上拉电路
- 格式:doc
- 大小:33.50 KB
- 文档页数:4
串阻和上下拉电阻的顺序
串阻和上下拉电阻的顺序是在电路设计中非常重要的一个问题。
在讨论这个问题之前,我们需要先了解串阻和上下拉电阻的基本概念。
串阻,也称串联电阻,是将两个或多个电阻按照一定的顺序连接在一起,使它们的电
阻值相加得到一个总电阻值的电路组件。
在数字电路中,串阻通常用于将多个逻辑门连接
在一起,以形成更复杂的逻辑功能。
串阻的电路图如下图所示。
上下拉电阻是连接在数字电路输入端的电阻,用于确定电路的输入电平状态。
上拉电
阻连接到输入端并将其拉高到高电平,而下拉电阻连接到输入端并将其拉低到低电平。
上
下拉电阻通常用于开关电路、计数器、触发器等数字电路中。
下图展示了上拉电阻和下拉
电阻的电路图。
在设计数字电路时,我们需要考虑串阻和上下拉电阻的顺序。
一般来说,上下拉电阻
先放置,然后才放置串阻。
这是因为上下拉电阻会影响输入端的电平,而串阻只是改变电
路总电阻。
如果我们首先放置串阻,电路输入端的电平状态可能会受到串阻的干扰,并导
致电路不正常运行。
总的来说,串阻和上下拉电阻的顺序应该是上下拉电阻先放置,然后再放置串阻。
这
可以确保电路的输入端始终处于正确的电平状态,从而保证电路的正常运行。
上拉电阻下拉电阻的原理和作用上拉电阻和下拉电阻是电子电路设计中常用的元件,其原理和作用如下:1.上拉电阻:上拉电阻是一种电阻器,它的作用是将一个信号线拉高到高电平状态。
在数字电路中,上拉电阻通常用来确保信号线在断开连接时保持逻辑高电平,防止其浮动。
当信号线未连接到任何驱动器或信号源时,上拉电阻会向信号线提供一个连接到电源高电平的路径,从而确保信号线保持在逻辑高电平。
上拉电阻的原理是利用电阻的阻值将信号线连接到电源引脚,与电源之间形成一个电阻分压电路。
当信号线未被外部驱动时,上拉电阻会通过电流流向信号线,将其拉高到电源电压,使其保持逻辑高电平。
上拉电阻常用于开关电路、输入/输出电路、微控制器引脚等地方。
例如,在微控制器的输入引脚上加上上拉电阻,当外部信号未连接时,输入引脚会受到上拉电阻的影响,保持在逻辑高电平状态。
当外部信号连接并给出低电平信号时,外部信号能够更容易地拉低输入引脚电压,使微控制器能够检测到这个低电平信号。
2.下拉电阻:下拉电阻与上拉电阻相反,它的作用是将一个信号线拉低到低电平状态。
在数字电路中,下拉电阻通常用来确保信号线在断开连接时保持逻辑低电平,防止其浮动。
它通过提供一个连接到地的路径,将信号线拉低到地电位。
下拉电阻的原理也是利用电阻的阻值将信号线连接到地引脚,与地之间形成一个电阻分压电路。
当信号线未被外部驱动时,下拉电阻会通过电流流向地,将其拉低到地电位,使其保持逻辑低电平。
下拉电阻同样常用于开关电路、输入/输出电路、微控制器引脚等地方。
例如,在微控制器的输入引脚上加上下拉电阻,当外部信号未连接时,输入引脚会受到下拉电阻的影响,保持在逻辑低电平状态。
当外部信号连接并给出高电平信号时,外部信号能够更容易地拉高输入引脚电压,使微控制器能够检测到这个高电平信号。
总之,上拉电阻和下拉电阻在电子电路设计中起着重要的作用。
它们能够确保信号线的稳定性,防止浮动和干扰,从而提高电路的可靠性和抗干扰能力。
上拉电阻和下拉电阻的作用
上拉电阻和下拉电阻是在数字电路中常用的元件,主要用于控制信号线的电平。
它们的作用如下:
1. 上拉电阻的作用:
- 在逻辑门(如非门、与门等)输入处,当输入信号未连接时,上拉电阻会将输入信号线拉高到高电平。
- 在开关或按键控制电路中,上拉电阻可以将控制信号线拉高到高电平,以保证信号线的正常工作状态。
- 在I/O口输入模式中,上拉电阻可以提供一个默认的高电平输入状态。
2. 下拉电阻的作用:
- 在逻辑门输入处,当输入信号未连接时,下拉电阻会将输入信号线拉低到低电平。
- 在开关或按键控制电路中,下拉电阻可以将控制信号线拉低到低电平,以保证信号线的正常工作状态。
- 在I/O口输入模式中,下拉电阻可以提供一个默认的低电平输入状态。
总的来说,上拉电阻和下拉电阻都被用于确保信号线在未连接或未运行状态下具有明确的电平,从而避免不确定性及电路噪声的干扰。
npn三级管和pnp三极管的上拉电阻
在使用PNP三极管或NPN三极管时,可以通过上拉电阻来确保电路正常工作。
对于NPN三极管:
1. 上拉电阻的作用是将基极电压拉高,使其处于截止状态时,开关处于关闭状态。
2. 上拉电阻的连接方式是将上拉电阻的一端连接到基极,并将另一端连接到正电源,通常为电路的Vcc。
3. 上拉电阻的数值应根据电路的特性和要求来选择,一般在几十至几百千欧姆之间。
4. 在NPN三极管开关电路中,当控制信号为低电平时,上拉电阻使得基极电压高于截止电压,三极管处于饱和状态,开关打开;而当控制信号为高电平时,基极电压低于截止电压,三极管处于截止状态,开关关闭。
对于PNP三极管:
1. PNP三极管的工作原理与NPN三极管相反,所以上拉电阻的作用也是相反的。
2. 上拉电阻的一端连接到PNP三极管的基极,并将另一端连接到负电源(通常为电路的GND)。
3. 上拉电阻的数值也应根据电路的特性和要求来选择,一般在几十至几百千欧姆之间。
4. 在PNP三极管开关电路中,当控制信号为低电平时,上拉电阻使得基极电压低于截止电压,三极管处于饱和状态,开关打开;而当控制信号为高电平时,基极电压高于截止电压,三极管处于截止状态,开关关闭。
需要注意的是,上拉电阻的数值应根据电路所需的电流和电压来选择,以确保电路的正常工作。
什么是上拉电阻?上拉电阻和下拉电阻都是电阻元器件,所谓上拉电阻就是接电源正极,下拉的就是接负极或地。
上拉就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用。
下拉同理,也是将不确定的信号通过一个电阻钳位在低电平。
那么,上拉电阻和下拉电阻的用处和区别分别又是什么呢?一、上拉电阻和下拉电阻是什么上拉就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用。
而下拉电阻是直接接到地上,接二极管的时候电阻末端是低电平,将不确定的信号通过一个电阻钳位在低电平。
上拉是对器件输入电流,下拉是输出电流;强弱只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提供电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
二、上拉电阻和下拉电阻的用处和区别上拉电阻和下拉电阻二者共同的作用是:避免电压的“悬浮”,造成电路的不稳定。
上拉电阻:1、概念:将一个不确定的信号,通过一个电阻与电源VCC相连,固定在高电平;2、上拉是对器件注入电流,灌电流;3、当一个接有上拉电阻的IO端口设置为输入状态时,它的常态为高电平。
下拉电阻:1、概念:将一个不确定的信号,通过一个电阻与地GND相连,固定在低电平;2、下拉是从器件输出电流,拉电流;3、当一个接有下拉电阻的IO端口设置为输入状态时,它的常态为低电平。
上拉是对器件注入电流,下拉是输出电流,弱强只是上拉电阻的阻值不同,没有什么严格区分,对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
由此可见,电源到器件引脚上的电阻叫上拉电阻,作用是平时使用该引脚为高电平;地(GND)到器件引脚的电阻叫下拉电阻,作用是平时使该引脚为低电平。
上拉电阻和下拉电阻什么是上拉电阻和下拉电阻?在电子电路中,上拉电阻和下拉电阻是常用于控制和稳定电路的元件。
它们主要用于输入引脚的电平的控制,帮助确保信号稳定和可靠。
上拉电阻是指连接在信号引脚和正电源之间的电阻,用于将信号引脚的电平拉高。
当信号引脚未接外部信号时,上拉电阻会将引脚的电平拉高到正电源电平。
通常,上拉电阻的阻值比较大,一般在10kΩ到100kΩ之间。
下拉电阻则是连接在信号引脚和地之间的电阻,用于将信号引脚的电平拉低。
当信号引脚未接外部信号时,下拉电阻会将引脚的电平拉低到地电平。
下拉电阻的阻值与上拉电阻类似,通常也在10kΩ到100kΩ之间。
上拉电阻和下拉电阻的应用上拉电阻的应用上拉电阻常用于数字电路中的输入引脚。
在数字电路中,当输入引脚未连接外部信号时,它往往处于一个悬空状态,容易受到干扰而产生误判。
通过连接上拉电阻,可以确保输入引脚的电平稳定地被拉高到正电源电平,从而避免误判。
下拉电阻的应用下拉电阻同样常用于数字电路中的输入引脚。
当输入引脚未连接外部信号时,下拉电阻可以确保引脚电平稳定地被拉低到地电平,避免产生误判。
下拉电阻也常用于与上拉电阻配合使用,实现部分输入引脚上升沿和下降沿触发功能。
上拉电阻和下拉电阻的实现方式上拉电阻和下拉电阻可以通过不同的实现方式来实现。
软件实现在一些特定的矽晶管结构中,当将输入引脚设置为输入模式时,可以通过软件配置使其内部电路自带上拉电阻或下拉电阻。
这种方式可以减少外部电路元件的使用,但在某些情况下可能受到芯片设计限制。
外部电路实现在一些情况下,需要通过外部电路连接上拉电阻或下拉电阻。
上拉电阻和下拉电阻可以通过将电阻连接到信号引脚和正电源或地之间来实现。
这种方式更灵活,可以根据需要选择不同阻值的电阻,以满足特定的应用要求。
小结上拉电阻和下拉电阻是在电子电路中常用的元件,用于控制和稳定电路的输入引脚电平。
通过连接上拉电阻和下拉电阻,可以确保信号引脚的电平稳定地被拉高或拉低。
单片机上拉电阻作用一、单片机上拉电阻的原理单片机上拉电阻是指在单片机输入引脚与电源正电压之间连接一个高阻值电阻,通常取10kΩ以上。
在单片机中,输入引脚本质上是一个电容输入的引脚,它具有很高的输入阻抗。
当引脚没有接其他器件时,会表现出非常高的阻抗,从而形成一个高阻抗电路。
二、单片机上拉电阻的作用1.输入电平的稳定性:单片机的输入引脚直接与外部信号连接,通过上拉电阻的连接,可以使输入电平稳定。
当引脚没有接其他器件时,上拉电阻连接的是电源正电压,可以保证引脚的电平为高电平。
2.防止干扰信号:单片机输入引脚通常会受到来自外部电路的干扰,比如电磁干扰、静电干扰等。
通过上拉电阻连接,可以有效地防止这些干扰信号对单片机的影响。
3.降低功耗:当单片机输入引脚没有接其他器件时,引脚高阻抗状态下的电流非常小,因此通过上拉电阻的连接,可以降低功耗。
4.方便信号采集:上拉电阻连接的引脚通常用于接收外部信号,在信号采集中非常有用。
如果没有上拉电阻的连接,外部信号无法有效地驱动单片机输入引脚,会导致信号采集异常。
三、单片机上拉电阻的应用场景1.按键输入:在按键输入中,通常将按键连接到单片机的输入引脚上,通过上拉电阻连接,可以保证输入引脚在按键未被按下时为高电平,在按键被按下时变为低电平。
这样可以方便地检测按键输入事件。
2.信号采集:在信号采集中,通常将传感器输出信号连接到单片机的输入引脚上。
通过上拉电阻的连接,可以保证信号采集的稳定性和可靠性。
3.输入端信号处理:单片机的输入引脚通常用于接收外部信号,如PWM信号、ADC转换结果等。
通过上拉电阻的连接,可以方便地实现信号的处理和读取。
4.外设控制:在控制外设时,通常将单片机的输出引脚与外设连接。
外设通常需要有一个有效的高电平信号来控制,通过上拉电阻的连接,可以提供一个有效的高电平信号,方便实现外设的控制。
综上所述,单片机上拉电阻是单片机系统中常见的电路元件,它通过连接输入引脚与电源正电压之间的高阻值电阻,可以保证输入电平的稳定性,防止干扰信号,降低功耗,并方便信号的采集和处理,常见应用场景有按键输入、信号采集、输入端信号处理和外设控制等。
关于电路的那些常识性概念本文引用地址:/article/201603/287955.htm作者:时间:2016-03-08来源:电子产品世界一.TTLTTL集成电路的主要型式为晶体管-晶体管逻辑门(transistor-transistor logic gate),TTL大部分都采用5V电源。
1.输出高电平Uoh和输出低电平UolUoh≥2.4V,Uol≤0.4V2.输入高电平和输入低电平Uih≥2.0V,Uil≤0.8V二.CMOSCMOS电路是电压控制器件,输入电阻极大,对于干扰信号十分敏感,因此不用的输入端不应开路,接到地或者电源上。
CMOS电路的优点是噪声容限较宽,静态功耗很小。
1.输出高电平Uoh和输出低电平UolUoh≈VCC,Uol≈GND2.输入高电平Uoh和输入低电平UolUih≥0.7VCC,Uil≤0.2VCC (VCC为电源电压,GND为地)从上面可以看出:在同样5V电源电压情况下,COMS电路可以直接驱动TTL,因为CMOS 的输出高电平大于2.0V,输出低电平小于0.8V;而TTL电路则不能直接驱动CMOS电路,TTL的输出高电平为大于2.4V,如果落在2.4V~3.5V之间,则CMOS电路就不能检测到高电平,低电平小于0.4V满足要求,所以在TTL电路驱动COMS电路时需要加上拉电阻。
如果出现不同电压电源的情况,也可以通过上面的方法进行判断。
如果电路中出现3.3V的COMS电路去驱动5V CMOS电路的情况,如3.3V单片机去驱动74HC,这种情况有以下几种方法解决,最简单的就是直接将74HC换成74HCT(74系列的输入输出在下面有介绍)的芯片,因为3.3V CMOS 可以直接驱动5V的TTL电路;或者加电压转换芯片;还有就是把单片机的I/O口设为开漏,然后加上拉电阻到5V,这种情况下得根据实际情况调整电阻的大小,以保证信号的上升沿时间。
三.74系列简介74系列可以说是我们平时接触的最多的芯片,74系列中分为很多种,而我们平时用得最多的应该是以下几种:74LS,74HC,74HCT这三种,这三种系列在电平方面的区别如下:输入电平输出电平74LS TTL电平 TTL电平74HC COMS电平 COMS电平74HCT TTL电平 COMS电平————————————————————————————TTL和CMOS电平1、TTL电平(什么是TTL电平):输出高电平>2.4V,输出低电平<0.4V。
电路中的上拉电阻作用一、定义:上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流;弱强只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
二、上下拉电阻作用:1、提高電壓准位:a.当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
b.OC门电路必须加上拉电阻,以提高输出的搞电平值。
2、加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
3、N/A pin防靜電、防干擾:在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
同時管脚悬空就比较容易接受外界的电磁干扰。
4、电阻匹配,抑制反射波干扰:长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
5、預設空閒狀態/缺省電位:在一些CMOS 输入端接上或下拉电阻是为了预设缺省电位. 当你不用这些引脚的时候, 这些输入端下拉接0 或上拉接1。
在I2C总线等总线上,空闲时的状态是由上下拉电阻获得。
6.提高芯片输入信号的噪声容限:输入端如果是高阻状态,或者高阻抗输入端处于悬空状态,此时需要加上拉或下拉,以免收到随机电平而影响电路工作。
同样如果输出端处于被动状态,需要加上拉或下拉,如输出端仅仅是一个三极管的集电极。
从而提高芯片输入信号的噪声容限增强抗干扰能力。
三、上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑。
上拉电阻、下拉电阻的原理图
加装上拉电阻或下拉电阻就是从电源V+或V-端到集成电路器件输出端加装一个电阻,具体操作很简单,就是直接在器件的输出脚到电源V+或V-端焊接一个电阻即可。
1、上拉电阻对器件注入电流,常见的加装目的有两个:
(1)提高输出电平。
如TTL输出驱动COM的电平匹配,这是非常必要的。
(2)加大输出驱动能力,但对于非OC或OD输出型电路其作用是有限的,如果用于驱动类似LED不加上拉或下拉电阻也是可以的,应该从负载限流电阻等方面考虑解决,如果负载比较重,应该加装输出缓冲或功率驱动电路。
对于OC或OD电路,必须由上拉电阻提供输出电流通道,否则不能工作,因此,在设计和生产时已经安装,就不必再加装了。
2、下拉电阻增加器件输出电流,主要用来设定低电平或阻抗匹配。
3、加装的电阻值大小因加装目的、负载情况以及器件极限参数等条件而异,阻值的大小决定加装作用的弱强。
具体原理图随后绘制上传。
回答
·上传原理图。
顺便说明,为了不引起误会,图中把上拉电阻和下拉电阻分别画在输出和输入端了,在本级的输入端安装可以看作是前级的输出端安装下拉电阻。
事实上,选择安装下拉电阻时基本上都是设在后级的输入端,一是前级无输出时下拉以确保后级的输入电平为低电平,二是与前级阻抗匹配。
上拉电阻:
1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:
1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑
以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理
对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:
1.驱动能力与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。
2.下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3.高低电平的设定。
不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。
以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
4.频率特性。
以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。
上拉电阻的设定应考虑电路在这方面的需求。
下拉电阻的设定的原则和上拉电阻是一样的。
OC门输出高电平时是一个高阻态,其上拉电流要由上拉电阻来提供,设输入端每端口不大于100uA,设输出口驱动电流约500uA,标准工作电压是5V,输入口的高低电平门限为0.8V(低于此值为低电平);2V(高电平门限值)。
选上拉电阻时:
500uA x 8.4K= 4.2即选大于8.4K时输出端能下拉至0.8V以下,此为最小阻值,再小就拉不下来了。
如果输出口驱动电流较大,则阻值可减小,保证下拉时能低于0.8V即可。
当输出高电平时,忽略管子的漏电流,两输入口需200uA
200uA x15K=3V即上拉电阻压降为3V,输出口可达到2V,此阻值为最大阻值,再大就拉不到2V了。
选10K可用。
COMS门的可参考74HC系列
设计时管子的漏电流不可忽略,IO口实际电流在不同电平下也是不同的,上述仅仅是原理,一句话概括为:输出高电平时要喂饱后面的输入口,输出低电平不要把输出口喂撑了(否则多余的电流喂给了级联的输入口,高于低电平门限值就不可靠了)
在数字电路中不用的输入脚都要接固定电平,通过1k电阻接高电平或接地。
1. 电阻作用:
l 接电组就是为了防止输入端悬空
l 减弱外部电流对芯片产生的干扰
l 保护cmos内的保护二极管,一般电流不大于10mA
l 上拉和下拉、限流
l 1. 改变电平的电位,常用在TTL-CMOS匹配
2. 在引脚悬空时有确定的状态
3.增加高电平输出时的驱动能力。
4、为OC门提供电流
l 那要看输出口驱动的是什么器件,如果该器件需要高电压的话,而输出口的输出电压又不够,就需要加上拉电阻。
l 如果有上拉电阻那它的端口在默认值为高电平你要控制它必须用低电平才能控制如三态门电路三极管的集电极,或二极管正极去控制把上拉电阻的电流拉下来成为低电平。
反之,
l 尤其用在接口电路中,为了得到确定的电平,一般采用这种方法,以保证正确的电路状态,以免发生意外,比如,在电机控制中,逆变桥上下桥臂不能直通,如果它们都用同一个单片机来驱动,必须设置初始状态.防止直通!
2、定义:
l 上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!
l 上拉是对器件注入电流,下拉是输出电流
l 弱强只是上拉电阻的阻值不同,没有什么严格区分
l 对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
3、为什么要使用拉电阻:
l 一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。
l 数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定!
l 一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似与一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平,C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用吗:
比如:当一个接有上拉电阻的端口设为输如状态时,他的常态就为高电平,用于检测低电平的输入。
l 上拉电阻是用来解决总线驱动能力不足时提供电流的。
一般说法是拉电流,下拉电阻是用来吸收电流的,也就是你同学说的灌电流
电阻在选用时,选用经过计算后与标准值最相近的一个!
P0为什么要上拉电阻原因有:
1. P0口片内无上拉电阻
2. P0为I/O口工作状态时,上方FET被关断,从而输出脚浮空,因此P0用于输出线时为开漏输出。
3. 由于片内无上拉电阻,上方FET又被关断,P0输出1时无法拉升端口电平。
P0是双向口,其它P1,P2,P3是准双向口。
不错准双向口是因为在读外部数据时要先“准备”一下,为什么要准备一下呢?
单片机在读准双向口的端口时,现应给端口锁存器赋1,目的是使FET关断,不至于因片内FET导通使端口钳制在低电平。
上下拉一般选10k!
芯片的上拉/下拉电阻的作用
最常见的用途是,假如有一个三态的门带下一级门.如果直接把三态的输出接在下一级的输入上,当三态的门为高阻态时,下一级的输入就如同漂空一样.可能引起逻辑的错误,对MOS电路也许是有破坏性的.所以用电阻将下一级的输入拉高或拉低,既不影响逻辑又保正输入不会漂空.
改变电平的电位,常用在TTL-CMOS匹配;在引脚悬空时有确定的状态;为OC门的输出提供电流;作为端接电阻;在试验板上等于多了一个测试点,特别对板上表贴芯片多的更好,免得割线;嵌位;
上、下拉电阻的作用很多,比如抬高信号峰峰值,增强信号传输能力,防止信号远距离传输时的线上反射,调节信号电平级别等等!当然还有其他的作用了具体的应用方法要看在什么场合,什么目的,至于参数更不能一概而定,要看电路其他参数而定,比如通常用在输入脚上的上拉电阻如果是为了抬高峰峰值,就要参考该引脚的内阻来定电阻值的!另外,没有说输入加下拉,输出加上拉的,有时候没了某个目的也可能同时既有上拉又有下拉电阻的!
加接地电阻--下拉
加接电源电阻--上拉
对于漏极开路或者集电极开路输出的器件需要加上拉电阻才可能工作。
另外,普通的口,加上拉电阻可以提高抗干扰能力,但是会增加负载。
电源:+5V
普通的直立LED,
共八个,负极分别接到一个大片子的管脚上,
用多大的上拉电阻合适?谢谢指教!
一般LED的电流有几个mA就够了,最大不超过20mA,根据这个你就应该可以算出上拉电阻值来了。
保献起见,还是让他拉吧,(5-0.7)/10mA=400ohm,差不多吧,不放心就用2k的
奇怪,新出了管压0.7V的LED了吗?据我所知好象该是1.5V左右。
我看几百欧到1K都没太大问题,一般的片子不会衰到10mA都抗不住吧?
上拉电阻的作用:6N137的的输出三极管C极,如果没有上拉电阻,则该引脚上的电平不
会发生随B极电平的高低变化。
原因是它没有接到任何电源上。
如果接上了上拉电阻,则B 极电平为高时,C极对地导通(相当于开关接通),C极的电压就变低;如B极电压为低,则C极对地关断,C极的电压就升到高电平。
为就是上面说的“将通断转换成高低电平”。
你说的51与此图有一定的不同,参照着去理解吧。
另外,一般地,C极低电平时器件从外部吸入电流的能力和高电平时向外部灌出电流的能力是不一样的。
器件输出端常有Isink和Isource两个参数,且前者往往大于后者。
下拉电阻的作用:所见不多,常见的是接到一个器件的输入端,多作为抗干扰使用。
这是由于一般的IC的输入端悬空时易受干扰或器件扫描时有间隙泄漏电压而影响电路的性能。
后者,我们在某批设备中曾碰到过。
上拉电阻的阻值主要是要顾及端口的低电平吸入电流的能力。
例如在5V电压下,加1K上拉电阻,将会给端口低电平状态增加5mA的吸入电流。
在端口能承受的条件下,上拉电阻小一点为好。
提高负载能力、提高直流工作电平
无信号是给电路提供确定的电平。
上拉一端接vcc,一端接在引脚上
下拉:一端接gnd,一端接在引脚上。