非线性补偿
- 格式:ppt
- 大小:336.50 KB
- 文档页数:13
aa317wk272010-03-17 13:44:03(一)设计思路1.测量方法:多周期同步测量法( 倒数计数器法)从根本上消除了±1误差,实现了等精度测量2.实现技术的选择:硬件实现法(可选的器件有通用的SSI/MSI/LSI集成电路、专用集成电路、可编程逻辑器件——如isPLD器件等);软件实现法(可选的平台有PC机、单片机、DSP器件等)将这两种结合来实现设计要求。
3.信号发生器的选择(频率范围900—1300.0(KHz))SG-4162AD高频信号发生器/计频器:频率范围:100KHZ-150MHZ◆分6档三次谐波到4 50MHZ±5%◆输出电压:100MVRMS◆低频输出:1KHZ2VRMS3.大概的系统设计原理框图:(二)子系统设计1.输入通道的设计。
输入通道是由前置放大器和整形器组成的,所以要对前置放大器的增益和带宽指标进行估计。
为了能准确测量信号,将输入信号经过一个放大整形电路。
其具体实施方案为:将输入信号经过LM358运放放大,再通过74LS132整形,此时的信号还不能直接送入单片机,这是因为在硬件上CPU对INT0和INT1引脚的信号不能控制,解决这个问题要通过硬件,再配合软件来解决。
2.预置闸门时间发生电路设计。
闸门时间的确定,可以先由一个555定时器产生一个脉冲信号,将555产生的脉冲信号送入到74LS90十进制计数器当中,由于74LS90具有二-五进制混合计数的功能,所以可以用它来实现五进制计数,将74LS90的输出接到3—8线译码器74LS138的输入端,再将译码器的输出端接上五个发光二极管,这样就可以实现硬件上的闸门时间控制。
但是考虑到硬件实现上的复杂性,可以通过软件上来实现,就是将五个发光二极管直接接到单片机的P1口由软件上来实现,通过按键来改变它的闸门时间。
3.数码显示电路的设计。
该部分电路是由单向八位移位寄存器74LS164和数码管组成的。
光纤通信系统中非线性损伤补偿技术的研究徐梦然;崔晟;李俊【摘要】Along with the increase of transmission capacity and distance driven by broadband applications,the Non-Linear Dis-tortion (NLD)of signals in fiber-optic transmissions has become one of the major limiting factors to fiber-optic communication systems.This paper summarizes the latest developments of Non-Linear Compensation (NLC)technologies in the optical and e-lectrical domains,analyzes and compares their mechanisms,characteristics and practical applications with the focus on Digital Signal Processing (DSP)-based NLC for digital coherent optical communication systems and the trend of their future develop-ment.%随着传输容量和传输距离的增加,光纤传输中信号的 NLD(非线性损伤)已经成为限制光纤通信系统性能的主要因素之一。
文章系统地总结了光域和电域 NLC(非线性补偿)技术的最新发展动态,对各种 NLC 技术的机制、特点及其实用性进行了分析比较,并重点介绍了数字相干光通信系统中基于DSP(数字信号处理)的 NLC技术,探讨了其未来的发展方向。
光电传感器电路设计中的非线性补偿方法引言:随着科技的发展,光电传感器在各种应用领域都得到了广泛的应用。
在光电传感器的电路设计中,非线性补偿是非常重要的一环。
由于光电传感器在不同工作条件下,输出信号的电压-光强度特性曲线可能会发生非线性畸变,而这可能会对传感器的性能和测量结果产生重大影响。
因此,采取适当的非线性补偿方法来修正这些非线性特性是至关重要的。
一、什么是光电传感器的非线性补偿当光电传感器在工作过程中,输出信号的电压-光强度特性曲线并非总是呈线性关系,而是会受到多种因素的影响而产生非线性的畸变。
这些因素可能包括电源波动、温度变化、器件参数变化以及电路中其他干扰源的存在。
非线性补偿的目的是通过采取一系列的补偿方法,使得输出信号的非线性变换能够得到有效的控制和修正。
二、非线性补偿方法的分类1. 数学模型法数学模型法是一种基于数学原理的非线性补偿方法。
通过对光电传感器输出信号的特性进行建模,可以根据建立的数学模型对非线性特性进行精确补偿。
常见的数学模型包括多项式模型、指数模型和对数模型等,其中多项式模型是最常用的一种。
采用数学模型法的优点是其理论基础较为牢固,准确性较高,能够适应不同的传感器和非线性特性。
然而,数学模型法需要进行比较复杂的计算和模型参数的优化,对硬件资源和计算能力有一定要求。
2. 数据修正法数据修正法是基于实验数据的非线性补偿方法。
通过预先获取光电传感器在不同光强度条件下的输出信号数据,可以对实验数据进行合理的加工和修正,从而得到补偿后的数据。
常见的数据修正方法包括插值法、拟合法和曲线拟合法等。
数据修正法的优点是简单易行,不需要太多的理论分析和计算,适用于一些对准确性要求相对较低的应用场景。
然而,数据修正法可能受到实验数据收集误差的影响,需要进行较多的实验和数据处理,提供的补偿结果可能存在一定的误差。
3. 模拟电路设计法模拟电路设计法是通过电路设计来实现非线性补偿的方法。
典型的非线性补偿电路包括自校正电路和非线性反馈电路。
电子科技传感器信号的线性化处理与非线性补偿空军工程大学工程学院(西安710038) 贾智伟 汪 诚北方交通大学(北京100044) 刘红飞 摘 要 主要介绍了两种对传感器输出信号进行线性化处理的方法;同时,对传感器不可避免的非线性提出了线性补偿的方法。
关键词 传感器 非线性 线性化1 概述 在数字仪表中,对非电量的数字化测量所使用的传感器的一个重要指标就是数据的线性化。
但对于传感器来说,输出信号的非线性是绝对的。
这势必难以保证系统的精度与准确度,有时还得规定传感器的使用范围。
为了提高仪器和系统的精度,扩大其使用范围和提高系统的性能价格比,对传感器输出信号或其他模拟信号进行线性化处理与非线性补偿就显得尤为重要。
对传感器信号的线性化处理与非线性补偿方法比较多,但是大都存在如下缺点:电路复杂并且代价也高,从而不利于工程实际。
本文介绍的对传感器输出信号进行线性化处理与非线性补偿的方法,不仅精度高,而且还具有电路简单等优点。
2 线性化处理2.1 函数运算法有些类型的传感器的系统特性可以用函数关系来表示,对于此种类型的传感器,可以把其运算规则(反函数的)存入系统的微处理器,这样每测得一个参量,就可以通过处理器的计算得到一个需要的相应物理量。
例如振筒式传感器的输出信号(频率F)和输入信号(压强P)存在如下的函数关系:F=F01+KP把它的反函数关系存入系统中的处理器后,当测得一个F量时,经过计算就可以得到所需要的P值。
2.2 可变电压源电桥法不平衡单臂电桥已经广泛应用于自动化仪表的传感器线路中。
其原理是:用桥路中的一个桥臂或几个桥臂作为传感器输出的电阻信号,由于传感器的输出电阻信号跟被测物理量或化学参数呈现线性关系,所以电桥的输出信号V0能反映出被测物理量或化学量的变化。
但是由于一般的单臂电桥采用稳压电源供电,从而使得其输出电位与桥臂电阻的变化并不呈线性关系,有时还存在严重的非线性误差。
为了提高其测量的精度和扩大其应用范围,下面提出了一种既简单又能从根本上实现其特性关系线性化的方法———可变电压源单臂电桥。
2019年第2期农机使用与维修17输出电压为零。
当称重传感器负载,弹性敏感元件的应变会引起电阻应变片产生形变,理论情况下,负载力与电阻应变片的应变量应该成正比关系,但受到加工和安装以及材料的非线性影响,使负载力与应变量呈现一定的非线性关系。
此时图中的电阻应变片队和R4被拉伸,电阻值增大,而R2、R3被压缩,电阻值减小。
由于不同位置的电阻发生改变,此时电桥失去平衡,传感器会生成并输出压力测量电压U2,由于U2与所受负载成非线性关系,当负载越大,称重传感器的非线性误差也就越大[2]。
U图1电阻式压力传感器结构原理2.2非线性误差补偿方案为减少称重传感器非线性误差的影响,通过一定的技 术手段提升称重传感器输人和输出的线性关系程度,以保 证传感器工作过程的准确性和可靠性,提高测量、传输和 控制过程的稳定性。
对于称重传感器非线性误差的补偿 方法很多,按照补偿形式大体可以分为硬件补偿和人工神 经网络软件补偿两大类。
硬件补偿主要是利用一定的元器件或电子线路进行 非线性误差的矫正,其特点是相对简单便捷,是传统称重 传感器非线性误差补偿的常用方法。
随着生产力的不断 进步,工业上对称重传感器的非线性误差补偿精度提出了 更高的要求。
由于硬件补偿受到电子器件漂移和技术能 力的影响,难以做到全程补偿,其在准确性和可靠性上难 以满足更高的要求标准,因此,利用更新的计算机技术和 函数原理的软件补偿方式被快速开发。
近年来,通过神经 网络对称重传感器进行非线性误差补偿受到了越来越多 专业人士的重视,人工神经网络的函数逼近功能说明:对 于任意的连续函数或映射关系,必然会存在一个3层的前 向网络,能够以任意准确度逼近此函数或映射关系,如图 2所示。
除上述两种补偿方式外,还可通过多项式拟合法 和建立传感器的分度表的方法实现非线性误差的补偿,但 由于多项式拟合法复杂程度高,传感器分度表的存储器容 量有限,现阶段的使用量也都在逐渐减少[3]。