测量高容量MLCC时不要忽略了这六个因素
- 格式:doc
- 大小:16.50 KB
- 文档页数:3
行业介绍MLCC 多层陶瓷电容器的起源可追逆到二战期间玻璃釉电容器的诞生,由于性能优异的高频发射电容器对云母介质的需求巨大,而云母矿产资源缺以及战争的影响,美国陆军通信部门资助陶瓷实验开展了喷涂下班釉介质和丝网刷银电极经叠层层共烧,再烧附端电极的独石化工艺研究在战后得到进一步推广。
并逐渐变为今天的二后美1943---1945 种型湿法工艺,干法工艺要追到二战期间诞生的流延工艺技术,在年获得专1952 国开始流延工艺技术的研究并组装一台流延机为钢带流延机,并在利。
二战后苏联与美国电容器技术似入我国并形成一定的生产规模,为了改进性能,扩年代我国产业界开始尝试用陶瓷介质进行轧膜成型,印刷叠层工艺60 大生产规模,制造独石结构的瓷介电容器。
的高比容介质薄层化趋势突破专统MLC 与技术的发展,MLC 在80 年代随着SMT 年代以来MLC 生产厂家普通使用,80 厚度范围,二种干法流延方式被世界大多类制造工我国引进了干法流延和湿法印刷成膜及相关生产技术,有效地改善了MLC 艺水平。
代表了—25MM 年日本引入了随后92---96SLOT-DIE 流延头的新技术实现厚度为2 流延技术的最高水平(先后有康井、平野、横山生产的流延机)。
独石电容器是由涂有电极的陶瓷膜素坯,以一定的方式叠全起来最后经过一次焙烧)MLCC “独石”也称多层陶瓷电容器(成一整体,故称为独石电容器的特点是具有体积小、比容大、内电感小、耐湿、寿命长、可靠性高的优点;独石电容器的发展取决于材料(包括介质材料、电极浆料、粘合剂)和工艺技术的发展,其中陶瓷介质有差决定性作用。
独石瓷介电容器有两种类型:一种为TIO2 和或以这些为基础再加入稀土氧化物、温度补偿型(是MGTTD3 、CATIO3 氧化铋、粘土等配制成的瓷料;而加一种是高介电系数型,以BATTO3 主要成分高温烧成。
料,电导率大、焊接方便、价格不高、工艺性好,但银电极在高温、高湿、强直流电场作用下银离子易迁移,造成电容器失效的主要原因,故目前沿用低温烧结用银钯结合(950---1100 度)材料的用途是由其性能所决定的,而材料的性能异不是一成不变的,可以通过改变厚材料的纯度,粒度或各种添加剂和各工艺因素等进行改性。
MLCC使用过程中的注意事项: 5.1 电路设计: 5.1.1 工作温度: a. 电容器使用过程中避免超过其上限类别温度。
b. 表面温度以及自加热温度应该低于电容器的上限类别温度。
5.1.2 工作电压: 电容器的工作电压必须低于其额定电压。
5.2 PCB设计: 5.2.1 焊盘设计: 电容器贴装在PCB上时,端头焊锡量对电容器的性能有直接的联系。
焊锡量越多,施加在电容器上的应力就越大。
因此,设计焊盘时,必须考虑焊锡的尺寸和结构,请参考下面设计: 回流焊的建议设计 (单位:mm) 类型 0402 0603 0805 1206 1210 L 1.0 1.6 2.0 3.2 3.2 尺寸 W 0.5 0.8 1.25 1.6 2.5 A 0.40~0.50 0.6~0.8 1.0~1.2 2.2~2.4 2.0~2.4 B 0.35~0.45 0.6~0.8 0.6~0.7 0.8~0.9 1.0~1.2 C 0.45~0.55 0.6~0.8 0.8~1.2 1.0~1.4 1.8~2.3 波峰焊的建议设计 (单位:mm) 类型 0603 0805 1206 L 1.6 2.0 3.2 尺寸 W 0.8 1.25 1.6 A 0.8~1.0 1.0~1.2 2.2~2.6 B 0.8~0.9 0.9~1.0 1.0~1.1 C 0.6~0.8 0.9~1.2 1.0~1.4 片式电容焊盘阻焊层片式电容弯曲扭曲5.2.2 电容器在PCB上的布局设计: 机械应力根据电容器在PCB上的位置不同而变化。
请参考下面的设计方案: 施加在电容器上的应力大小如下: A>B=C>D>E 注意:不要弯曲或扭曲PCB,否则电容器会发生断裂。
请参考下面的例子: a. 应该避免的情况: b. 建议的操作方式: 5.2.3 焊锡的应用以及焊接方式: a. 以下的焊接方式应该避免: b. 请参考以下的焊接方式: 5.3 自动化设计的注意事项: 如果安装头调整得过低,会产生过高的应力,导致电容器断裂。
mlcc的温度系数MLCC温度系数(Temperature Coefficient of MLCC)介绍:多层陶瓷电容器(MLCC)是一种常见的电子元件,广泛应用于电子产品中。
温度系数是衡量MLCC性能的重要指标之一。
本文将详细介绍MLCC温度系数的概念、计算方法以及其对电容器性能的影响。
一、MLCC温度系数的概念温度系数是指在一定温度范围内,电容器电容值与温度变化之间的关系。
温度系数通常用ppm/℃(百万分之一/摄氏度)来表示。
正温度系数表示电容值随温度的升高而增加,负温度系数则表示电容值随温度的升高而减小。
二、MLCC温度系数的计算方法MLCC温度系数的计算方法一般采用下述公式:温度系数 = (C2 - C1) / (C1 * ΔT) * 10^6其中,C1为参考温度下的电容值,C2为目标温度下的电容值,ΔT 为目标温度与参考温度之间的温度差。
三、MLCC温度系数的影响因素1. 材料特性:MLCC的温度系数与材料的选择有关。
常用的材料有C0G、X7R、Y5V等,它们具有不同的温度系数范围。
2. 制造工艺:制造工艺的不同也会对MLCC的温度系数产生影响。
例如,不同的烧结温度和冷却速率会导致材料结构的变化,从而影响电容值随温度变化的程度。
3. 封装方式:MLCC的封装方式也会对温度系数产生影响。
封装方式不同,电容器内部的结构也不同,从而导致温度系数的差异。
四、MLCC温度系数的应用1. 温度补偿电路:由于MLCC的温度系数不同,可以通过组合不同温度系数的电容器来实现温度补偿电路。
这样可以在不同温度下保持电容值的稳定性。
2. 温度传感器:利用MLCC的温度系数,可以设计出用于测量温度的传感器。
通过测量电容值的变化,可以推算出环境温度。
五、MLCC温度系数的注意事项1. 温度系数的选择:在实际应用中,根据具体需求选择合适的温度系数,以保证电容器在工作温度范围内的稳定性。
2. 温度系数与精度的关系:温度系数越小,电容器的稳定性越高。
课程设计LMCC片式叠成陶瓷电容器综述学院名称:材料科学与工程学院专业班级:2011级无机非金属材料小组成员:胡海波吴艳霞张哲完成日期:2014年5月23日目录一MLCC概述1.MLCC简介2.MLCC产品结构及制作流程3.MLCC的分类4.MLCC的发展趋势二MLCC的制造工艺与测试方法1.陶瓷介质薄膜制作1.1配料、球磨1.2 流延2.内电极制作(印刷)2.1印刷的概述2.2印刷的流程2.3印刷的质量控制3.电容芯片制作3.1压层3.2 切割4.烧结陶瓷4.1排胶4.2烧成4.3倒角5.外电极的制作5.1封端5.2烧端5.3电镀6.分选、测试、包装7.MLCC的性能评价三MLCC的材料选择一MLCC概述1、MLCC简介:多层陶瓷电容器MLCC是英文字母Multi-Layer Ceramic Capacitor的首写字母。
在英文表达中又有Chip Monolithic Ceramic Capacitor。
两种表达都是以此类电容器外形和内部结构特点进行,也就是内部多层、整体独石(单独细小的石头)的结构,独石电容包括多层陶瓷电容器、圆片陶瓷电容器等,由于元件小型化、贴片化的飞速发展,常规圆片陶瓷电容器逐步被多层陶瓷电容器取代,人们把多层陶瓷电容器简称为独石电容或贴片电容。
片式多层陶瓷电容器(Multi-layer Ceramic Capacitor 简称MLCC)是电子整机中主要的被动贴片元件之一,它诞生于上世纪60年代,最先由美国公司研制成功,后来在日本公司(如村田Murata、TDK、太阳诱电等)迅速发展及产业化,至今依然在全球MLCC领域保持优势,主要表现为生产出MLCC具有高可靠、高精度、高集成、高频率、智能化、低功耗、大容量、小型化和低成本等特点。
MLCC具有容量大,体积小,容易片式化等特点,•是当今通讯器材、计算机板卡及家电遥控器及中使用最多的元件之一。
随着SMT的迅速发展,其用量越来越大,仅每部流动电话中的用量就达200个之多。
测试MLCC时要注意的几大要点
1测试参数及测试条件
我们一般通过测量陶瓷电容器的容值C、Q值/D.F.值、绝缘电阻I.R.值来初步判断电容的参数是否在规格范围内,是否存在不良。
要注意的是,再精密的仪器测出的数据也只是测量值,由于存在环境,设备等多方面因素干扰,测量值只能尽可能地接近真实值。
另外,随着市场需求多样化,陶瓷电容的种类繁多,测试条件并未完全统一,针对具体的型号的测量,请以对应规格书中标注的为准。
对于容值,Q值的测量,一般而言,我们针对不同温度特性(TC),不同容值的产品,对应的测量条件(交流频率">理想的电容器电阻无限大,但是实际电容加压后会有微小电流流过,其绝缘电阻I.R.存在有限值。
当给电容施加电压后,会有充电电流产生,并呈指数下降,如下图。
为准确测量漏电流值,我们一般在额定电压充电1分钟(或2分钟)后测量绝缘阻抗,判定标准与额定容值有关,详见下表。
额定容值C判定良品标准C10000MΩC>47nFI.R.>500Ω·F
2测试设备">我们一般选用LCR电表即自动平衡电桥法测量容值和Q值,用高阻计测量IR值。
工具包括:LCR电表(Keysight E4980), 夹具(16034E, 16334A),高阻计(Agilent 4339B), 镊子等。
3测试流程
01
预热被测品
由于陶瓷材料特性,特别是高容品选用了高介电常数材料,久置后因内部晶格结构改变,容值会有所下降,此时测量会出现偏差,故需要先进行预热。
一般执行在140~150℃,持续1小时的热处理,再放置24+/-2小时。
02。
MLCC產品容值偏低現象针对经常有客户问及容值偏低的问题,本文从仪器差异、测试环境、测试条件、材料老化等方面对此作出完整之说明及解释,以期对MLCC产品容值偏低现象有进一步的认识。
1、量测仪器差异对量测结果之影响.高容量的电容量测时更易有容值偏低现象,主要原因是电容两端之实际施于电压无法达到测试条件需求所致,也就是说加在电容两端的电压由于仪器本身内部阻抗分压的原因与仪器显示的设定电压不同。
为使量测结果误差降至最低,建议客戶将仪器調校並將儀器的设定电压与实际在产品两端所测之电压尽量调整,使实际于待测物上之輸出电压一致.2、测试条件对量测结果之影响首先考虑量测条件的问题。
对于不同容值的电容会采用不同的条件来量测其容值。
主要在电压设定和测试频率设定上有差異,不同容值的量测条件如下表所示:电容AC 电压频率C>10μF 1.0± 0.2Vrms 120Hz1000pF<C≦10μF 1.0± 0.2Vrms 1kHzC≦ 1000pF 1.0± 0.2Vrms 1MHz注:表中所列之电压是指实际加在电容两端的有效电压。
因仪器的原因,电容两端实际的輸出电压与设定的量测电压实际上可能会有所偏差。
3、影响高容量测之因素3.1 仪器內部阻抗之大小因素.由于不同测试仪器之间的內部阻抗不相同,造成仪器将总电压分压而使到达测试物的实际电压变小。
在实际的测试动作中,我们可以使用万用表等测试夹具两端的实际电压,以验证实际施于测试物的輸出电压。
3.2不同阻抗的测试仪器对比仪器内阻100Ω压降1V*[100Ω/(100Ω+16Ω)]=0.86V10uF测试电容两端电压:1V*[16Ω/(100Ω+16Ω)]=0.14V平均电容值读数: 6-7μF仪器内阻1.5Ω压降:1V*[1.5Ω/(1.5Ω+16Ω)]=0.086V10uF测试电容两端电压:1V*[16Ω/(1.5Ω+16Ω)]=0.914V平均电容值读数: 9-10μF综合以上实验,可以得到有效电压与电容量的关系如下:→當AC Voltage 較小,则量测出之电容值偏小→當AC Voltage 較大,则量测出之电容值偏大下圖為量測電壓與量測容值的對照圖3.3 电容大小因素电容量大小会影响电容之阻抗.Z(Ω)=R+j(-1/ωc)where ω=2π f∵电容之R很小∴Z(Ω)≒1/ωcEx:10μF Z ≒ 1/(2 π *1k*(10*10-6)≒16 (Ω)22μF Z ≒ 1/(2 π *1k*(22*10-6)≒7.2 (Ω)22μF Z ≒ 1/(2 π *120*(22*10-6)≒60.3 (Ω)Z(Ω)≒1/ωcEx:10μF Z ≒ 1/(2 π *1k*(10*10-6)≒16 (Ω)因此待测电容两端之AC Voltage要保持在1Vrms则仪器之输出电流I(rms)=V(rms)/Z=1/16=62.5 mA所以若仪器之最大输出电流小于62.5 mA,则待测电容两端之AC Voltage会小于1Vrms,所测得之容值就会变小。
片式多层陶瓷电容器(MLCC)基础知识宇阳科技发展有限公司向勇一、电容器基础电容器基本模型是一种中间被电介质材料隔开的双层导体电极所构成的单片器件,如图1所示。
这种介质必须是纯绝缘材料,它的特性在很大程度上决定了器件的电性能。
介质特性取决于电介质材料对电荷的储存能力(介电常数)和对外电场的本征响应,也就是电容量,损耗特性、绝缘电阻、介质抗电强度、老化速率以及上述性能的温度特性。
图1 单层平板电容器通常,电容器采用的介质材料主要包括:空气(介电常数K几乎与真空相同,定义为1);天然介质:如云母,介电常数(K)为4~8;合成材料:如陶瓷,K值范围由9~1500。
电容器所用陶瓷介质是以钛酸盐为主要成份,可以通过配方调整制成具有极高介电常数和其他适当电特性的介质材料。
这是陶瓷电容器,尤其是片式多层陶瓷电容器(MLCC)技术的基础。
MLCC制造过程中的所有工艺和其它材料的确定原则都趋向于实现其介电性能的最优化。
二、电容量电容器的基本特性是能够储存电荷(Q)。
储存电荷量Q与电容量(C)和外加电压(V)成正比。
Q=CV因此,充电电流被定义为:I=dQ/dt=Q dV/dt当电容器外加电压为1伏特,充电电流为1安培,充电时间为1秒时,电容量定义为1法拉。
C=Q/V=库仑/伏特=法拉由于法拉是一个很大的测量单位,在实用中不会遇到,常用的是法拉的分数,即:微法(μF) = 10-6F毫微法,又称为:纳法(nF) = 10-9F微微法,又称为:皮法(pF) = 10-12F三、影响电容量的因素施加电压的单片电容器如图1,其电容量正比于器件的几何尺寸和相对介电常数:C=KA/f t在这里C=电容量;K=相对介电常数,简称介电常数;A=电极层面积;t=介质厚度;f=换算因子(在基础科学领域:相对介电常数用εr表示。
在工程应用中以K表示,简称为介电常数)在英制度量单位体系中,f=4.452,尺寸A和t用英寸,电容量值用微微法表示。
测量高容量MLCC时不要忽略了这六个因素
作为一个技术支持工程师,每天遇到客户不同的技术问题,其中有些客户测量高容量MLCC时,往往未能获得规格书上列明的标称电容量,直觉是坏料或是买错货。
再三仔细查问他们的测量过程时,原来忽略了这些……
No.1
频率和电压
I类和II类MLCC电容的实际测量频率和电压各有不同。
如I类MLCC产品,以Kemet C0402C330J3GACTU 为例,它的测量频率为1MHz±10%,测量交流电压为1.0±0.2Vrms。
II类MLCC产品,如SamsungCL03A225MP3CRNC ,它的测量测量频率为1KHz±10%,测量交流电压为0.5 ±0.1Vrms。
表一I类和II类MLCC的测量频率和电压
No.2
工作温度
我们常常见到不同的MLCC有不同的TCC系数(电容温度系数/Temperature Coefficient of Capacitance)。
TCC是指在特定的温度内,温度每变化1℃时,电容的变化数值与该温度下的电容变化的比值。
图一 I类和II类MLCC的温度特性和随温度的电容变化
I类MLCC有较稳定的TCC表现,你会发现它的电容量随温度呈线性变化,但II类MLCC 的电容器是随温度呈不规则变化,这是由于钛酸钡(BaTiO 3)的介电材料的性质。
所以我们测量MLCC时必须在指定的工作温度下进行。
No.3
直流偏置
直流偏置是影响MLCC电容的重要电参数,特别是直流偏置会使II类MLCC电容随着直流电压增加而损耗。
II类MLCC基于具有铁电偶极子的BaTiO3,直流偏置会限制偶极运。