一元线性回归模型(20200619065502)
- 格式:pdf
- 大小:1.18 MB
- 文档页数:9
一元线性回归模型1.一元线性回归模型有一元线性回归模型(统计模型)如下,y t = β0 + β1 x t + u t上式表示变量y t 和x t之间的真实关系。
其中y t 称被解释变量(因变量),x t称解释变量(自变量),u t称随机误差项,β0称常数项,β1称回归系数(通常未知)。
上模型可以分为两部分。
(1)回归函数部分,E(y t) = β0 + β1 x t,(2)随机部分,u t。
图2.1 真实的回归直线这种模型可以赋予各种实际意义,收入与支出的关系;如脉搏与血压的关系;商品价格与供给量的关系;文件容量与保存时间的关系;林区木材采伐量与木材剩余物的关系;身高与体重的关系等。
以收入与支出的关系为例。
假设固定对一个家庭进行观察,随着收入水平的不同,与支出呈线性函数关系。
但实际上数据来自各个家庭,来自各个不同收入水平,使其他条件不变成为不可能,所以由数据得到的散点图不在一条直线上(不呈函数关系),而是散在直线周围,服从统计关系。
随机误差项u t中可能包括家庭人口数不同,消费习惯不同,不同地域的消费指数不同,不同家庭的外来收入不同等因素。
所以在经济问题上“控制其他因素不变”是不可能的。
回归模型的随机误差项中一般包括如下几项内容,(1)非重要解释变量的省略,(2)人的随机行为,(3)数学模型形式欠妥,(4)归并误差(粮食的归并)(5)测量误差等。
回归模型存在两个特点。
(1)建立在某些假定条件不变前提下抽象出来的回归函数不能百分之百地再现所研究的经济过程。
(2)也正是由于这些假定与抽象,才使我们能够透过复杂的经济现象,深刻认识到该经济过程的本质。
通常线性回归函数E(y t) = β0 + β1 x t是观察不到的,利用样本得到的只是对E(y t) = β0 + β1 x t 的估计,即对β0和β1的估计。
在对回归函数进行估计之前应该对随机误差项u t做出如下假定。
(1) u t 是一个随机变量,u t 的取值服从概率分布。
一元回归线性模型
一元线性回归模型,又称为简单线性回归模型,是机器学习中常
用的回归模型,它是利用一个自变量X来预测因变量Y的结果。
一元
线性回归模型将样本数据映射为一条直线,如y=ax+b,其中a是斜率,b是截距,也就是说,一元线性回归模型中的参数是斜率和截距,而拟
合的直线就是根据样本数据估计出来的最佳拟合直线。
目标函数是求解参数 a 和 b,使得误差平方和最小,具体来说,
目标函数的表达式为:J(a,b)=Σi(yi-f(xi))^2,其中f(x)=ax+b,yi为观测值,xi为观测值对应的自变量。
对于一元线性回归模型,求解参数 a 和 b 的最优方法要么是直
接用梯度下降法求解,要么是用最小二乘法求解。
梯度下降法求解时,需构造损失函数,使用梯度下降法迭代更新参数,直到获得最优结果;而最小二乘法求解时,通过求解参数关于损失函数的导数,便可解出
模型参数,从而得到最优结果。
一元线性回归模型在实际应用中有很多优点,其中最重要的就是
它易于拟合和解释,它求解简单,可以很大程度上减少了计算复杂度,而且可以很好地预测因变量的值,也可以用来检验变量之间的关系。
一.一元线性回归模型1. 一元线性回归模型的基本假设有哪些?违背假设是否能估计?为什么? 答:①E(i V |i X )=0 随机项i V 的数学期望为0 ②Var(i V |i X )=E{[i V —E(i V )]2}=E (2i V )=2u σ③COV(i V ,j V )=E{[i V —E(i V )][j V —E(j V )]}=0 i V ,j V 相互独立不相关 ④COV(i V ,i X )=0 解释变量i X 与误差项i V 同期独立无关 ⑤i V ~N(0,2u σ) i X ,i V 服从正态分布的随机变量 违背的话可以估计 但是要对原数据适当的处理 2. 方差分析表与参数估计表的结构变差来源 平方和 自由度 均方F统计量回归 残差 ESS RSS 12n - ESS22e RSS n S -= 1(2)ESSF RSSn =-总变差 TSS1n -21y TSS n S -=―2R =ESS TSS =1—RSSTSS=2212211[()()]()()ni i i n niii i x x y y x x y y ===----∑∑∑TSS=21()nii yy =-∑ ESS=21ˆ()ni yy =-∑ RSS=21ˆ()ni i y y =-∑ Eviews 输出结果 参数估计值 估计值标准差 F 检验 Variable Coefficient Std. Error t-Statistic Prob.C (0β) (S(0ˆβ)) 0β<对0β显著 X 1β>非线性不通过R-squared Adjusted R-squaredProb(F-statistic) >方程本身不是线性的 结论:该案例结果不理想 无论从个别还是总体上原因:(1) 0β,1β个别检验不通过 (2)F 检验远远超过期望的值(>5%or>10%) (3) 2R =拟合度特别差<50%(注:2R >80%or>70%认为拟合度好)3. 回归方程的标准记法ˆi y=0β+1βi x Se=(S(0ˆβ)) (S(1ˆβ)) 22211ˆ()ˆ22nni i i i uey yn n σ==-==--∑∑2221121ˆ()2()ni u i nii e s n x x σβ===--∑∑222211ˆ()[]()Xn ii x s nx x βσ==+-∑ 111ˆˆ()t s ββ= *代表显著性大小 **代表1%下显著 *代表5%下显著 无*代表5%下不显著 4. t 检验与F 检验的步骤(1) t 检验:01:0H β=11:0H β≠Next 111ˆˆ()t s ββ=~t(n-2) Next 查t 分布表临界值2(2)t n α- α取1%或5% Next 当|t|≥2(2)t n α-拒绝原假设10β≠说明y 对x 的一元线性相关显著当|t|<2(2)t n α-不拒绝原假设10β≠说明y 对x 的一元线性相关不显著(2) F 检验:01:0H β=11:0H β≠ Next 12ESSF RSS n =-(上:回归 下:残差)=?(假设=100)Next 查F α(1,n-2) Next 当100≥F α(1,n-2)拒绝0H 说明y 对x 的一元线性相关显著当100<F α(1,n-2)不拒绝0H 说明y 对x 的一元线性相关不显著(注:统计软件用P 值进行检验P>α等价F<F α(1,n-2)此时不拒绝0H 当P<αF>F α(1,n-2)此时拒绝0H ) 二.多元线性回归模型1. 基本假设:(1) 随机误差项i V 的条件期望值为0 即E(i V |1i X …ki X )=0 (2) 随机误差项i V 的条件方差相同Var(i V |1i X …ki X )=2u σ (3) i V 之间无序列相关COV(i V ,j V )=0 (4) i V ~N(0,2u σ)(5)各种解释变量之间不存在显著的线性相关关系 2.矩阵表达式12ˆˆˆ.ˆn y y y y ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ 11112211...1.....1...k k n kn x x x x x x x ⎫⎛⎪⎪ =⎪ ⎪ ⎝⎭0ˆˆ.ˆk βββ⎛⎫ ⎪= ⎪ ⎪⎝⎭ 1ˆ()()x x x y β-''= 参见P51 例3-1 3随机误差项u 的方差2u σ的最小二乘估计量221ˆ1nii X en k σ==--∑=21ˆ()1niii y yn k =---∑随机误差项i U 同方差且无序列相关 则方差协方差矩阵Var-COV(u)=E(uu ')=)(112.,...n n u E u u u u ⎛⎫⎪ ⎪ ⎪⎝⎭=2u σI4.方差分析表变差来源 平方和 自由度 均方F统计量回归 残差 ESSRSS 12n - ESS22e RSS n S -= 1(2)ESSF RSSn =-总变差 TSS1n -21y TSS n S -=―2R =ESS TSS TSS=21()n i i y y =-∑ ESS=21ˆ()n i y y =-∑ RSS=21ˆ()ni i y y =-∑ 221111(1)11RSSn n k R R TSS n k n ---=-=----- 222211ˆ()ˆ11nniiii i u ey ySe n k n k σ==-===----∑∑5. P69 8(1) 0β1β3β的个别检验不通过,2β的个别检验通过 (2)F 检验通过 对结果不满意三.违背古典假定的计量经济模型 2. 自相关D-W 检验 (1)d< L d ,u 存在一阶正自相关(2)d>4-L d ,u 存在一阶负自相关 (3)u d <d<4-u d ,不存在自相关(4)L d <d<u d ,或4-u d <d<4-L d 时,u 是否存在自相关,不能确定 4.异方差的white 检验(以二元线性模型为例) 二元线性回归模型:01122i i i i y x x u βββ=+++ ① 异方差与解释变量12,x x 的一般线性关系为:2i σ=0α+11i x α+22i x α+231i x α+242i x α+512i i x x α+i V ②<1>运用OLS 估计的式① <2>计算残差序列i并求2i<3>做2i对1i x ,2i x ,21i x ,22i x ,12i i x x 的辅助回归,即222011223142312ˆˆˆˆˆˆˆi i i i i i i e x x x x x x αααααα=+++++ ③其中2ˆi e 为2i e 的估计<4>计算估计量2nR ,n 为样本容量2R 为辅助回归的可决定系数<5>在不存在异方差的原假设下2nR 服从自由度为5的2χ分布,给定显著性水平α查2χ分布表得临界值2αχ(5) 如果2nR >2αχ(5)则拒绝原假设,表明模型中随机误差存在异方差 5.杜宾二步法:第一步求出自相关系数的估计值ˆ第二步利用ˆ进行广义差分变换 对差分模型利用OLS 求的参数0β和1β的估计值0ˆβ和1ˆβ 6.方差扩大因子检验多元回归模型中多重共线性:1x =f(x2,x3….xk) x2=f(x1,x3…xk) …xj=(x1,x2...1j x -…xk) xk=f(x1,x2….1k x -)对每个回归方程求其决定系数分别为12R ,22R (2)j R (2)k R ,在决定系数中寻求最大而接近者,比如2x R 最大,则可判定解释变量Xj 与其他解释变量的一个或多个相关程度高,因此就使回归方程式y=f(x1,x2….xk)表现高度多重共线性,计量经济学中检验多重共线性时,往往称(1-2j R )为自变量Xj 的容忍度,其倒数为方差扩大因子,记为211j jVIF R =- 当模型中全部k 个自变量所对应的方差扩大因子平均数远远大于1时就表明存在严重的多重共线性。
第二章一元线性回归模型第一节一元线性回归的概念框架一、回归分析的基本概念Simulate二、总体回归函数<PRF, Population Regression Function)(一>条件均值<条件期望)在X固定为某一数值的条件下Y的均值。
<二)PRF的定义如果Y的条件均值是X的函数,该函数成为PRF.PRF的另一种表达方式:在定义扰动项后,PRF亦可记为随机扰动项的含义:p34PRF是存在的,但也是未知的。
三、样本回归函数<SRF,Sample Regression Function)目的:根据来自样本的有限信息,尽可能真是地拟合总体回归函数。
根据样本数据,可以估计出下列函数,称为样本回归函数。
第二节样本回归函数的最小二乘估计<OLS, Ordinary Least Squares)一、O LS的估计准则二、截距系数和斜率系数的估计 P26-27三、OLS估计量的描述统计性质性质1:回归线通过X、Y的样本均值<样本均值点在回归线上)。
性质2:Y的估计值的均值等于其实际观测值的均值,即性质3:残差的均值为零。
4.残差与因变量的估计量不相关。
性质5:残差与解释变量不相关四、OLS估计的数理统计性质101011111111111221212.ˆ()ˆ()()()()()()()()1i i i i i i i i i i i i i ii i i i i i i i i i i i i i i i i ii i i i i ii i i k Y k X u k k X k u k X k u E E k X k u E k X E k u E k X E k u k X k E u k X k x X k x x x x x x x βββββββββββββββββ==++=++=+=+=+=+=+==+====∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑∑无偏性21201110110110111ˆˆˆ()()()1ˆ()()1()1(())1()1()i ii i i i i i i x E E Y X E Y X nE Y XE n E X u X n X E u X n n X X nn nX X βββββββββββββββββ==-=-=-=++-=++-=+-=+-∑∑∑∑∑∑∑3.最小方差性在所有线性无偏估计量中,OLS估计量的方差为最小――最优线性无偏估计量<Best Linear Unbiased Estimator, BLUE)----高斯-马尔科夫定理。