圣匀新教育中心比例的应用练习题姓名___年级___得分___1 小华看一本书,每天看15页,4天后还剩全书的没看,这本故事书是多少页?2 小华看一本故事书,第一天看了全书的还多21页,第二天看了全书的少6页,还剩下172页,这本故事书一共有多少页?3 惠华百货商场运到一批春秋西服,按原(出厂)价加上运费、营业费和利润出售.运费是原价的,营业费和利润一共是原价的,已知售价是123元,求出厂价多少元?4 菜园里西红柿获得丰收,收下全部的时,装满3筐还多24千克,收完其余部分时,又刚好装满6筐,求共收西红柿多少千克?5 建筑工地需要一批水泥,从仓库第一次运走全部的,第二次运走余下的,第三次运走(前二次运后)又余下的,这时还剩下15吨水泥没运走.这批水泥共是多少吨?6 某人在公共汽车上发现一个小偷向相反方向步行,10秒钟后他下车去追小偷,如其速率比小偷快一倍,比汽车慢,则追上小偷要多少秒?7 A有若干本书,B借走一半加一本,剩下的书,C借走一半加两本,再剩下的书,D借走一半加3本,最后A还有2本书,问A原有多少本书.参考答案:1. 分析:每天看15页,4天看了15×4=60页.解题的关键是要找出这60页相当于全书页数的几分之几,还剩下全书的没看,已经看了的是全书的,60页与全书的直接对应,全书的页数就可以顺利求出.解:①看了多少页,15×4=60(页)②看了全书的几分之几?③这本书有多少页?(页)综合算式:(页)答:这本故事书是150页.2. 分析:要想求这本书共有多少页,需要找条件里的多21页,少6页,剩下172页所对应的百分率.也就是说,要从这三个量里找出一个能明确占全书的几分之几的量.画线段图:解:= 264(页).答:这本故事书共有264页.3. 分析:设出厂价(原价)是“1”,那么售价是原价的,它相当于123元,如上图可以得出解答:= 108(元).答:春秋西服每套出厂价是108元.4. 解法1:分析:可以从“收下全部的”着手,其余部分必然是.总千克数的是6筐,依据这个对应关系,总筐数就是筐.收下全部的就是筐.根据题目中的条件筐比3筐多筐,这个筐正好是24千克,“量与百分率”的关系已经直接对应,求每筐的千克数的条件完全具备.解:其余部分是总千克数的几分之几:.西红柿总数共装了多少筐:(筐).收下全部的应装多少筐:(筐).筐比3筐多多少筐:(筐).每筐是多少千克:(千克).共收西红柿多少千克:(千克).综合算式:=(千克).答:共收西红柿384千克.解法2:(以下列式由学生自己理解)(千克).答:共收西红柿384千克.5.分析:上图中有3个相对各自讨论范围内的单位“1”(“全部”、“余下”、“又余下”).依据逆向思路可以得出,最后剩下的15吨对应的是“又余下”的,因为求出“又余下”的吨数60吨(即“又余下”含义中的1个单位是60吨).这60吨对应的恰是“余下”的,这样可以求“余下”的吨数90吨(即“余下”含义中的1个单位是90吨).这90吨恰是“全部”的.至此这批水泥的全部吨数可以求出.列式:= 150(吨).6. 分析与解答这是一个追及问题,因此求追上所花时间必须求出相距距离及它们速度差.相距距离是因为车上之人与小偷反向走了10秒钟产生的.而速度差是易求的.设小偷速度为,某人追赶速度为,由于人比汽车慢,所以汽车速度为,即是,所以相距距离是,所以追上所花时间是(秒).答:追上小偷要110秒.7. 解法1:列方程求解,设A原有本书,分析:B借走了:,C借走了:即,D借走了:,最后A剩下了:,由条件知:,,(本).答:A原有50本书.解法2:用倒推法解.分析:A剩下的2本应是C借走后剩下的一半差3本,所以C借走后还剩下即10本,这10本又是B借走后剩下的一半差2本,所以B借走后剩下即是24本,这24本是A原有书的一半差1本,这样A原有书为即A 原有书50本.综合算式:.答:A原有50本书.正、反比例的意义2 一条路全长60千米,分成上坡、平路、下坡三段,各段路程长的比依次是1:2:3,某人走各段路程所用时间之比依次是4:5:6,已知他上坡的速度是每小时3千米,问此人走完全程用了多少时间?3 一块合金内铜和锌的比是2:3,现在再加入6克锌,共得新合金36克,求新合金内铜和锌的比?4 师徒两人共加工零件168个,师傅加工一个零件用5分钟,徒弟加工一个零件用9分钟,完成任务时,两人各加工零件多少个?5 洗衣机厂计划20天生产洗衣机1600台,生产5天后由于改进技术,效率提高25%,完成计划还要多少天?6 一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米?参考答案:1.分析以上每题都是两种相关联的量,一种量变化,另一种量也随着变化,那么怎样来确定这两种量成哪种比例或不成比例呢?关键是能否把两个相关的变量、用或用来表示,其中是定量.如果不能写出这两种形式,或只能写出加减法关系,那么这两种量就不成比例.例如①,速度一定,路程与时间成正比例.④制造每个零件用的时间×零件数=总时间,总时间一定,制造每个零件用的时间与要制造的零件总数成反比例.③路程一定,已走的路程和未走的路程是加减法关系,不成比例.解:成正比例的有:1、7、8、 15成反比例的有:2、4、5、6、9、 11、 14不成比例的有:3、10、12、13.2.分析要求此人走完全程用了多少时间,必须根据已知条件先求出此人走上坡路用了多少时间,必须知道走上坡路的速度(题中每小时行3千米)和上坡路的路程,已知全程60千米,又知道上坡、平路、下坡三段路程比是1:2:3,就可以求出上坡路的路程.解:上坡路的路程:(千米).走上坡路用的时间:(小时).上坡路所用时间与全程所用时间比:.走完全程所用时间:(小时).答:此人走完全程共用小时.3.分析要求新合金内铜和锌的比,必须分别求出新合金内铜和锌各自的重量.应该注意到铜和锌的比是2:3时,合金的重量不是36克,而是(36-6)克.铜的重量始终没有变.解:铜和锌的比是2:3时,合金重量:36-6=30(克).铜的重量:(克).新合金中锌的重量: 36-12=24(克).新合金内铜和锌的比:12:24=1:2.答:新合金内铜和锌的比是1:2.4.分析师傅加工一个零件用5分钟,每分钟可加工个零件,徒弟加工一个零件用9分钟,每分钟可加工零件个,师徒两人效率的比是,由于两人的工作时间是一定的,根据=工作时间(一定),工作量与工作效率成正比例.解法1:设师傅加工个,徒弟加工个.,,,,.(个).答:师傅加工108个,徒弟加工60个.解法2:由于师、徒两人工作效率的比是,那么他们工作量的比也是,因此师傅工作量是徒弟工作量的(倍),徒弟的工作量为1倍量.=60(个),(徒弟)(个),(师傅)解法3:师傅每分钟加工个,徒弟每分钟加工个,用相遇问题思考方法可求出两人各用了多少分钟.然后用师、徒每分钟各自的效率,分别乘以540就是各自加工零件的个数.(分钟).(个),(师傅)(个),(徒弟)解法4:按比例分配做:∵,∴(个),(师傅)(个),(徒弟)5.分析这是一道比例应用题,工效和工时是变量,不变量是计划生产5天后剩下的台数.从工效看,有原来的效率1600÷20=80台/天,又有提高后的效率80×(1+25%)=100台/天,从时间看,有原来计划的天数,要求效率提高后还需要的天数.根据工效和工时成反比例的关系,得:提高后的效率×所需天数=剩下的台数.解法1:设完成计划还需天.答:完成计划还需12天.解法2:此题还可以转化成正比例.根据实际效率是原来效率的倍,把原来效率看成“1”,实际和原来效率的比是.因为工效和工时成反比例,所以实际与原来所需时间的比是4:5,如果设实际还需要天,原来计划的天数是20-5=15天,根据实际与原来时间的比等于实际天数与原来天数的比,可以用正比例解答.设完成计划还需天.,,.解法3:(按工程问题解)设完成计划还需天..6.画出图便于解题:解法1:BC的长:182÷13=14(厘米),BD的长:14+13=27(厘米),从图中看出AB长就是原长方形的宽,AD与AB的比是14:5,AB与BD的比是5:(14-5)=5:9,AB的长是(厘米),AD的长是(厘米),原长方形面积是42×15=630(平方厘米).答:原长方形面积是630平方厘米.解法2:设原长方形长为,宽为.由图分析得方程,,则原长方形面积(平方厘米).比例的意义和基本性质(二)1一项工程,甲乙两队合作需12无完成,乙丙两队合作需15天完成,甲丙两队合作需20天完成,如果由甲乙丙三队合作需几天完成?2 师徒二人合作生产一批零件,6天可以完成任务.师傅先做5天后,因事外出,由徒弟接着做3天.共完成任务的.如果每人单独做这批零件各需几天?3一项工程,甲单独完成需12天,乙单独完成需9天.若甲先做若干天后乙接着做,共用10天完成,问甲做了几天?4一件工作甲先做6小时,乙接着做12小时可以完成.甲先做8小时,乙接着做6小时也可以完成.如果甲做3小时后由乙接着做,还需要多少小时完成?5筑路队预计30天修一条公路.先由18人修12天只完成全部工程的.如果想提前6天完工,还需增加多少人?6蓄水池有一条进水管和一条排水管.要灌满一池水,单开进水管需5小时.排光一池水,单开排水管需3小时.现在池内有半池水,如果按进水,排水,进水,排水…的顺序轮流各开1小时.问:多长时间后水池的水刚好排完?(精确到分钟)7一件工作,甲5小时先完成了,乙6小时又完成了剩下任务的一半,最后余下的部分由甲、乙合作,还需要多少时间才能完成?8甲、乙二人植树.单独植完这批树甲比乙所需要的时间多,如果二人一起干,完成任务时乙比甲多植树36棵,这批树一共多少棵?9加工一批零件,甲、乙合作24天可以完成.现在由甲先做16天,然后乙再做12天,还剩下这批零件的没有完成.已知甲每天比乙多加工3个零件,求这批零件共多少个?10 一项工程,甲单独做要12小时完成,乙单独做要18小时完成.若甲先做1小时,然后乙接替甲做1小时,再由甲接替乙做1小时,…,两人如此交替工作,问完成任务时,共用了多少小时?参考答案:1.分析设这项工程为1个单位,则甲、乙合作的工效为,乙、丙合作的工效为,甲、丙合作的工效为.因此甲、乙、丙三队合作的工效的两倍为,所以甲、乙、丙三队合作的工效为.因此三队合作完成这项工程的时间为(天).解:(天).答:甲、乙、丙三队合作需10天完成.说明:我们通常把工量“一项工程”看成一个单位.这样,工效就用工时的倒数来表示.如例1中甲乙两队合作的工时为 12天,那么工效就为,它表示甲乙两队一天完成全部工程的.2.分析设一批零件为单位“1”.其中6天完成任务,用表示师徒的工效和.要求每人单独做各需几天,首先要求出各自的工效,关键在于把师傅先做5天,接着徒弟做3天转化为师徒二人合作3天,师傅再做2天.解:师傅工效:;徒弟工效:;师傅单独做需几天:(天);徒弟单独做需几天:(天).答:如果单独做,师傅需10天,徒弟需15天.3.分析解答工程问题时,除了用一般的算术方法解答外,还可以根据题目的条件,找到等量关系,列方程解题.解:设甲做了天.那么,甲完成工作量,乙做的天数,已完成工作量,因此,,两边同乘36,得到:,答:甲做了4天.4.分析设一件工作为单位“1”.甲做6小时,乙再做12小时完成或者甲先做8小时,乙再做6小时都可完成,用图表示它们的关系如下:由图不难看出甲2小时工作量=乙6小时工作量,∴甲1小时工作量=乙3小时工作量.可用代换方法求解问题.解:若由乙单独做共需几小时:6×3+12=30(小时).若由甲单独做需几小时: 8+4÷3=10(小时).甲先做3小时后乙接着做还需几小时:(10-3)×3=21(小时).答:乙还需21小时完成.5.分析由18人修12天完成了全部工程的,可通过18×12求出用一天完成工作量共需要的总人数,也可通过18×12求出用一人完成工作量共需要的总天数.所以由求出1人1天完成全部工程的几分之几(即一人的工效).解:①1人1天完成全部工程的几分之几(即一人的工效):.②剩余工作量若要提前6天完成共需多少人:=36(人).③需增加几人: 36-18=18(人).答:还要增加18人.6.分析与解答①在解答“水管注水”问题时,会出现一个进水管,一个出水管的情况.若进水管、出水管同时开放,则积满水的时间=1÷(进水管工效-出水管工效),排空水的时间=1÷(出水管工效-进水管工效).②这道应用题是分析推理与计算相结合的题目.根据已知条件推出水池中的水每2小时减少.水池中有半池水即,经过6小时后还剩.如果按进水,排水的顺序进行,则又应进水1小时,这时水池内共有水.如果按每小时的流速排出需要经过(小时),共用的时间为(小时)=7小时54分刚好排完.7.分析这道题是工程问题与分数应用题的复合题.解题时先要分别求出甲、乙工作效率,再把余下的工作量转化为占单位“1”(总工作量)的几分之几?解:甲工作效率:,乙工作效率:,余下部分甲、乙合作需要几小时:(小时)答:还需要小时才能完成任务.8.分析求这批树一共多少棵,必须找出与36棵所对应的甲、乙工效差.已知甲比乙所用的时间多,可以求出甲与乙所用的时间比为4:3.当工作总量一定的情况下,工效与工时成反比例,甲与乙的工时比为,所以甲与乙的工效比是3:4.这个间接条件一旦揭示出来,问题就得到解决了.解:设己所用时间为“1”,甲的时间是乙的(倍),则甲与乙的时间比是4:3.工作总量一定,工作效率和工作时间成反比例,所以甲与乙的工效比是时间比的反比,为3:4.共植树多少棵:(棵).答:这批树一共252棵.9.分析欲求这批零件共多少个,由题中条件只需知道甲、乙二人每天共做多少个即可,然后这就转化为求甲、乙两人单独做各需多少天,有了这个结论后,只需算出3个零件相当于总数的几分之几即可.由条件知甲做16天,乙做12天共完成工程的,也即相当于甲乙二人合做12天,另外加上甲又做4天共完成这批零件的;又知道甲乙二人合做24天可以完成,因此甲单独做所用天数可求出,那么乙单独做所用天数也就迎刃而解.解:甲、乙合作12天,完成了总工程的几分之几?.甲1天能完成全工程的几分之几?.乙1天可完成全工程的几分之几?.这批零件共多少个?(个).答:这批零件共360个.10.分析要求共用多少小时?可以设想把这些小时重新分配.甲做1小时,乙做1小时,它们相当于合作1小时,也即是每2小时,相当于合做1小时.这样先大致算一下一共进行了多少个这样的2小时,余下部分问题就好解决了.解:①若甲、乙两人合作共需多少小时?(小时).②甲、乙两人各单独做7小时后,还剩多少?.③余下的由甲独做需多少小时?(小时).④共用了多少小时?(小时).答:共用了小时.比例的意义和基本性质(一)一、填空1、表示()的式子叫做比例.2、比例的基本性质是().3、在比例5∶10=3∶6中,()和()是外项,()和()是内项.4、写出比值是2的两个比:()∶(),()和();组成比例是().5、把3×6=2×9改写成比例是().二、判断1、因为5a=6b,所以a∶b=6∶5.()2、在比例中,两个外项积等于两个内项积.()三、选择1、下面两个比不能组成比例的是()A 10∶12=35∶42B 20∶10= 60∶20C 4∶3=60∶45D 35 :7 =15∶32、能与0.14∶0.1组成比例的是()A 0.8∶0.25B 28∶20C 0.5∶0.75D 14∶1参考答案:一、填空1、两个比相等2、两个内项积等于两个外项积3、5 和6 10和34、2∶1 4∶2 2∶1=4∶25、3∶2=9∶6二、判断1、√2、√三、选择1、B2、B。
六年级数学提高班(五)分数应用题与比的综合应用甲乙两个最简分数的分子相同,分母的比是3:2。
若甲乙之和是1225,则甲数是( )。
甲数的13 与乙数的14 的比是3:0.375,甲数与乙数的比是( )甲乙丙三个书柜,乙柜中书的本数是甲的94,是丙的2倍。
先从甲柜中拿出24本放入丙柜中,再从乙柜中拿出( )本也放入丙柜,就使甲乙丙三个书柜中书的本数比是4:1:3。
水果店运来香蕉、苹果和梨三种水果,其中香蕉的重量占总重量的51。
梨的重量与其它两种水果总重量的比是1:2,运来的苹果比香蕉重40千克。
这个水果店运来梨( )千克。
某果园计划种植一些苹果树和梨树,苹果树的棵树与梨树的棵树的比是3:5,实际种植时把计划中的20棵梨树改种了苹果树,结果苹果树的棵树比梨树少51,原计划种植苹果树多少棵?某车间男、女职工各若干名,男工平均年龄42.5岁,女工平均年龄38岁,这个车间的平均年龄是40岁,则男、女工人数之比是( )希望小学全校学生的一半参加了兴趣小组活动,其中男生正好占全校男生的32,女生正好占全校女生的41,希望小学的男生人数与学校总人数的比是( )。
已知甲、乙两个长方形的周长相等。
甲长方形的长与宽的比是 3:2,乙长方形的长与宽的比是5:3,那么甲、乙两个长方形的面积之比是( )一个长方形和一个正方形的周长之比是6:5,已知长方形的宽是长的75 ,则正方形面积与长方形面积的最简单的整数比是( )己知a 、b 、c 是三个不为零的数,a 的31等于b 的41,b 的87等于c 的127,又已知c 比a 大666,那么a 、b 、c 这三个数的和是( )。
甲乙丙三人合作生产一批机器零件,甲生产零件的数量的21既与乙生产零件的数量的53相等,又等于丙生产零件的数量的43,已知乙比丙多生产50个零件,这批零件共有( )个。
六年一班的学生比六年二班多6人,两个班人数比是6:5。
现在从两个班都抽调出( )人后,两个班人数比是5:3。
比与分数综合应用题(总数不变)1、王华看一本故事书,看了一部分后,已看页数与未看页数的比是2:5,接着他又看了40页,这时已看页数与未看页数的比是4:5,这本故事书共有多少页?2、甲乙两工程队的人数比是7:3,如果甲队派30人到乙队,则甲乙两队人数的比是3:2.问甲乙两队原来各有多少人?3、小明读一本书,已读页数与未读页数的比是1:4,如果再读24页,则已读页数与未读页数的比是2:3,这本书共有多少页?4、甲乙两人原有人民币的比是5:3,后来甲给乙180元,这时甲乙两人现有人民币的比是2:3,问甲乙原有人民币各多少元?5、甲乙两筐苹果重量的比是3:1,从甲筐取出60千克放入乙筐,则这时甲乙两筐苹果重量的比是3:5。
求甲乙两筐原有苹果多少千克?6、书架上层放的书是下层的52,如果从下层中取出60本放到上层,那么上层与下层本数的比是4:3。
问原来上层放书多少本?7、五年级全体学生分成两组准备庆祝“六。
一”活动,一组是舞蹈,另一组是合唱组,舞蹈组的人数是合唱组的111,后来因节目需要从合唱组调了4人到舞蹈组,这时舞蹈组的人数是合唱组的91。
五年级共有学生多少人?8、某班少先队员是非少先队员人数的的21,本班又有16人入队了,现在少先队员与非少先队员人数的比是2:1。
该班共有多少人?9、六年级甲乙两班人数的比是4:5,从乙班调2人到甲班后,甲乙两班人数的比是7:8.甲、乙两班原来各有多少人?10、六年级甲乙两班人数的比是5:6,如果从乙班调5人到甲班,则这时甲乙两班的人数相等。
甲乙两班原来各有多少人?比与分数综合应用题(总数不变)11、一个车间有甲乙两个小组,甲、乙两组人数的比是5:3,如果从甲组调14人到乙组,则这时甲组是甲乙两组总人数的31,原来两个小组各有多少人?12、东风机械厂有两甲乙两个车间.甲车间的人数与两车间总人数的85,从甲车间调90人到乙车间后,甲、乙两个车间人数的比是2:3.现在两个车间各有多少人?13、两筐水果,已知第一筐与第二筐重量的比是7:8,如果从第二筐拿出8千克放入第一筐,那么两筐的重量就相等。
1比和比例练习题一、 填空:1. 甲乙两数的比是11:9,甲数占甲、乙两数和的)()(,乙数占甲、乙两数和的)()(。
甲、乙两数的比是3:2,甲数是乙数的( )倍,乙数是甲数的)()(。
2. 某班男生人数与女生人数的比是43,女生人数与男生人数的比是( ),男生人数和女生人数的比是( )。
女生人数是总人数的比是( )。
3. 一本书,小明计划每天看72,这本书计划( )看完。
4. 一根绳长2米,把它平均剪成5段,每段长是)()(米,每段是这根绳子的)()(。
5. 王老师用180张纸订5本本子,用纸的张数和所订的本子数的比是( ),这个比的比值的意义是( )。
6. 一个正方形的周长是58米,它的面积是( )平方米。
7. 89吨大豆可榨油31吨,1吨大豆可榨油( )吨,要榨1吨油需大豆( )吨。
8. 甲数的32等于乙数的52,甲数与乙数的比是( )。
9. 把甲数的71给乙,甲、乙两数相等,甲数是乙数的)()(,甲数比乙数多)()(。
10. 甲数比乙数多41,甲数与乙数比是( )。
乙数比甲数少)()(。
11. 在6 :5 = 1.2中,6是比的( ),5是比的( ),1.2是比的()。
在 4 :7 =48 :84中,4和84是比例的( ),7和48是比例的()。
12.4 :5 = 24÷()= ():1513.一种盐水是由盐和水按1 :30 的重量配制而成的。
其中,盐的重量占盐水的(—),水的重量占盐水的(—)。
图上距离3厘米表示实际距离180千米,这幅图的比例尺是()。
一幅地图的比例尺是图上6厘米表示实际距离()千米。
实际距离150千米在图上要画()厘米。
14.12的约数有(),选择其中的四个约数,把它们组成一个比例是()。
写出两个比值是8的比()、()。
15.加工零件的总个数一定,每小时加工的零件个数的加工的时间()比例;订数学书的本数与所需要的钱数()比例;加工零件的总个数一定,已经加工的零件和没有加工的零件个数()比例。
比与分数综合应用题比与分数综合应用题(总数不变)1、王华看一本故事书,看了一部分后,已看页数与未看页数的比是2:5,接着他又看了40页,这时已看页数与未看页数的比是4:5,这本故事书共有多少页?2、甲乙两工程队的人数比是7:3,如果甲队派30人到乙队,则甲乙两队人数的比是3:2.问甲乙两队原来各有多少人?3、小明读一本书,已读页数与未读页数的比是1:4,如果再读24页,则已读页数与未读页数的比是2:3,这本书共有多少页?4、甲乙两人原有人民币的比是5:3,后来甲给乙180元,这时甲乙两人现有人民币的比是2:3,问甲乙原有人民币各多少元?5、甲乙两筐苹果重量的比是3:1,从甲筐取出60千克放入乙筐,则这时甲乙两筐苹果重量的比是3:5.求甲乙两筐原有苹果多少千克?2,如果从下层中取6、书架上层放的书是下层的5出60本放到上层,那么上层与下层本数的比是4:3.问原来上层放书多少本?7、五年级全体学生分成两组准备庆祝“六.一”活动,一组是舞蹈,另一组是合唱组,舞蹈组的1,后来因节目需要从合唱组调人数是合唱组的11了4人到舞蹈组,这时舞蹈组的人数是合唱组的1。
五年级共有学生多少人?91,本班8、某班少先队员是非少先队员人数的的2又有16人入队了,现在少先队员与非少先队员人数的比是2:1.该班共有多少人?9、六年级甲乙两班人数的比是4:5,从乙班调2人到甲班后,甲乙两班人数的比是7:8.甲、乙两班原来各有多少人?10、六年级甲乙两班人数的比是5:6,如果从乙班调5人到甲班,则这时甲乙两班的人数相等。
甲乙两班原来各有多少人?比与分数综合应用题(总数不变)11、一个车间有甲乙两个小组,甲、乙两组人数的比是5:3,如果从甲组调14人到乙组,则这1,原来两个小组各时甲组是甲乙两组总人数的3有多少人?12、东风机械厂有两甲乙两个车间。
甲车间的人5,从甲车间调90人到乙车数与两车间总人数的8间后,甲、乙两个车间人数的比是2:3.现在两个车间各有多少人?13、两筐水果,已知第一筐与第二筐重量的比是7:8,如果从第二筐拿出8千克放入第一筐,那么两筐的重量就相等。
比和分数应用题【典题一】:小红帮妈妈包韭菜鸡蛋饺子,韭菜与鸡蛋的质量比2:1,450克的馅中,韭菜,鸡蛋个有多少克?【实战演练】:六年级一班的男.女生比例为3:2,又来了4名女生后,全班共有44人.求现在六年级一班男.女生人数之比是多少?【典题二】:王师傅和李师傅加工同一种机器零件,王师傅和李师傅的工作效率比是5:7,在一个工作日里,王师傅比李师傅少加工了8个零件.这一个工作日里,两位师傅共加工了多少个零件?【实战演练】:李华读一本书,第一天看了全书的31,第二天看了18页,这时已经看的页数和剩下的页数比是3:5,那么李华第一天看了多少页?【典题三】:有黑白两堆围棋子,小明数得黑棋子与白棋子个数比是3:4,小华再次确认的时候发现白棋子里有2颗黑棋子,实际上黑棋子与白棋子的比是4:5,请问实际上黑白棋子各有多少颗?【实战演练】:图书管理员清理图书,辅导书的本数与文艺书的本数之比是1:5,复查时发现文艺书中混着6本辅导书,实际上辅导书的本数是文艺书本数的41,这个图书馆实际有辅导书多少本?(2016年河北工程大学附中招生试题)【典题四】:甲、乙两校原有图书本数的比是3:5,如果甲校给乙校720本,甲.乙两校图书本数的比是3:2,求原来甲校有图书多少本?(6分)(2016年23中复试题)【实战演练】:某学校合唱队与舞蹈队的人数之比为3:2,如果将合唱队队员调10人到舞蹈队,则人 数比为7:8,原合唱队有多少人?(6分)(2014年11中复试题)1.图上20厘米表示实际距离10千米,这幅地图所用的比例尺( )2.在比例尺1:50000000的地图上量得北京到广州的距离约是3.81厘米,北京到广州的实际距离是( )千米.3.在比例尺1:6000000的地图上,量得深圳到广州的距离为3厘米,深圳至广州的实际距离为( )千米4.若两个数的和是64,且这两个数的比是3:5,则这两个数中较大的数是( ).5.如果一个圆的半径是a 厘米,且2:a=a :3,则这个圆的面积是( )平方厘米.6.一个长方体,长6厘米,宽3厘米,高2厘米,它的最小面的面积与表面积的比是( )7.甲.乙两包盐的质量比是4:1,如果从甲包取出10克放入乙包后,甲.乙两包盐的质量比变成7:8,那么两包糖的质量和是( )克8.甲三角形与乙三角形的底边长的比是2:1,高的比是1:3,那么甲三角形与乙三角形面积的比是( )9. 甲.乙两人各走一段路,它们走的时间比是4:5,速度比是5:3,它们所走的路程比是( )10.两数的和是48,这两数的比是5:3,则这两个数中较小的数是( ).11.鸡.鸭.鹅的只数比是3:2:1,画成扇形统计图,表示鸡的只数的扇形圆心角是( ).12.甲种纸张3角钱买4张,乙种纸张3张要4角钱,甲.乙两种纸张的单价之比是( )13.把0.25:31化成最简整数比是( )比值是( ) 14.若y x 4131 (x.y 均不为0),则x:y=( ) 15.把3:83化成最简整数比是( ),比值是( ) 16.把2时:25分化成最简整数比是( )比值是( )17.一个图书馆上个月按5:2:1购进科技书.文艺书和金融书共400本,这三类书分别购进多少本?18.儿童节,爸爸从书店为陈丽买一本《十万个为什么》.陈丽3天一共读了48页,此时已经读的页数和剩下的页数的比是2:3,这本书一共多少页?19.一个长方体,长与宽的比是4:3,宽与高的比是5:4,体积是450立方分米.问:长方体的长.宽.高各是多少分米?45.1和它的倒数的比等于X 和152的比,则X=( ) 2.三个数的和是712,它们的分母相同,分子的比是1:2:3,这三个分数分别是( ).3.用96分米长的铁丝焊成一个长方体框架(接头处忽略不计),已知长方体长.宽.高的比为5:4:3,若给这个框架外面蒙一层纸,则这个长方形的表面积是( )平方分米,体积是( )立方分米.4.一个比的比值是1.25,这个比化成最简整数比是( )5.甲数和乙数的比是4:5,那么乙数比甲数多( )%6.一个三角形的三个内角的度数比是1:2:3,其中最大锐角的度数是( )度7.甲数的32等于乙数的43,则甲.乙两数之比是( ) 8.甲工厂和乙工厂的汽车配件数量比为5:6,汽车配件价格之比为10:9,量工厂的总产值为6240万元,则甲工厂的产值为( )万元.9.如果65⨯=⨯b a ,那么a:b=( );如果a:8=0.2:0.5,那么a=( )10.从甲堆煤中取出71给乙堆煤,这时两堆煤的质量相等.原来甲.乙两堆煤的质量之比是( ).(2016年11中试题) A.4:3 B.5:7 C.7:5 D.6:811.A ×B =C ,当A 一定时,B 和C 成( )比例;当C 一定时,A 和B 成( )13.如果2a=3b=4c,则a:b:c=( ).14.甲.乙.丙三个数的平均数是6,它们的比是65:32:21.甲数是( ),乙数是( ),丙数是( )15.甲.乙两数的比是5:7,乙.丙两数的比是3:4,已知甲.乙两数的和是72,则乙.丙两数的和是( )16.一支钢笔售价6元,如果红红买了这支钢笔,那么红红与聪聪的钱数之比是3:5,如果聪聪买了这支钢笔,那么红红与聪聪的钱数之比是9:11.问:两人原来共有多少钱?17.施工队修一条公路,第一天修了全程的25%,第二天修了54米,这时已修的与未修的比是2:3,这条公路长多少米?18.阳光小学四.五.六年级共有学生697人,已知六年级学生的21等于五年级学生的52,六年级学生的31等于四年级学生的72.问:四.五.六年级各有多少学生?19.甲.乙.丙三人分138张邮票,甲每取走5张乙就取走4张,乙每取走5张丙就取走6张.问:最后三个各分到多少张邮票?20.苹果树与桃树的比是7:3,工人每天给31棵苹果树和15棵桃树喷药,几天后,当给桃树喷完药时,发现苹果树还有28棵没有喷药.果园里这两种数各有多少棵?21.六年级三个班植树,任务分配是:甲班要植三个班总棵树的40%,乙.丙两个班植树的棵树的比是4:3,当甲班植树200棵时,正好完成三个班总棵树的72,那么丙班植树多少棵?22. 兄弟三人分24个苹果,每人所得个数等于其三年前的年龄数.如果老三把所得苹果数的一半平均分给老大和老二,然后老二再把现有苹果的一半平分给老大和老三,最后老大再把现有苹果数的一半平分给老二和老三,这时每人苹果数恰好相等.问:今年兄弟三人的年龄各是多少岁?。
六年级数学分数与比的应用题一、分率转化的应用题例1:电器商城运来一批电冰箱,第一周卖出全部的52,第二周卖出剩下的21,第三周比的第一周少卖31,这时还剩30台。
商城运进的这批彩电共多少台? 例2:某班共有学生51人。
男生人数的43等于女生人数的32,这个班男、女生人数各有多少人? 例3:小高和墨莫一起玩儿游戏牌,刚开始时,小高手里的牌数是墨莫手里牌数的53,玩了若干局后,小高赢了墨莫的20张牌,此时小高手里的牌数变成是墨莫手里牌数的57,请问:小高此时一共有多少张牌? 例4:棋盘上有黑白两色旗子。
其中白子占总数的52,拿走白子的一半和15个黑子后,发现这时白子是黑子的43,那么棋盘上原有棋子多少个? 二、总量不变,部分量发生调整应用题1.甲乙两仓化肥的比是7:5,甲仓运出26吨到乙仓,这时甲乙两仓化肥比是3:4,甲乙两仓原来化肥各多少吨?2.小兰,小红的图书比是5:3,小兰给小红15本后,两人图书本数相同,两人原来各有多少本图书?3.有三箱水果共重60千克,如果从第一,二箱各拿出3千克放入第三箱中,则三箱重量比是1:2:3,求三箱水果原来各重多少千克?4.一个车间有两个小组,第一小组与第二小组的人数比是5:3,如果第一小组有14人调到第二小组,则第一小组与第二小组人数比就变为1:2,原来两个小组各有多少人?5.盒子里有黑棋子和白棋子,两种棋子的个数比是5:6,如果取出8个黑棋子,放入8个白棋子,那么黑棋子和白棋子个数的比就是4:7,盒子里原来有多少个黑棋子?多少个白棋子?三、强化练习6.一个车间,女工和男工人数的比是3:2,如果增加15名男工,减少15名女工,那么女工和男工人数比就是2:3,这个车间原来有女工和男工各多少名?7.工地上有甲、乙两堆沙子,两堆沙子的质量比是3:4,如果从甲堆运出8吨放入乙堆,那么两堆沙子的质量比是1:3,甲、乙两堆沙子原来各有多少吨?8.有两只桶共装油44千克,若第一桶里倒出51,第二桶里倒进2.8千克,则两桶内的油相等,原来每只桶各装油多少千克?9.某小学学生中83是男生,男生比女生少328人,该小学共有学生多少人? 10.张明看一本故事书,每天看30页,3天后还剩全书的85没有看,这本故事书共有多少页? 11.一聪聪和笑笑共收集邮票171枚。
六年级数学分数和比的应用练习一1. 芳芳将m 54长的丝带剪成同样长的8段,每段丝带有多长?2. 把L 43橙汁分装在容量是L 41的小瓶里,可以装几瓶?3. 我们平时看到的电影画面实际上是由许多连续拍摄的照片以每张241秒的速度连续播放的。
请你算一算:半秒可以播放多少张照片?1分钟呢?4. 老爷爷跑步锻炼身体,每天跑6圈,跑半圈大约用了2分钟,照这个速度,老爷爷每天跑步要用多少时间?5. 某居民楼一共有15层,高42m 。
小萍家住6楼,小萍家的地板到地面有多高?6. 某篇论文,李叔叔3小时录入了论文的31,照这样的速度,李叔叔工作8小时,可以录入这篇论文的几分之几?还剩几分之几没完成?7. 一共有240kg 的水果糖,每袋装kg 41。
工人们才装完全部水果糖的43。
他们已经装完了多少袋?8. 一盏60瓦的灯1小时耗电503千瓦时,某个传达室除了一盏60瓦的灯外,没有别的电器。
这个传达室上个月的用电量是6千瓦时,这盏灯上个月共使用多少小时?9. 某种手机的自动化生产线在手机机板上插入每个零件的时间仅为1009秒。
3分钟可以插入多少个零件?10. 一盒药共12片,每次吃半片,每天吃3次。
问这盒药可以吃几天?11. 学校有科普读物320本,占全部图书的52。
科普读物相当于故事书的34。
(1)图书馆共有多少本书? ( 2 )图书馆有多少本故事书?12. 小莉在周末看了一本课外读物,看到35页正好是这本课外读物的75。
这本课外读物一共有多少页?13. 一杯约250ml 的鲜牛奶大约含有的钙质g 103,占一个成年人一天所需钙质的83。
一个成年人一天大约需要多少钙质?14. 人造地球卫星的速度是8千米/秒,相当于宇宙飞船速度的5740。
宇宙飞船的速度是多少?15. 在通常情况下,体积相等的冰的质量比水的质量少101。
现有一块9千克的冰,如果有一桶水的体积和这块冰的体积相等,这桶水有多重?16. 爸爸每月工资是1500元,妈妈每月工资是1000元。
分数和百分数及比的应用题例题精讲【例题1】西山小学六年级原有女生人数是男生人数的80%,后来转来女生3 人,现在女生人数是男生人数的5/6,原来全级有多少人?【答案】此题应把男生的人数看作单位“1”,要求原来全级有多少人?必须先求出男生的人数,然后再求出女生的人数,进而求出原来全级有多少人。
3÷(5/6−80%)=90(人)90×80%=72(人)90+72=162(人)答:原来全级有162 人.【例题2】一辆汽车从甲地向乙地行驶,行了一段距离后,距离乙地还有210 千米,接着又行了全程距离的20%,此时已行驶的距离与未行驶的距离比为3:2,求甲乙两地的距离。
【答案】全程的总份数:3+2=5(份)行驶的路程占全程的3/5,未行驶的路程占全程的2/5,甲乙两地的距离:210÷(2/5+20%)=350(米)答:甲乙两地的距离是350 米。
【例题3】为了学生的卫生安全,学校给每个学生配一个水杯,每只水杯3 元,美好家园打九折,汇集超市“买八送一”。
学校想买180只水杯,请你当“参谋”,算一算:到哪家购买较合算?请写出你的理由。
【答案】美好家园:3×0.9×180=486(元)汇集超市:180÷(8+1)=20 3×8×20=480(元)486 元>480 元答:汇集超市购买比较合算。
举一反三【变式1】一桶油,用去40 千克,用去的比剩下的少五分之一,这桶油共有多少千克?【答案】解:设剩下的油为X 千克(X - 40)/ X = 1/5解得:X=50共有油X+40 = 90 (千克)答:这桶油共有 90 千克。
【变式2】工程队用3 天修完一段路,第一天修的是第二天的9/10,第三天修的是第二天的6/5 倍,已知第三天比第一天多修270 米,这段路长多少米?【答案】设第二天修的为单位“1”,则第一天修9/10,第三天修6/5,270÷(6/5-9/10)=900(米)所以,这段路长=900×(1+6/5+9/10)=2790(米)【变式3】12 减去它的1/2、再减去剩下的1/3、再减去剩下的1/4、……最后减去剩下的1/12,剩下的数是()。
海学数笔六年级数学分数与比的应用题
一、分率转化的应用题12,:电器商城运来一批电冰箱,第一周卖出全部的例1,第二周卖出剩下的251,这时还剩30台。
商城运进的这批彩电共多少台?第三周比的第一周少卖3
23,这个班男、女生例2人。
男生人数的51等于女生人数的:某班共有学生34人数各有多少人?
:小高和墨莫一起玩儿游戏牌,刚开始时,小高手里的牌数是墨莫手里牌数例33张牌,此时小高手里的牌数变成是墨,玩了若干局后,小高赢了墨莫的20的57,请问:小高此时一共有多少张牌?莫手里牌数的5
2个15:棋盘上有黑白两色旗子。
其中白子占总数的,拿走白子的一半和4例53,那么棋盘上原有棋子多少个?黑子后,发现这时白子是黑子的4
页4 共页1 第
学数笔海二、总量不变,部分量发生调整应用题
例1:甲乙两仓化肥的比是7:5,甲仓运出26吨到乙仓,这时甲乙两仓化肥比是3:4,甲乙两仓原来化肥各多少吨?
例2:小兰,小红的图书比是5:3,小兰给小红15本后,两人图书本数相同,两人原来各有多少本图书?
例3:有三箱水果共重60千克,如果从第一,二箱各拿出3千克放入第三箱中,则三箱重量比是1:2:3,求三箱水果原来各重多少千克?
三、强化训练
1、一个车间有两个小组,第一小组与第二小组的人数比是5:3,如果第一小组有14人调到第二小组,则第一小组与第二小组人数比就变为1:2,原来两个小组各有多少人?
2、盒子里有黑棋子和白棋子,两种棋子的个数比是5:6,如果取出8个黑棋子,放入8个白棋子,那么黑棋子和白棋子个数的比就是4:7,盒子里原来有多少个黑棋子?多少个白棋子?
页4 共页2 第
海数笔学减,加15名男工如和男工人数的比是3:2,果增个3、一车间,
女工工间原来有女工人数比就是2:3,这个车么少15名女工,那女工和男多少名?和男工各
堆从甲质量比是3:4,如果子、乙4、工地上有甲两堆沙子,两堆沙的子、乙两堆沙1:3堆么两沙子的质量比是,甲,放运出8吨入乙堆那多少吨?原来各有
1千克,若第一桶里倒出445、有两只桶共装油千克,则两,第二桶里倒进2.85桶内的油相等,原来每只桶各装油多少千克?
3、某小学学生中6 328人,该小学共有学生多少人?是男生,男生比女生少8
5没有看,这本故事书天后还剩全书的、张明看一本故事书,每天看730页,38共有多少页?
34和笑笑收集邮票171枚。
已知聪聪收集邮票数的8、一聪聪和笑笑共收集邮票页4 共页3 第
海数笔学35数的相等。
求聪聪和笑笑分别收集邮票多少枚。
页,已读、小明读一本书,已读的页数和未读的页数之比是275:4。
如果再读9 2:1。
求这本书有多少页。
的页数和未读的页数之比是
四、简便计算999711811+×58+×41+××+8252588161616
11141 73× 166÷82015
33132653××153 – 0.6×25 + 39 + ××544134
页4 共页4 第。