10.非线性补偿-过程控制(自动化)解析
- 格式:ppt
- 大小:1.38 MB
- 文档页数:30
自动控制原理非线性分析知识点总结自动控制原理是工程领域中的一门重要学科,它研究的是如何通过设备和技术手段,使得系统的运行能够自动控制并满足特定的性能要求。
非线性分析则是探讨系统在非线性条件下的行为特性。
在这篇文章中,我们将对自动控制原理中的非线性分析知识点进行总结。
一、非线性系统的定义与特点非线性系统是指系统的输出与输入之间的关系不是简单的比例关系,而是呈现出非线性的特征。
与线性系统相比,非线性系统具有以下几个特点:1. 非线性叠加性:系统的输出并不是输入信号的简单叠加,而是受到系统自身状态和非线性特性的影响。
2. 非线性失稳性:非线性系统可能会出现失稳现象,即系统的输出会趋向于无穷大或无穷小。
3. 非线性动态行为:非线性系统在输入信号发生变化时,其输出信号的变化可能是不连续的,出现跳跃、震荡等现象。
二、非线性系统的分析方法1. 相平面分析法:通过绘制相平面图,可以直观地了解系统的非线性行为。
相平面图可以显示出系统的轨迹、奇点等信息,帮助我们分析系统的稳定性和动态特性。
2. 频域分析法:利用频域分析方法,我们可以对非线性系统进行频谱分析,找出系统的频率响应和频率特性。
通过分析系统的幅频特性和相频特性,我们可以判断系统的稳定性和动态性能。
3. 时域响应分析法:时域分析是对系统的输入信号与输出响应进行时间上的观察和分析。
通过观察和分析系统的阶跃响应、脉冲响应、频率响应等,可以推断出系统的稳定性和动态特性。
4. 广义函数法:广义函数是处理非线性系统时常用的一种数学方法。
通过引入广义函数,我们可以简化非线性系统的数学描述,方便进行分析与计算。
5. 数值模拟方法:对于复杂的非线性系统,我们可以利用计算机进行仿真和数值模拟,通过对系统的模拟实验,得到系统的动态行为和性能参数。
三、非线性系统的稳定性分析1. 稳定性概念:稳定性是衡量系统响应的一种重要指标。
对于非线性系统,我们通常关注的是渐近稳定性和有界稳定性。
过程控制系统概述杨峰电信学院06自动化3班学号:40604010321所谓过程控制(Process Control)是指根据工业生产过程的特点,采用测量仪表、执行机构和计算机等自动化工具,应用控制理论,设计工业生产过程控制系统,实现工业生产过程自动化。
一﹑过程控制的特点随着生产过程的连续化﹑大型化和不断强化, 随着对过程内在规律的进一步了解,以及仪表﹑计算机技术的不断发展, 生产过程控制技术近年来发展异常迅速.所谓生产过程自动化, 一般指工业生产中(如石油﹑化工﹑冶金﹑炼焦﹑造纸﹑建材﹑陶瓷及热力发电等)连续的或按一定程序周期进行的生产过程的自动控制.凡是采用模拟或数字控制方式对生产过程的某一或某些物理参数(如温度﹑压力﹑流量等)进行的自动控制统称为过程控制.生产过程的自动控制, 一般要求保持过程进行中的有关参数为一定值或按一定规律变化. 由于被控参数不但受内﹑外界各种条件的影响, 而且各参数之间也会相互影响, 这就给对某些参数进行自动控制增加了复杂性和困难性. 除此之外, 过程控制尚有如下一些特点:1. 被控对象的多样性.对生产过程进行有效的控制, 首先得认识被控对象的行为特征, 并用数学模型给以表征, 这叫对象特性的辨识. 由于被控对象多样性这一特点, 就给辨识对象特性带来一定的困难.2. 被控对象存在滞后.由于生产过程大多在比较庞大的设备内进行, 对象的储存能力大, 惯性也大. 在热工生产过程中, 内部介质的流动和热量转移都存在一定的阻力, 因此对象一般均存在滞后性. 由自动控制理论可知, 如系统中某一环节具有较大的滞后特性, 将对系统的稳定性和动态质量指标带来不利的影响, 增加控制的难度.3. 被控对象一般具有非线性特点.当被控对象具有的非线性特性较明显而不能忽略不计时, 系统为非线性系统, 必需用非线性理论来设计控制系统, 设计的难度较高. 如将具有明显的非线性特性的被控对象经线性化处理后近似成线性对象, 用线性理论来设计控制系统, 由于被控对象的动态特性有明显的差别, 难以达到理想的控制目的.4. 控制系统比较复杂.控制系统的复杂性表现之一是其运行现场具有较多的干扰因素. 基于生产安全上的考虑, 应使控制系统具有很高的可靠性.由于以上特点, 要完全通过理论计算进行系统设计与控制器的参数整定至今乃存在相当的困难, 一般是通过理论计算与现场调整的方法, 达到过程控制的目的.二﹑过程控制系统的组成过程控制系统的组成, 一般可用如下框图表示被控参数(变量)y(t ) ;控制(操纵)参数(变量)q(t) ;扰动量f(t) ;给定值r(t) ;当前值z(t); 偏差e(t) ;控制作用u(t)三、过程控制系统的分类按系统的结构特点来分反馈控制系统,前馈控制系统,复合控制系统(前馈-反馈控制系统)按给定值信号的特点来分定值控制系统,随动控制系统1.反馈控制系统偏差值是控制的依据,最后达到减小或消除偏差的目的。
4. 前馈控制和反馈控制各有什么特点?为什么采用前馈-反馈复合系统将能较大地改善系统的控制品质?答:前馈控制的特点是:根据干扰工作;及时;精度不高,实施困难;只对某个干扰有克服作用.反馈的特点作用依据是偏差;不及时:精度高,实施方便,对所有干扰都有克服作用.由于两种控制方式优缺点互补, 所以前馈-反馈复合系统将能较大地改善系统的控制品质.5、PID 调节器的参数、、对控制性能各有什么影响?p K I T D T 答:(1)比例增益反映比例作用的强弱,越大,比例作用越强,反之亦然。
p K p K 比例控制克服干扰能力较强、控制及时、过渡时间短,但在过渡过程终了时存在余差;(2)积分时间反映积分作用的强弱,越小,积分作用越强,反之亦然。
积分I T I T 作用会使系统稳定性降低,但在过渡过程结束时无余差;(3)微分时间反映积分作用的强弱,越大,积分作用越强,反之亦然。
微D T D T 分作用能产生超前的控制作用,可以减少超调,减少调节时间;但对噪声干扰有放大作用。
6、与反馈控制系统相比,前馈控制系统有哪些特点?答:(1)反馈控制的本质是基于偏差来消除偏差,而前馈控制是基于扰动来消除扰动对被控量的影响;(2)反馈控制是“不及时”的,而前馈控制器可“及时”动作;(3)反馈控制属闭环控制,而前馈控制属开环控制;(4)反馈控制对闭环内扰动均有校正作用,而前馈控制具有制定性补偿的局限性;(5)反馈控制规律通常有P 、PI 、PD 、PID 等,而前馈控制规律比较复杂。
7、简述“积分饱和现象”产生的内因和外因。
答:造成积分饱和现象的内因是控制器包含积分控制作用,外因是控制器长期存在偏差。
在偏差长期存在的条件下,控制器输出会不断增加或减小,直到极限值引起积分饱和。
8、如图所示的压力容器,采用改变气体排出量以维持 容器内压力恒定:(1)调节阀应选择气开式还是气关式?请说明原因。
(2)压力控制器(PC)应为正作用还是反作用?请说明原因。
自动化考研中的非线性控制与应用自动化控制是现代工程技术的重要分支,也是考研自动化专业的必修内容。
其中,非线性控制是自动化控制领域的核心概念之一,它在工程实践中有着广泛的应用。
本文将探讨自动化考研中的非线性控制理论及其应用。
一、非线性控制的基本概念非线性控制是相对于线性控制而言的,它研究的是非线性系统的控制方法。
在实际工程中,很多系统都是非线性的,例如倒立摆系统、飞行器姿态控制系统等。
非线性控制理论与方法的研究,可以帮助我们解决这些复杂系统的控制问题。
非线性控制与线性控制相比,主要体现在以下几个方面:1.线性控制是在系统性质被近似看作线性的情况下进行的,而非线性控制则考虑了系统的非线性特性;2.线性控制的理论和方法相对成熟,而非线性控制的理论和方法更加复杂,需要更高的数学基础;3.非线性控制的设计需要综合考虑系统的动态特性、非线性特性以及稳定性等因素。
二、非线性控制的应用领域非线性控制理论及其方法在实际工程中有广泛的应用,主要体现在以下几个领域:1.工业自动化控制工业过程往往是复杂而非线性的,如化工过程、电力系统、机械运动系统等。
采用非线性控制方法,可以更好地适应工业过程的非线性特点,提高控制系统的性能和稳定性。
2.航空航天领域飞行器姿态控制是一个典型的非线性控制问题。
在飞行器飞行过程中,由于存在气动力、重力、地球自转等非线性因素,线性控制方法往往无法满足要求。
采用非线性控制理论,可以更精确地控制飞行器的姿态,提高航空器的稳定性和飞行性能。
3.机器人控制机器人是一种复杂的非线性系统,具有高度的自由度和非线性特性。
非线性控制理论在机器人的路径规划、动力学建模以及运动控制等方面具有重要的应用价值。
采用非线性控制方法,可以实现更高精度的机器人运动控制和路径规划。
三、非线性控制方法非线性控制方法主要包括:模型参考自适应控制、滑模控制、非线性自适应控制、反演控制等。
这些方法各有特点,适用于不同的非线性系统。
第一章绪论1、过程控制概述过程控制是生产过程自动化的简称。
它泛指石油、化工、电力、冶金、核能等工业生产中连续的或按一定周期程序进行的生产过程自动控制,是自动化技术的重要组成部分。
在现代工业生产过程自动化中,过程控制技术可实现各种最优的技术经济指标、提高经济效益和劳动生产率、节约能源、改善劳动条件、保护环境卫生等方面起着越来越大的作用。
过程控制通常是对生产过程中的压力、液位、流量、温度、PH值、成分和物性等工艺参数进行控制,使其保持为定值或按一定规律变化,以确保产品质量和生产安全,并使生产过程按最优化目标自动尽行。
2、过程控制的特点(1)系统由被控过程和检测控制仪表组成;(2)被控过程复杂多样,通用控制系统难以设计;(3)控制方案丰富多彩,控制要求越来越高;(4)控制过程大多属于慢变过程与参量控制;(5)定值控制是过程控制的主要形式。
3、过程控制的要求与任务要求:(1)安全性:针对易燃易爆特点设计;参数越线报警、链锁保护;故障诊断,容错控制。
(2)稳定性:抑制外界干扰,保证正常运行。
(3)经济性:降低成本提高效率。
掌握工艺流程和被控对象静态、动态特性,运用控制理论和一定的技术手段(计算机、自动化仪表)设及合理系统。
任务:指在了解、掌握工艺流程和被控过程的静态与动态特性的基础上,应用控制理论分析和设计符合上述三项要求的过程控制系统,并采用适宜的技术手段(如自动化仪表和计算机)加以实现。
4、过程控制的功能测量变送与执行功能;操作安全与环境保护功能;常规控制与高级控制功能;实时优化功能;决策管理与计划调度功能。
5、过程控制系统的组成被控参数(亦称系统输出)y(t):被控过程内要求保持稳定的工艺参数;控制参数(亦称操作变量控制介质)q(t):使被控参数保持期望值的物料量或能量;干扰量f(t):作用于被控过程并引起被控参数变化的各种因数;设定值r(t):与被控参数相对应的设定值;反馈值z(t):被控参数经测量变送后的实际测量值;偏差e(t):设定值与反馈值之差;控制作用u(t):控制器的输出值。