油气悬架四连杆导向机构的设计
- 格式:pdf
- 大小:499.25 KB
- 文档页数:11
给定位置设计四连杆机构的方法
设计四连杆机构的方法可以有多种,以下是其中一种常见的方法:
1. 定义机构的要求和运动轨迹:首先确定机构所需完成的任务和要求,例如运动的轨迹、速度、加速度等。
2. 确定关键点和固定点:根据所需运动轨迹,确定关键点和固定点。
关键点是机构中需要移动的点,固定点是机构中位置固定不动的点。
3. 选择连杆比例:根据机构的要求和运动轨迹,选择合适的连杆比例。
连杆比例是各连杆长度的比值,可以通过解析几何或者图解法确定。
4. 绘制初始示意图:根据选择的连杆比例和关键点,画出初始的机构示意图。
示意图可以是用平面图或者3D模型表示。
5. 进行运动分析:使用运动分析方法,如连杆运动分析、速度分析、加速度分析等,来分析机构的运动特性,确保机构满足要求。
6. 进行校核和优化:对机构的各部件进行校核和优化,确保满足强度、刚度、耐久性等方面的要求。
7. 进行机构仿真:使用计算机辅助设计软件进行机构的虚拟仿真,验证机构的运动性能和可行性。
8. 进行实物制造和测试:根据设计结果,进行实物制造和测试,检验机构的实际性能和可靠性。
以上是一个基本的设计过程,具体设计方法还会因应用领域和要求的不同而有所差异。
设计四连杆机构需要结合工程设计知识和实践经验,综合考虑运动学、动力学、材料力学等多个方面的问题。
温馨小提示:本文主要介绍的是关于四杆机构的设计步骤和方法的文章,文章是由本店铺通过查阅资料,经过精心整理撰写而成。
文章的内容不一定符合大家的期望需求,还请各位根据自己的需求进行下载。
本文档下载后可以根据自己的实际情况进行任意改写,从而已达到各位的需求。
愿本篇四杆机构的设计步骤和方法能真实确切的帮助各位。
本店铺将会继续努力、改进、创新,给大家提供更加优质符合大家需求的文档。
感谢支持!(Thank you for downloading and checking it out!)阅读本篇文章之前,本店铺提供大纲预览服务,我们可以先预览文章的大纲部分,快速了解本篇的主体内容,然后根据您的需求进行文档的查看与下载。
四杆机构的设计步骤和方法(大纲)一、四杆机构概述1.1四杆机构简介1.2四杆机构的应用领域二、四杆机构设计步骤2.1确定设计目标2.2分析四杆机构类型2.3确定机构参数2.4选择合适的材料2.5计算运动与动力参数2.6进行仿真分析与优化三、四杆机构设计方法3.1几何法3.1.1尺度法3.1.2位置法3.2解析法3.2.1矩阵法3.2.2微分方程法3.3计算机辅助设计方法3.3.1CAD软件3.3.2仿真软件四、四杆机构设计实例4.1曲柄摇杆机构设计实例4.2双曲柄机构设计实例4.3双摇杆机构设计实例五、四杆机构设计注意事项5.1运动副间隙的考虑5.2刚度与强度的校核5.3疲劳寿命分析5.4安全系数的选择六、四杆机构设计总结与展望6.1设计成果总结6.2存在问题与改进方向6.3未来发展趋势与应用前景一、四杆机构概述以下是对四杆机构设计步骤和方法中的四杆机构概述部分的撰写:1.1 四杆机构简介四杆机构是由四个杆件组成的机械系统,它们通过关节连接在一起。
这四个杆件分别是:曲柄、连杆、摇杆和机架。
四杆机构根据其结构特点和运动特性,可以分为多种类型,如直动四杆机构、摆动四杆机构、转动四杆机构等。
四杆机构在工程应用中具有广泛的应用前景,其设计和研究在机械工程领域具有重要意义。
2.4.3 用作图法设计四连杆机构已知条件是支架的最大高度max H 和支架的最低高度min H 。
要求在这范围内掩护梁上铰点上下运动时的轨迹是一条直线或近似直线。
水平偏移量不允许超过75mm 。
在图2.1中,先画基线AB ,由AB 向上取max H ,在m a x H 顶端向下取一定距离(顶梁顶面至掩护梁的铰接轴中线的距离),得到I 点。
由I 点向下取(max H -min H )的长度得到H 点。
以AB 作为底座的底线,在AB 上取一定的长度得B 点,由B 点向上一定距离得J 点,J 点作为后连杆和底座得铰接轴。
由H 作一斜线HC 与水平线成角λ,必须使λ> 15。
在J 点作β角,再取JC 一定长度与HC 交于C 点,C 点作为后连杆与掩护梁得铰接轴。
以J 点为圆心,JC 为半径画一弧ab 。
以I 点为圆心,以HC 的长度为半径画弧与弧ab 交于点E 。
C 点和E 点就是后连杆在支架为最低高度和最大高度时的极限位置 。
在CH 上取一长度CD ,必须CD <CJ 。
D 点作为前连杆与掩护梁的铰接轴。
在IE 上,由E 点取EF ,使CD EF =。
作D 和F 连线的垂直二等分线,在垂直二等分线上取G 点,必须使DG 成为最长杆,又使GJ >DC ,这样CD 就是最短杆。
而且要使DG CD +<JG CJ +。
于是G 点成为前连杆与底座的铰接轴。
IH 之间的轨迹的校核。
在弧CE 内平均取几点,例如1、2、3点,依次地以1、2、3为圆心,以CD 长为半径画弧,与以G 点为圆心GD 为半径的弧交于1′、2′、3′点,连接11′、22′、33′,并都给予延长得1″、2″、3″点,使11″=22″=33″=CH 。
这样,I 3″2″1″H 所形成得曲线要接近直线。
如果差别太大,要改变四连杆的尺寸或角度,以上述的过程画出间的轨迹,使近似于直线。
同时参照液压支架各主要部件尺寸参考表最终确定前连杆长为1207mm ,后连杆长为1126mm 。
四连杆机构的建模及优化设计四连杆机构的建模及优化设计摘要四连杆是掩护式支架和支撑掩护式支架的最重要部件之一,其作用概括起来主要有两。
一是当支架由高到低变化时,借助四连杆机构使支架顶梁前端点的运动轨迹近似双纽线。
从而使支架顶梁前端点与煤壁间距离的变化大大减小,提高了管理顶板的性能;二是使支架承受较大的水平力。
这篇文章就是讨论液压支架四连杆机构的。
在文章里,我们研究了液压支架四连杆机构所面临的问题,及可以从几个方面考虑解决的方法。
文章研究的是液压支架四连杆机构,液压支架四连杆机构是矿上机械——液压支架的关键部件。
文章对四连杆机构和液压支架整体进行了研究。
文章还对四连杆机构的动态特性进行分析,在此过程中运用了SolidWorks中的COSMOSMotion 进行建模和运动仿真。
关键词:四连杆,SolidWorks,COSMOSMotion,运动仿真FOUR-BAR LINKAGE DESIGN OF THEMODELING AND OPTIMIZATIONABSTRACTFour-link is the shield support bracket and support shield one of the most important components, its role can be summarized as two. First, when the support changes from high to low, with four-bar linkage so that the front support beam trajectory point approximation lemniscates. So that the front support beam points away from the wall of the changes with the coal greatly reduced, improving the management performance of the roof; Second, the level of support to withstand greater force. This article is to discuss four hydraulic linkage mechanisms.In the article, we study the four-bar linkage hydraulic problems, and can be considered from several aspects of the solution. This paper studies the four hydraulic linkage, hydraulic four-bar linkage is mine machinery - the key hydraulic components. Article on the four-bar linkage and hydraulic support the overall studied.Paper also the dynamic characteristics of four-bar linkage analysis, in the process of the Application of the SolidWorks COSMOSMotion in modeling and motion simulation.KEYWARDS:Four-link, SolidWorks, COSMOSMotion, motion simulation.目录摘要 (I)ABSTRACT (II)1.1引言 (1)1.2 SolidWorks软件简介 (1)1.2.1 SolidWorks功能描述 (1)1.2.2 CAD技术概述 (3)1.2.3 CAD系统 (4)1.2.4 CAD技术的应用 (4)1.2.5 COSMOSmotion简介 (6)2四连杆机构建模 (7)2.1四连杆机构的作用 (7)2.2四连杆机构的几何作图法 (8)2.3 四连杆机构优选方法 (12)2.3.1 目标函索的确定 (12)2.3.2 四连杆机构的几何特征 (12)2.4运用SolidWorks建立四连杆机构模型 (12)2.5 本章小结 (15)3 对四连杆机构进行COSMOSMotion运动分析 (16)3.1COSMOSMotion软件的应用 (16)3.2四连杆机构的运动仿真过程 (17)3.2.1选择马达和设置马达参数 (18)3.2.2仿真机构的运动设置 (19)3.2.3 仿真机构的参数设置 (19)3.3 仿真数据处理 (20)结论 (32)参考文献 (33)致谢 (34)1绪论1.1引言液压传动时一项新兴技术,他被引用到工业领域只有很短的时间,液压支架已广泛应用于我国煤矿井下支护,它具有初撑力大、恒阻、安全和高效等特性,是适合我国国情的一种有效的工作面支护设备。
2.2.5 平面四杆机构的设计连杆机构的设计方法有作图法、解析法及实验法三种;其中作图法是重点。
用作图法设计四杆机构是根据设计要求及各铰链之间相对运动的几何关系,通过作图来确定四个铰链的位置。
根据不同的设计要求,作图法设计四杆机构可分为三种类型:1)按预定的连杆位置设计四杆机构。
①已知连杆 BC 的三个预定位置B 1 C 1、B 2 C 2、B 3 C 3,设计此四杆机构的实质是求固定铰链中心的位置。
此类问题可用求圆心法来解决,即作铰链 B 的各位置点连线B 1B 2、B 2B 3的中垂线,两中垂线的交点即固定铰链A 的中心。
同样,作铰链C 的各位置点连线C 1C 2、C 2 C 3的中垂线,两中垂线的交点即固定铰链 D 的中心。
若仅给定连杆 BC 的两个预定位置则设计的四杆机构有无穷多解。
②若给定固定铰链中心A 、D 的位置及连杆上标线EF 的三个预定位置,设计此四杆机构的实质是求活动铰链中心B 、C 的位置。
此类问题要用反转法求解,即把机构转化为以原连杆第一位置 E 1 F 1为机架,原机架 AD 为相对连杆,再仿上求得活动铰链 A 的三个相应位置A 、A 2’、A 3’,它们所在圆的圆心就是其相对固定铰链(实际活动铰链)B 的位置B 1,可用前述求圆心法求得。
2)按预定的两连架杆对应位置设计四杆机构。
如已知两连架杆的三组对应位置及机架长度l AD 、原动件长度l AB ,设计此四杆机构的实质是求活动铰链C 的位置。
此问题可用反转法求解,即把从动杆CD 的第一位置C 1D 看做机架,原动件AB 看做连干,求得活动铰链B 的三个相应位置B 、B 2´、B 3´,他们所在圆的圆心就是其相对固定铰链C 的位置C 1,若仅给定两连架杆的两组对应为止,则设计的四杆机构有无穷多解。
3)按给定的行程速比系数K 设计四杆机构已知行程速比系数K 及某些其他条件(如曲柄摇杆机构CD 的长度l CD 、摇杆摆角φ),设计此四杆机构的实质问题是确定曲柄的固定铰链中心A 的位置,进而定出其余三杆长度。
四杆机构设计流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!四杆机构设计流程一、需求分析阶段。
在开始四杆机构的设计之前,必须要明确设计的需求和目标。
汽车悬架--独立悬架导向机构的设计第五节独立悬架导向机构的设计一、设计要求对前轮独立悬架导向机构的要求是:1)悬架上载荷变化时,保证轮距变化不超过±4.Omm,轮距变化大会引起轮胎早期磨损。
2)悬架上载荷变化时,前轮定位参数要有合理的变化特性,车轮不应产生纵向加速度。
3)汽车转弯行驶时,应使车身侧倾角小。
在0.4g侧向加速度作用下,车身侧倾角不大于6°~7°,并使车轮与车身的倾斜同向,以增强不足转向效应。
4)汽车制动时,应使车身有抗前俯作用;加速时,有抗后仰作用。
对后轮独止:悬架导向机构的要求是:1)悬架上的载荷变化时,轮距无显著变化。
2)汽车转弯行驶时,应使车身侧倾角小,并使车轮与车身的倾斜反向,以减小过多转向效应。
此外,导向机构还应有够强度,并可靠地传递除垂直力以外的各种力和力矩。
目前,汽车上广泛采用上、下臂不等长的双横臂式独立悬架(主要用于前悬架)和滑柱摆臂(麦弗逊)式独立悬架。
下面以这两种悬架为例,分别讨论独立悬架导向机构参数的选择方法,分析导向机构参数对前轮定位参数和轮距的影响。
二、导向机构的布置参数1.侧倾中心双横臂式独立悬架的侧倾中心由如图6—24所示方式得出。
将横臂内外转动点的连线延长,以便得到极点P,并同时获得P点的高度。
将P点与车轮接地点N连接,即可在汽车轴线上获得侧倾中心W。
当横臂相互平行时(图6—25),P点位于无穷远处。
作出与其平行的通过N点的平行线,同样可获得侧倾中心W。
双横臂式独立悬架的侧倾中心的高度hw通过下式计算得出滑柱摆臂式独立悬架的侧倾中心由如图6—26所示方式得出。
从悬架与车身的固定连接点E 作活塞杆运动方向的垂直线并将下横臂线延长。
两条线的交点即为P点。
滑柱摆臂式悬架的弹簧减振器柱EG布置得越垂直,下横臂GD布置得越接近水平,则侧倾小心W就越接近地面,从而使得在车轮上跳时车轮外倾角的变化很不理想。
如加长下横臂,则可改善运动学特性。
悬架导向机构设计综述梁晓东北京科技大学车辆工程系 北京(100083)E-mail: liangxiaodong839@摘 要:悬架导向机构对悬架系统性能的发挥起着非常重要的作用。
本文分析了悬架导向机构的设计要求,并综合分析了现今车辆悬架系统所采用导向机构及其设计,对悬架系统导向机构的选型和设计有一定的参考作用。
关键词:悬架、导向机构、运动学、动力学。
中文图书分类号:U461.1The design summary of suspension guide mechanismLiang XiaodongDepartment of Automotive Engineering, University of Science and Technology Beijing, PRC,(100083)AbstractThe guide mechanism of suspension system is critical to the performance of the suspension. This paper analyzes the requirements of the guide mechanism of the suspension, and synthetically makes a deep discussion of the style and the design method of the guide mechanism, now used on the vehicles. This paper could be a reference of choosing the style of the suspension guide mechanism.Key words: Suspension, Guide mechanism, Kinematics, Dynamics.1.引言悬架是车辆重要总成之一,其性能的优劣对整车的操纵稳定性、行驶平顺性、通过性、动力性、燃料经济性、全车零部件寿命特别是轮胎寿命,以及对道路路面的损伤强度都有最直接、最明显的影响[1]。
液压支架四连杆机构设计分析摘要:针对一种液压支架四连杆机构的进行分析设计,完成一款满足现场使用的液压支架结构。
首先利用经验分析的方法确定方案,然后利用传统方法进行机构设计,再利用Simulink 进行机构的运动精度验证和优化校正,最终实现对机构参数的影响因素探明和达到设计效果。
关键词:液压支架;四连杆机构;设计分析1引言液压支架是一个多连杆机构,整个液压支架连杆机构的运动取决于顶梁、底座和前、后连杆组成的四连杆机构。
四连杆机构作为液压支架机构组成,不仅具有约束位移的作用,还应有提高支架的稳定性和其他功能,所以对支架系统简化而出的四连杆机构作分析和设计是十分必要的。
2液压支架连杆机构的几何特性液压支架的简化图,如下图1示。
连杆机构有且仅有一个自由度,可以通过立柱和均衡千斤顶约束这个仅存的自由度,让连杆机构实现定位支撑和稳定机架的功能。
液压支架简化图承载的过程中需要顶梁保持水平,所以顶梁的主要承载防护能力将和E点的位置相关联。
在设计液压支架的时候需要重点研究去掉顶梁、立柱和均衡千斤顶后的四连杆机构,该机构由底座、前后连杆和掩护梁组成。
依照四连杆机构的运行轨迹经验,在保证顶梁水平的同时,E点和顶梁前点的轨迹类似于一条S形曲线,使用中如果这条S型曲线的水平误差e越大,越不利于支撑护顶。
所以需要合理的设计机构参数,控制顶梁前端的水平误差e 。
另外,四连杆机构不仅具有定位功能,同时兼备支撑防护和放顶煤的功能,所以需要对机构各杆件的行程做出一定的约束,这也是液压支架四连杆设计的主要约束条件。
(1)支架在HMAX与HMIN之间升降时,为了保证可靠的支护范围,顶部梁前端与煤壁间的距离e变化应该小于0.1m,最优取值为0.07m左右。
(2)支架在HMAX与HMIN,对顶梁与掩护梁之间的夹角P以及后部连杆与底端平面的夹角Q要求如下:支架在HMAX时,为防止连杆机构发生摩檫力条件下的自锁行为需要对掩护梁和后连杆的垂向夹角做出一定的约束,按照工程设计经验一般要求PMAX=52~62°,QMAX=75~85°。
四连杆机构设计半角转动法第一篇:四连杆机构设计半角转动法已知:连杆的三个给定位置E1F1、E2F2、E3F3 两固定铰链中心A和D。
要求:设计该铰链四杆机构,即确定连杆上铰链中心B和C 的位置。
分析:此设计有以下两种解法:(1)转换机构法,即把原连杆EF某一位置作为机架,原机架AD作为相对连杆来进行求解.(2)半角法根据题设,如果不考虑连杆由位置E1F1到E2F2的运动过程,而仅就其所占据的两个位置E1F1和E2F2而言,可以认为连杆是饶一固定点R12由位置E1F1到E2F2的.其所转过的角度θ12称为转角.点R12称为转动极点或极点,它是由E1E2的中垂线e12和F1F2的中垂线f12的交点.因E和F为同一构件上的点,所以它们绕同一点R12转过的角度应相同,故有∠E1R12E2=∠F1R12F2=θ12, 而∠E1R12e12=∠F1R12f12=θ12/2.,即为转角的半角,简称半角。
由于当连杆绕极点R12转过θ2角时,其上任一点均将绕R12点转过θ12角,所以若作该任意点两位置联线的中垂线,也必过极点R12,而且若将该点与极点R12相联,则该联线与该点两位置联线中垂线的夹角亦必为半角θ12/2。
由此可知,在半角的两条边中,其一边是中垂线,固定铰链必取在此中垂线上。
而连架杆与连杆相联的活动铰链便应取在半角的另一条边上.而且不论将半角转至什么位置都是如此。
下面就是用的半角法.1、作E1E2的中垂线e12,作F1F2的中垂线f12,两线相交得转动极点 R12。
作E1E3的中垂线e13,作F1F3的中垂线f13,两线相交得转动极点R13。
同时作出对应的转角θ31和θ。
2、从转动极点R12和R13分别向固定铰链中心A作射线R12A、R13A,绕自己的极点各转过-θ12/2和-θ13/2角作两条直线,两直线的交点即为铰链中心B1点。
3、从转动极点R12、R13分别向固定铰链中心D作射线R12D、R13D,绕自己的极点各转过-θ12/2 和-θ13/2角作两条直线,两直线的交点即为铰链中心C1点。
5.5 悬架导向杆的设计在进行运动学与弹性运动学分析的情况下,可以确定导向杆长度及形状,下面主要介绍怎样进行断面与结构设计的问题。
双剪切式连接适用于当悬架臂由“开放”式U-型横梁制成,而该横梁可能由一个盘式弹簧支撑的。
然而配合元件,比如说车轮托架,必须包含一个能够用来安装铰链外衬套的孔,(在该例子中)而若它的轴线位于与冲模模具分模线FT相同方向上则是不利的。
如果刚才提到的这条线通过孔的话,对表面进行磨削加工和采用何种方法加工出来的孔一样将被证实是非常必要的。
如果车轮托架为铸造件的话,则当采用模芯铸造时可以省去一些机械加工工序。
若连杆内部的末端制造方式与外部相同,那么这将要求汽车车身或副车架要求安置一个其上包含有一个衬套的托架。
托架上的孔可能也必须要进行必要的机加工,该孔的加工量甚至比车轮托架上的孔相对要少一些。
这种连杆应把一根管子焊接在其内部末端处,以使一个底盘的侧面托架可带两个法兰盘。
有助于我们在当装配件上有反复的额外的花销负担时,也许将其设计得尽可能简单是毫无意义的。
图 5.5.1 开放式侧面结构在转矩下的弯曲变形及结构形式图5.5.1中的悬架臂通常要支撑一个附加载荷;由于悬架在空间上的运动,会使其在任意方向上都有可能产生一个角度偏移。
在铰链的终点处的轴线上则会发生相互扭曲,导致在铰链节点出的锥形偏角。
由此圆锥角引起的转动惯量加于连杆上一个扭矩图5.5.1。
有着“开放型”截面的连接可以抵抗一部分扭矩,并通过横截面的受扭产生抗扭力;铰链内衬套的接触面之间被制成具有一个相互反向的α(')角的偏斜,图5.5.1a。
这个偏斜加重了悬臂连接件与衬套之间的摩擦,这可能会造成微小的滑移以致会带来磨损腐蚀的危险或造成连接处的逐步松动。
因此,象这样的开放式断面的连接最好是用一个带有封闭孔洞的结构,封闭式中空的结构具有较高的扭转刚度——至少应在没有铰链连接配合处安装成中空的。
其它的可能性是为了通过在其中一个铰链的末端合成合适的球窝接头的来减轻杆件的扭矩。