2.8拉普拉斯定理。行列式的乘法规则
- 格式:ppt
- 大小:423.00 KB
- 文档页数:16
§2-8 拉普拉斯(Laplace)定理 行列式的乘法规则一、拉普拉斯定理定义9 在一个n 级行列式D 中任意选定k 行k 列(n k ≤),位于这些行和列的交点上的2k 个元素按照原来的次序组成一个k 级行列式M ,称为行列式D 的一个k 级子式.在D 中划去这k 行k 列后余下的元素按照原来的次序组成的k n -级行列式M '称为k 级子式M 的余子式.从定义立刻看出,M 也是M '的余子式.所以M 和M '可以称为D 的一对互余的子式.例1 在四级行列式 310120012104121-=D 中选定第一、三行,第二、四列得到一个二级子式M : 1042=M , M 的余子式为 1020='M .例2 在五级行列式555453525125242322211514131211a a a a a a a a a a a a a a a D=中,454342252322151312a a a a a a a a a M =和54513431a a a aM ='是一对互余的子式. 定义10:设D 的k 级子式M 在D 中所在的行、列指标分别是k k j j j i i i ,,,;,,,2121 ,则M 的余子式M '前面加上符号)()(2121)1(k k j j j i i i +++++++- 后称做M 的代数余子式.因为M 与M '位于行列式D 中不同的行和不同的列,所以有下述引理 行列式D 的任一个子式M 与它的代数余子式A 的乘积中的每一项都是行列式D 的展开式中的一项,而且符号也一致.定理6(拉普拉斯定理) 设在行列式D 中任意取定了k (11-≤≤n k )个行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式D .例3 利用拉普拉斯定理计算行列式131310112104121-=D从这个例子来看,利用拉普拉斯定理来计算行列式一般是不方便的.这个定理主要是理论方面的应用.二、行列式的乘积法则 定理7 两个n 级行列式nnn n nn a a a a a a a a a D2122221112111=和nnn n nn b b b b b b b b b D 2122221112112=的乘积等于一个n 级行列式nnn n nn c c c c c c c c c C212222111211=,其中ij c 是1D 的第i 行元素分别与2D 的第j 列的对应元素乘积之和:∑==+++=nk kj ik nj in j i j i ij b a b a b a b a c 12211 .这个定理也称为行列式的乘法定理.它的意义到第四章§3中就完全清楚了.。
行列式的乘法运算法则行列式是线性代数中非常重要的概念,它在矩阵和向量的运算中起着至关重要的作用。
行列式的乘法运算法则是指两个行列式相乘的规则,它在实际问题中有着广泛的应用。
在本文中,我们将详细介绍行列式的乘法运算法则,包括定义、性质和具体的计算方法。
首先,我们来看一下行列式的定义。
一个n阶行列式是一个由n行n列元素组成的方阵,它可以用一个非常复杂的数学公式来表示。
但是在实际计算中,我们通常会采用更简单的方法,即按照特定的规则进行展开和计算。
在行列式的乘法运算中,我们需要掌握两个重要的性质:行列式的行与列可以互换,行列式的某一行(列)可以乘以一个常数。
接下来,我们来介绍行列式的乘法运算法则。
设A和B分别是n阶和m阶的行列式,它们的乘积AB是一个n阶行列式。
根据乘法运算法则,AB的第i行第j列元素可以表示为A的第i行与B的第j列对应元素的乘积之和。
具体地,我们可以用下面的公式来表示:\[ (AB)_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj} \]其中,\( (AB)_{ij} \)表示AB的第i行第j列元素,\( a_{ik} \)和\( b_{kj} \)分别表示A和B的对应元素。
这个公式可以帮助我们计算任意两个行列式的乘积,只需要按照规定的顺序进行展开和计算即可。
在实际应用中,行列式的乘法运算法则有着广泛的应用。
例如,在线性代数中,我们经常会遇到需要计算两个矩阵的乘积的情况。
而矩阵的乘积实际上就是行列式的乘法运算的特例,因此掌握了行列式的乘法运算法则,就可以更加轻松地处理矩阵的乘积运算。
此外,在微积分和概率统计等领域,行列式的乘法运算法则也有着重要的应用,它可以帮助我们更好地理解和处理复杂的数学问题。
总之,行列式的乘法运算法则是线性代数中的重要内容,它在实际问题中有着广泛的应用。
通过掌握行列式的乘法运算法则,我们可以更加灵活地处理各种数学问题,提高数学建模和分析的能力。
行列式乘法法则行列式是线性代数中的一个重要概念,它在矩阵理论和线性方程组的求解中起着重要作用。
行列式乘法法则是行列式运算中的一个重要规则,它描述了两个行列式相乘的方法和性质。
本文将详细介绍行列式乘法法则的定义、性质和应用。
1. 定义行列式是一个数学对象,它是一个关于矩阵的函数,通常用竖线包围矩阵元素来表示。
对于一个n阶方阵A,其行列式记作|A|或det(A)。
行列式的计算方法涉及到矩阵元素的排列组合,具体计算方法不在本文的讨论范围内。
2. 行列式乘法法则设A和B分别是n阶方阵,根据行列式乘法法则,有以下性质: |A * B| = |A| * |B|这意味着两个矩阵的行列式相乘等于它们各自行列式的乘积。
这个性质在矩阵运算中具有重要的意义,可以简化矩阵乘法的计算过程。
3. 性质证明为了证明行列式乘法法则,我们可以从行列式的定义出发,利用排列组合的性质进行推导。
假设A和B分别是n阶方阵,它们的行列式分别记作|A|和|B|,我们可以将A和B表示为它们的元素矩阵:A = [a_ij],B = [b_ij]根据行列式的定义,|A|和|B|可以表示为所有可能排列的符号乘以对应元素的乘积之和。
那么A * B的行列式可以表示为:|A * B| = |[c_ij]|其中c_ij表示A和B对应元素的乘积。
我们可以将A * B的行列式展开为所有可能排列的符号乘以对应元素的乘积之和。
根据排列组合的性质,我们可以将A * B的行列式表示为|A| * |B|的形式,从而得到行列式乘法法则的证明。
4. 应用行列式乘法法则在矩阵运算和线性代数中有着广泛的应用。
它简化了矩阵乘法的计算过程,使得复杂的线性方程组求解和矩阵变换变得更加方便和高效。
在实际问题中,行列式乘法法则也常常用于证明和推导数学定理,为数学研究和应用提供了重要的工具。
总之,行列式乘法法则是线性代数中的一个重要概念,它描述了两个行列式相乘的方法和性质。
通过对行列式的定义和性质进行详细的分析和推导,我们可以理解行列式乘法法则的内涵和应用,为矩阵运算和线性代数的学习和研究提供了重要的理论基础。
行列式的计算方法1 引言行列式的计算是《线性代数》和《高等代数》的一个重要内容.同时也是工程应用中具有很高价值的数学工具,本文针对几种常见的类型给出了计算行列式的几种典型的方法.2 一般行列式的计算方法2.1 三角化法利用行列式的性质把原来的行列式化为上(下)三角行列式,那么,上(下)三角行列式的值就是对角线各项的积.例 1 计算行列式12311212332125113311231 ------=n n n n n nn n n n D对这个行列式的计算可以用三角化方法将第1行乘以(-1)加到第2,3,n 行,得0001002000200010001231 ---=n n n n D再将其第1,2,1, -n n 列通过相邻两列互换依次调为第n ,,2,1 列,则得102001321)1(2)1(--=-n n D n n=)!1()1(2)1(---n n n2.2 加边法有时为了便于计算行列式,特意把行列式加边升阶进行计算,这种方法称之为升阶法.它的一般方法是:nn n n n n n n n a a a a a a a a a a a a a a a a D 321333323122322211131211==nnn n n n na a ab a a a b a a a b 212222121121110001(n b b b ,,21任意数)例如下面的例题: 例2 计算行列式nn a a a a D ++++=11111111111111111111321现将行列式n D 加边升阶,得na a a D +++=111011101110111121第1行乘以(-1)加到第1,3,2+n 行,得na a a D10001001001111121----=第2列乘以11a 加到第1列,第3列乘以21a 加到第1列,依次下去直到第1+n 列乘以n a 1加到第1列,得)11(00011111121211∑∑==+=+=ni in nni ia a a a a a a a D2.3 降阶法利用按一行(列)展开定理或Laplace 展开定理将n 阶行列式降为阶较小且容易计算的行列式来计算行列式的方法称为降阶法. 例 3 计算nD 222232222222221=解 首先我们应考虑D 能不能化为上(下)三角形式,若将第一行乘以(-2)加到第n ,3,2 行,数字反而复杂了,要使行列式出现更多的“0”,将D 的第一行乘以(-1)加到第第n ,3,2 行,得2001010100012221-=n D这样仍然不是上(下)三角行列式,我们注意到,第二行除了第一项是1,后面的项全是0,这样我们按第二行展开,降阶得到:201222)1(21--=+n D)!2(2--=n2.4 对于所谓二条线的行列式,可直接展开降阶,再利用三角或次三角行列式的结果直接计算. 例4 计算行列式nnn n n a b b a b a b a D 112211--=解 按第1列展开,得11221111221)1(--+---+=n n n n nn n n b a b ab b a b a b a a Dn n n b b b a a a 21121)1(+-+=2.5 递推法通过降阶等途径,建立所求n 阶行列式n D 和比它低阶的但是结构相同的行列式之间的关系,并求得n D 的方法叫递推法.当n D 与1-n D 是同型的行列式,可考虑用递推法.例 5 计算n 级行列式 2112000002100012100012------=n D 对于形如这样的三角或次三角行列式,按第1行(列)或第n 行(列)展开得到两项的递推关系式,再利用变形递推的技巧求解.解 按第1行展开,得210120000012000011)1)(1(2211-------+=+-n n D D212---=n n D D 直接递推不易得到结果,变形得1221121232211=---=-==-=-=------D D D D D D D D n n n n n n于是 1)1(2)1(21121+=-+=-+==+=+=--n n n D D D D n n n例6 计算n 2级行列式nnn n n n nnn d c d c d c b a b a b a D 111111112----=对于形如这样的所谓两条线行列式,可直接展开得到递推公式. 解 按第1行展开,得)1(1111111121111111112nn n n n nn n n n n nn c d c d c b a b a b d c d c b a b a a D ----+-----+=1111111111111111---------=n n n n nn n n n n nn d c d c b a b a c b d c d c b a b a d a)1(2)(--=n n n n n D c b d a)1(22)(--=n n n n n n D c b d a D)2(21111))((-------=n n n n n n n n n D c b d a c b d a)())((11111111c b d a c b d a c b d a n n n n n n n n ---=----2.6 连加法 例 7 计算mx x x x m x x x x m x D n n n n ---=212121这种行列式的特点是:各行元素之和都相等.先把第2列到第n 列元素同时加到第1列,并提出公因式,得mx x x m x x x m x D n n n ni i n ---=∑=2221111)(然后将第1行乘以(-1)加到第n ,3,2行,得mm x x m x D n ni i n ---=∑=001)(21)()(11m x m ni i n --=∑=-2.7 乘积法根据拉普拉斯定理,所得行列式乘法运算规则如下:nnn nnn n n nn n n c c c c b b b b a a a a 111111111111=⋅ (其中tj ni it ij b a c ∑==1)两个行列式的乘积可以像矩阵的乘法一样来计算,假若两个行列式的阶数不同,只要把它们的阶数化为相同就可以应用上面的公式了.这种方法的关键是寻找有特殊结构的已知行列式去乘原行列式,从而简化原行列式的计算,这也是较为常用的方法.例 8 计算行列式 ab c db a dc cd a bd c b aD =解 取行列式 1111111111111111------=H显然 0≠H ,由行列式的乘法规则:=DH ⋅ab c d ba d c c d a bd c b a 1111111111111111------ H d c b a d c b a d c b a d c b a d c b a ))()()()((+---+--++--++++=等式两边消去,H 得=D ))()()()((d c b a d c b a d c b a d c b a d c b a +---+--++--++++2.8 对称法这是解决具有对称关系的数学问题的常用方法. 例 9 计算n 阶行列式βαβααββααββα++++=1010001000 n D解 按第1行展开,得21)(---+=n n n D D D αββα即 )(211----=-n n n n D D D D αβα由此递推,即得 nn n D D βα=--1因为n D 中αβ与对称,又有 nn n D D αβ=--1当 βα≠ 时,从上两式中消去1-n D ,得 11n n n D αβαβ++-=-当 βα= 时,1-+=n nn D D ββ)(21--++=n n n D ββββ 222-+=n n D ββ11)1(D n n n-+-=ββ )()1(1βαββ++-=-n n nnn β)1(+= 2.9 数学归纳法当n D 与1-n D 是同型的行列式,可考虑用数学归纳法. 例 10 计算n 级行列式ααααcos 2100cos 210001cos 210001cos =n D解 当2=n 时,ααcos 211cos 2=D αα2cos 1cos 22=-=结论成立,假设对级数小于n 的行列式结论成立,则n D 按第n 行展开,得21cos 2---=n n n D D D α由假设αααααααsin )1sin(cos )1cos(])1cos[()2cos(2-+-=--=-=-n n n n D n代入前一式,得]sin )1sin(cos )1[cos()1cos(cos 2αααααα-+---=n n n D nαααααn n n cos sin )1sin(cos )1cos(=---=故对一切自然数n ,结论成立.2.10 拆项法这是计算行列式常用的方法.一般地,当行列式的一列(行)或一列(行)以上的元素能有规律地表示为两项或多项和的形式,就可以考虑用拆为和的方法来进行计算.例 11 在平面上,以点),(),(),(233332332232222221311211x x x x M x x x x M x x x x M ------,,为顶点的三角形面积D S =,其中11121323233322222321212131x x x x x x x x x x x x D ------= )1()1()1()1()1()1(11121323222121332211------=x x x x x x x x x x x x )1()1()1()1()1()1()1()1()1(21323222121332211332211------+--+--+--=x x x x x x x x x x x x x x x x x x解 第1行拆为)1()1()1(11111121111)1)(1)(1(21332211321321232221321321------+----=x x x x x x x x x x x x x x x x x x x x x D32112132332121))()()(1)(1)(1(21x x x x x x x x x x x x +-------=232221321111x x x x x x )]1)(1)(1([))()((21321321121323----⋅---=x x x x x x x x x x x x 3 分块矩阵行列式的计算方法我们学习了矩阵的分块,知道一个矩阵⎥⎦⎤⎢⎣⎡B A 00通过分块若能转化成对角矩阵或上(下)三角矩阵⎥⎦⎤⎢⎣⎡B C A 0,那么行列式B A B C A B A ⋅==000,其中B A ,分别是r s ,阶可逆矩阵,C 是s r ⨯阶矩阵,0是n s ⨯阶矩阵.可以看出,这样可以把r s +阶行列式的计算问题通过矩阵分块转化为较低阶的s 阶和r 阶行列式计算问题,下面先根据上面的途径给出计算公式.设矩阵 ⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=B C D A b b c c b b c c d d a a d d a a G rr r rsr r s sr s ss s r s 1111111111111111其中B A ,分别是s 阶和r 阶的可逆矩阵,C 是s r ⨯阶矩阵,D 是r s ⨯阶矩阵,则有下面公式成立. C DB A B BCD A G 1--⋅==或C DA B A BCD A G 1--⋅==下面推导公式,事实上,当0≠A 时,有⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡---D BCA D A B C D A E CA E 1100 ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡---B C C DB A B C D A E DB E 0011 上面两式两边同取行列式即可得出上面的公式.例 12 计算 8710650143102101=D这道题的常规解法是将其化为上三角行列式进行计算,若用前面介绍的公式则可以直接得出结果.令 ⎥⎦⎤⎢⎣⎡=1001A ,⎥⎦⎤⎢⎣⎡=8765B , ⎥⎦⎤⎢⎣⎡=1001C , ⎥⎦⎤⎢⎣⎡=4321D 则 ⎥⎦⎤⎢⎣⎡=1001'A ,由公式(1) 知原行列式D CA B A BCD A 1--⋅==⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⋅=43211001100187651001 ⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⋅=432187651 4444==0这个题还有个特点,那就是C A =,如果我们把公式变形,即D CA B A BCD A 1--⋅=D ACA AB D CA B A 11)(---=-=当C A =时,D ACA AB 1--CD AB D CAA AB -=-=-1,所以当C A =时,我们有CD AB BCD A -=,这样例题就可以直接写出答案了.参考文献:[1] 北京大学数学系,高等代数[M] (第三版).北京:高等教育出版社,2003,9.[2] 张禾瑞,高等代数[M] (第四版).北京:高等教育出版社,1997.[3] 丘维生,高等代数[M].北京:高等教育出版社,1996,12.[4] 杨子胥,高等代数[M].山东:山东科学技术出版社,2001,9.[5] 王萼芳,高等代数题解[M].北京:北京大学出版社,1983,10.[6] Gelfand I M, Kapranov M M and Celvinskij A V. Discriminaants, redultants,and multidimensional determinants[M].Mathematics: Theory&Applications,Birkhauser Verlag,1994.[7] 徐仲,陆全等.高等代数导教·导学·导考.西安::西北工业大学出版社,2004.[8] 陈黎钦.福建:福建商业高等专科学校学报,2007年2月第1期.11。
拉普拉斯定理行列式的乘法规则det(A) = ∑(−1)^(i+j) * a_ij * M_ij其中,det(A)表示矩阵A的行列式;a_ij表示矩阵A的第i行第j 列的元素;M_ij表示矩阵A的第i行第j列元素的代数余子式,它是将a_ij从矩阵中删去后所形成的(n-1) × (n-1)次方阵的行列式。
A=[a11,a12,a13][a21,a22,a23][a31,a32,a33]根据拉普拉斯定理,我们可以计算出该矩阵的行列式为:det(A) = a11 * M_11 - a12 * M_12 + a13 * M_13其中,M_11,M_12和M_13分别是由删去第1行第1列、第1行第2列和第1行第3列元素所形成的2×2次方阵的行列式。
以M_11为例,它的计算公式为:M_11=a22*a33-a23*a32类似地,可以计算出M_12和M_13的值。
将它们代入行列式的展开式中,即可得到方阵A的行列式的数值。
行列式的乘法规则是指两个方阵的行列式相乘的规则。
设有两个n × n的方阵A和B,它们的行列式分别为det(A)和det(B),则它们的乘积的行列式为:det(A * B) = det(A) * det(B)这个规则的意义在于,可以通过行列式的乘积来求解两个矩阵的乘积的行列式。
在实际计算中,我们可以先计算两个矩阵的行列式,再将它们相乘,从而避免了直接计算矩阵乘积的复杂性。
行列式的乘法规则也可以用于计算矩阵的幂。
设有一个n × n的方阵A,它的行列式为det(A),则A的k次幂的行列式为:det(A^k) = [det(A)]^k这个公式表明,矩阵的乘幂的行列式等于该矩阵的行列式的k次幂,用于快速计算矩阵的高次幂的行列式十分有效。
拉普拉斯定理和行列式的乘法规则在许多领域都有广泛的应用,特别是在线性方程组的求解中。
通过拉普拉斯定理,我们可以将线性方程组转化为行列式的计算问题,从而可以方便地求解线性方程组的解。
行列式相乘规则知识点总结
一、行列式性质
①行列式A中某行(或列)用同一数k乘,其结果等于kA。
②行列式A等于其转置行列式AT(AT的.第i行为A的第i列)。
③若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。
④行列式A中两行(或列)互换,其结果等于—A。
⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。
二、相关规则
乘法结合律:(AB)C=A(BC)
乘法左分配律:(A+B)C=AC+BC
乘法右分配律:C(A+B)=CA+CB
对数乘的结合性k(AB)=(kA)B=A(kB)
转置(AB)T=BTAT
矩阵乘法在以下两种情况下满足交换律。
AA*=A*A,A和伴随矩阵相乘满足交换律。
AE=EA,A和单位矩阵或数量矩阵满足交换律。
【行列式相乘规则知识点总结】
1。