转动惯量和飞轮矩
- 格式:ppt
- 大小:7.48 MB
- 文档页数:57
在伺服系统选型及调试中,常会碰到惯量问题。
其具体表现为:在伺服系统选型时,除考虑电机的扭矩和额定速度等等因素外,我们还需要先计算得知机械系统换算到电机轴的惯量,再根据机械的实际动作要求及加工件质量要求来具体选择具有合适惯量大小的电机;在调试时,正确设定惯量比参数是充分发挥机械及伺服系统最佳效能的前提。
此点在要求高速高精度的系统上表现尤为突出,这样,就有了惯量匹配的问题。
一、什么是“惯量匹配”?1、根据牛顿第二定律:“进给系统所需力矩T = 系统传动惯量J ×角加速度θ角”。
加速度θ影响系统的动态特性,θ越小,则由控制器发出指令到系统执行完毕的时间越长,系统反应越慢。
如果θ变化,则系统反应将忽快忽慢,影响加工精度。
由于马达选定后最大输出T值不变,如果希望θ的变化小,则J应该尽量小。
2、进给轴的总惯量“J=伺服电机的旋转惯性动量JM +电机轴换算的负载惯性动量JL。
负载惯量JL由(以平面金切机床为例)工作台及上面装的夹具和工件、螺杆、联轴器等直线和旋转运动件的惯量折合到马达轴上的惯量组成。
JM为伺服电机转子惯量,伺服电机选定后,此值就为定值,而JL则随工件等负载改变而变化。
如果希望J变化率小些,则最好使JL所占比例小些。
这就是通俗意义上的“惯量匹配”。
二、“惯量匹配”如何确定?传动惯量对伺服系统的精度,稳定性,动态响应都有影响。
惯量大,系统的机械常数大,响应慢,会使系统的固有频率下降,容易产生谐振,因而限制了伺服带宽,影响了伺服精度和响应速度,惯量的适当增大只有在改善低速爬行时有利,因此,机械设计时在不影响系统刚度的条件下,应尽量减小惯量。
衡量机械系统的动态特性时,惯量越小,系统的动态特性反应越好;惯量越大,马达的负载也就越大,越难控制,但机械系统的惯量需和马达惯量相匹配才行。
不同的机构,对惯量匹配原则有不同的选择,且有不同的作用表现。
不同的机构动作及加工质量要求对JL与JM大小关系有不同的要求,但大多要求JL与JM的比值小于十以内。
飞轮转动惯量计算公式详细介绍 安装在机器回转轴上的具有较大转动惯量的轮状蓄能器。
当机器转速增高时,飞轮的动能增加,把能量贮蓄起来;当机器转速降低时,飞轮动能减少,把能量释放出来。
飞轮可以用来减少机械运转过程的速度波动。
具有适当转动惯量、起贮存和释放动能作用的转动构件,常见于机器、汽车、自行车等,具有较大转动惯量的轮状蓄能器。
飞轮的功能 ①将发动机作功行程的部分能量储存起来,以克服其他行程的阻力,使曲轴均匀旋转。
②通过安装在飞轮上的离合器,把发动机和汽车传动系统连接起来。
③装有与起动机接合的齿圈,便于发动机起动。
飞轮的功用 在曲轴的动力输出端,也就是连变速箱和连接做功设备的那边。
飞轮的主要作用是储存发动机做功冲程外的能量和惯性。
四冲程的发动机只有做功一个冲程吸气、压缩、排气的能量来自飞轮存储的能量。
平衡纠正一下不对,发动机的平衡主要靠去轴上的平衡块单缸机专门有平衡轴。
飞轮具有较大转动惯量。
由于发动机各个缸的做功是不连续的,所以发动机转速也是变化的。
当发动机转速增高时,飞轮的动能增加,把能量贮蓄起来;当发动机转速降低时,飞轮动能减少,把能量释放出来。
飞轮可以用来减少发动机运转过程的速度波动。
装在发动机曲轴后端,具有转动惯性,它的作用是将发动机能量储存起来,克服其他部件的阻力,使曲轴均匀旋转;通过安装在飞轮上的离合器,把发动机和汽车传动连接起来;与起动机接合,便于发动机起动。
并且是曲轴位置传感和车速传感的集成处。
在作功行程中发动机传输给曲轴的能量,除对外输出外,还有部分能量被飞轮吸收,从而使曲轴的转速不会升高很多。
在排气、进气和压缩三个行程中,飞轮将其储存的能量放出来补偿这三个行程所消耗的功,从而使曲轴转速不致降低太多。
除此之外,飞轮还有下列功用:飞轮是摩擦式离合器的主动件;在飞轮轮缘上镶嵌有供起动发动机用的飞轮齿圈;在飞轮上还刻有上止点记号,用来校准点火定时或喷油定时,以及调整气门间隙。
转动惯量和飞轮力矩的关系转动惯量和飞轮力矩的关系可不是一件简单的事,听起来就像是物理课上的一个老掉牙的话题,但其实这背后有很多有趣的故事哦。
想象一下,一个飞轮就像是个超级英雄,能在需要的时候给我们提供强大的动力。
它的转动惯量就像是它的身份牌,越重的身份牌,飞轮就越难以转动,但一旦它动起来,那可真是势不可挡。
你可能会想,飞轮和转动惯量之间到底有啥关系呢?哎,别急,慢慢来。
飞轮的力矩就像是小孩拉着风筝,风筝飞得越高,需要的力气就越大。
飞轮越重,转动惯量越大,要想让它转动起来,必须用更多的力矩。
这就好比你在运动的时候,想要举起一块大石头,光靠自己的力气可不够,得找个小伙伴帮忙。
这也解释了为什么在一些机械设备里,我们常常会看到飞轮的身影。
它们就是在帮助设备克服转动惯量,顺利运行。
大家都知道,惯性是物理中的“老大”,一旦飞轮转起来,简直就像是被施了魔法,转动的过程不再受到太多阻碍。
你会发现,飞轮在一些交通工具中尤其重要,像是汽车、火车、甚至是飞机。
想象一下,汽车在加速时,飞轮的力矩就像是给它打了一针强心剂,让它瞬间提速。
再比如,火车启动的时候,飞轮的转动惯量保证了它不会因为瞬间的加速而失控。
哇,这可真是个了不起的家伙,不是吗?而飞轮的设计就像是美食中的调味料,适当的添加才能让整体的性能达到最佳状态。
说到飞轮,咱们得提一下“平衡”这个概念。
飞轮在转动的时候,就像是一个调皮的小孩,随时可能摔倒,但如果设计得当,飞轮就能在转动中保持稳定。
想象一下,一个飞轮在快速旋转,它的重心就像是个魔术师,巧妙地保持平衡。
这个时候,转动惯量发挥了它的威力,让飞轮在各种环境中都能保持稳定,就算遇到风浪,也能轻松应对。
飞轮的力矩就像是一个坚实的后盾,让它在关键时刻展现出超强的能力。
再说说飞轮的应用吧,别小看它,这小东西在生活中可无处不在。
比如,洗衣机在甩干的时候,飞轮的力矩帮助衣物迅速脱水,几乎就像是给衣物上了个“干洗”的魔法。
健身器材中的飞轮,能够让你在锻炼时体验到更顺畅的感觉。
飞轮力矩和转动惯量的关系英文回答:The relationship between flywheel torque and moment of inertia is important in understanding the dynamics of rotating systems. The flywheel torque refers to the force that is applied to the flywheel to make it rotate. This torque is directly related to the moment of inertia of the flywheel.The moment of inertia, also known as rotational inertia, is a measure of an object's resistance to changes in its rotational motion. It depends on both the mass distribution of the object and the axis of rotation. In the case of a flywheel, the moment of inertia is determined by the mass distribution of the flywheel and the axis of rotation.When a torque is applied to a flywheel, it causes the flywheel to accelerate and change its rotational motion.The moment of inertia determines how quickly the flywheelresponds to the applied torque. A flywheel with a larger moment of inertia will require a larger torque to achieve the same change in rotational motion as a flywheel with a smaller moment of inertia.To illustrate this relationship, consider two flywheels with different moments of inertia. Flywheel A has a larger moment of inertia than Flywheel B. If the same torque is applied to both flywheels, Flywheel A will experience a smaller change in rotational motion compared to Flywheel B. This is because Flywheel A has a greater resistance to changes in its rotational motion due to its larger moment of inertia.In practical applications, the relationship between flywheel torque and moment of inertia is crucial for designing systems that require precise control ofrotational motion. For example, in a car's engine, the flywheel helps to smooth out the power delivery and maintain a consistent rotational speed. The moment of inertia of the flywheel determines how effectively it can store and release energy, while the torque applied to theflywheel affects how quickly the rotational speed can be changed.中文回答:飞轮力矩和转动惯量之间的关系在理解旋转系统的动力学方面非常重要。
同步电动机的转动惯量和飞轮转矩冯大勇,杨国峰吉林石化公司炼油厂和乙烯厂,吉林吉林(132021)摘要介绍了同步电动机正确选择转动惯量和飞轮转矩的必要性,转动惯量和飞轮转矩物理概念,二者间的换算关系,同步电动机的转动惯量和飞轮转矩的计算及新方法的应用,驱动往复式压缩机类型机械设备的同步电动机转动惯量的选择。
关键词转动惯量;飞轮转矩;同步电动机;往复式压缩机中图分类号:TM341文献标识码:A文章编号:1008-7281(2011)05-0017-03Inertia Moment and Flying Wheel Torque of Synchronous MotorFeng Dayong and Yang GuofengAbstract This paper introduces the necessity to correctly select the inertia moment and flying wheel torque of synchronous motor,and describes the physical concept,conversion rela-tionship and calculation methods of the two quantities.How to apply the new method and how to select the inertia moment of synchronous motor for driving machineries such as reciprocating compressor are also proposed.Key words Inertia moment;flying wheel torque;synchronous motor;reciprocating com-pressor0引言同步电动机主要用于驱动往复式压缩机,由于压缩机的自身特性,设计时必须保证压缩机曲轴的旋转角速度变化在合理范围内,以避免在运动机件连接处引起附加动载荷及在垂直于曲轴的平面内产生振动,影响机件的强度和降低机械效率。
发电机的转动惯量和飞轮力矩的关联【发电机的转动惯量和飞轮力矩的关联】引言:发电机作为一种电力设备在现代社会中扮演着重要的角色。
当我们探讨发电机的性能和工作原理时,转动惯量和飞轮力矩是两个必须考虑的关键概念。
本文将深入剖析发电机的转动惯量和飞轮力矩之间的关联,并分享对这个主题的观点和理解。
1. 转动惯量的概念和重要性转动惯量是物体绕轴旋转时,其惯性对旋转加速度的抵抗程度的物理量。
在发电机中,转动惯量决定了发电机在启动、停机和运行过程中的稳定性和响应能力。
较大的转动惯量意味着发电机能够存储更多的旋转能量,并能够在负载变化时提供更稳定的电能输出。
转动惯量是发电机设计和优化中需要考虑的重要因素。
2. 飞轮力矩的定义和作用飞轮力矩是指发电机转动时旋转部件所受到的力矩。
它产生的主要原因是转子的转动惯性和外部负载的影响。
飞轮力矩对发电机的运行和性能具有关键影响。
它可以平衡反作用力和负载变化,保持发电机的稳定运行。
较大的飞轮力矩使得发电机更能够应对外部负载的变化,减少启停时的能量波动,提高电能输出的质量。
3. 转动惯量与飞轮力矩的关联转动惯量与飞轮力矩之间存在着密切的关联。
较大的转动惯量会导致较大的飞轮力矩。
这是因为在转速恒定的情况下,较大的转动惯量需要较大的力矩才能改变其旋转速度。
而较大的飞轮力矩则可以提供更强的驱动力,以满足转动惯量的需求。
4. 转动惯量和飞轮力矩的影响因素转动惯量和飞轮力矩受到多种因素的影响。
其中包括发电机的物理结构和设计参数,如转子的质量和几何形状,转子轴承的摩擦和损耗等。
负载的变化和外部扰动也会对转动惯量和飞轮力矩产生影响。
通过合理的设计和优化,可以调整转动惯量和飞轮力矩以满足不同的运行需求。
5. 观点和理解转动惯量和飞轮力矩是发电机设计和性能优化中的重要考虑因素。
较大的转动惯量和飞轮力矩有助于提高发电机的稳定性和响应能力,从而提供更可靠的电能输出。
在实际应用中,我们需要根据具体的需求和运行条件,合理调整和控制转动惯量和飞轮力矩,以实现优化的发电机性能。