起动控制电路
- 格式:ppt
- 大小:1.61 MB
- 文档页数:39
汽车启动系统电路图启动系统在汽车上是一个很重要的部分,而启动系统电路图是掌握启动系统的一个基础,下面从易到难来介绍启动系统的电路图.启动系统的组成部分有蓄电池一电源、启动机一动力部分、控制装置。
一、启动机中直流电动机的电路图直流电动机的工作原理是电磁感应。
给电动机输入电流,电动机向外输出转矩,从而启动发动机,其线路图如图1所示。
二、启动机只有个电动机无法做到启动小齿轮和发动机飞轮平稳进入啮合和脱离啮合的,甚至没有办法去启动发动机,所以在直流电动机的基础上增加了一个电磁开关,线路图如图2。
启动开关闭合后,可移动铁芯在保持和吸拉两个线圈的共同作用下向左移动,带动拨叉使驱动小齿轮向右移动:同时,直流电动机的定子和转子线圈内流经的是小电流,输出转矩小,使驱动小齿轮和飞轮平稳啮合.当铁芯移动到最左侧时,铁芯左端的金属盘同时接触电源接线柱和电动机主接线柱,短路吸拉线圈,电流直接由电源接线柱流到电动机主接线柱,增强了启动时的点火能量和直流电动机的输出转矩,使发动机容易启动。
三、增加了启动继电器的电路图启动开关直接和电磁开关连接,流经的是大电流。
当开关断开时,易产生火花,损害开夭,所以增设了启动继电器,用小电流控制大电流,线路如图3所示.说明:附加电阻接线柱是启动时短路点火系统中的附加电阻,目的是为了增强启动时的点火能量。
原理:小电流经过启动开关、启动继电器中的线圈控制经触电到启动机的大电流,从而保护启动开关。
四、增设了启动复合继电器的电路图为了防止驾驶员在启动结束后没有及时断开启动开关,通过保护继电器自动断开线路,线路图如图4所示.工作原理:当发动机启动后,发电机中性点输出电压,使保护继电器中的线圈流过电流,产生磁场,使K2断开,故启动继电器中的线圈形成断路,使K1断开,从而断开启动机中的电流。
在启动开关没有断开的情况下,保护启动机。
以上是启动机中最常用的电路图,掌握了此电路图,为实际的线路连接和启动系统的故障诊断打下一个基础。
直流电动机控制电路一、直流电动机的启动1.并励直流电动机的启动并励直流电动机的启动控制电路如图1-15所示。
图中,KA1是过电流继电器,作直流电动机的短路和过载保护。
KA2欠电流继电器,作励磁绕组的失磁保护。
启动时先合上电源开关QS,励磁绕组获电励磁,欠电流继电器KA2线圈获电,KA2常开触点闭合,控制电路通电;此时时间继电器KT线圈获电,KT常闭触点瞬时断开。
然后按下启动按钮SB2,接触器KM1线圈获电,KM1主触点闭合,电动机串电阻器R启动;KM1的常闭触点断开,KT线圈断电,KT常闭触点延时闭合,接触器KM2线圈获电,KM2主触点闭合将电阻器R短接,电动机在全压下运行。
2. 他励直流电动机的启动(见图1-16)图1-15 并励直流电动机启动控制电路图1-16 他励直流电动机启动控制电路3. 串励直流电动机的启动(见图1-17)图1-17 串励直流电动机启动控制电路请注意,串励直流电动机不允许空载启动,否则,电动机的高速旋转,会使电枢受到极大的离心力作用而损坏,因此,串励直流电动机一般在带有20%~25%负载的情况下启动。
二、直流电动机的正、反转1.电枢反接法这种方法是改变电枢电流的方向,使电动机反转。
并励直流电动机的正、反转控制电路如图1-18所示。
启动时按下启动按钮SB2,接触器KM1线圈获电,KM1常开触点闭合,电动机正转。
若要反转,则需先按下SB1,使KM1断电,KM1连锁常闭触点闭合。
这时再按下反转按钮SB3,接触器KM2线圈获电,KM2常开触点闭合,使电枢电流反向,电动机反转。
2.磁场反接法这种方法是改变磁场方向(即励磁电流的方向)使电动机反转。
此法常用于串励电动机,因为串励电动机电枢绕组两端的电压很高,而励磁绕组两端的电压很低,反转较容易,其控制电路如图1-19所示。
其工作原理同上例相似,请自己分析。
图1-18并励直流电动机正,反转控制电路图1-19串励电动机正,反转控制电路三、直流电动机的制动在实际生产中有时要求机械能迅速停转,这就要求直流电动机可以制动。
一、通用型起动系统控制电路1、通用型电磁式起动系统控制电路,如下图所示 (通用型起动系统控制线路 )当点火开关未扭到起动时,电动机开关未接通,起动齿轮与飞轮处于分离状态。
当打开点火开关,并扭转至起动档时,磁力线圈电路和电动机电路接通。
吸引线圈电路为: 蓄电池正极——保险丝——点火开关(起动档) ——电磁开关 50 接柱 ——吸引线圈 ——电动机开关的 C 接柱, ——磁场线圈(也叫励磁线圈) ——正电刷—— 电枢线圈 —— 负电刷 —— 搭铁 —— 蓄电池 负极。
保持线圈电路为: 蓄电池 正极——保险丝 ——点火开关(起动档)保持线圈 —— 搭铁—— 蓄电池负极。
吸引线圈和保持线圈通过电流后,由于电流方向相同,磁场相加,将引铁吸入。
引铁带动啮合器沿电枢 轴螺旋齿槽后移,使起动齿轮与飞轮啮合。
当起动齿轮与飞轮接近完全啮合时,引铁便前移至一定位置, 使触盘与触点接触,电动机开关开始接通;当两齿轮完全啮合时,引铁前移到达极限位置,电动机开关被 压紧,使开关可靠接触,电动机旋转,经啮合器带动发动机起动。
电动机电路为: 蓄电池正极 ——电动机开关 30 接柱——触盘——电动机开关 C 接柱 磁场线圈 —— 正电刷 —— 电枢线圈 —— 负电刷 —— 搭铁 —— 蓄电池负极。
当电动机开关 30 和 C 接通时,拉动线圈被短路,只靠保持线圈的磁力,足以能够保持引铁在吸入后的位置。
发动机起动后,放松点火开关(它便自动回转一个角度)电路被切断,啮合器在弹簧的作用下回位,使起动齿轮与飞轮齿轮分开。
电磁开关 50 接柱起动机 停止工作,2 、减速起动机的控制电路、带安全继电器的控制电路起动机外壳上装有由安全继电器控制的电磁开关,安全继电器的主要作用是:发动机发动后,即使起动钥匙开关仍处于起动位置(未能及时松手),起动机也会自动停止工作;发动机运转时,即使驾驶员错误地闭合起动钥匙开关,起动机也不会工作。
当蓄电池开关闭合即蓄电池已搭铁的情况下,闭合起动钥匙开关时,安全继电器线圈中有电流流过,其电路为:蓄电池正极——起动钥匙开关K——安全继电器“S接”柱——安全继电器触点K3 ——线圈(安全继电器线圈——电阻)——搭铁E ——蓄电池负极。
常见18种电动机降压启动电路图,一看就懂一、自耦减压启动自耦减压启动是笼型感应电动机(又称异步电动机)的启动方法之一。
它具有线路结构紧凑、不受电动机绕组接线方式限制的优点,还可按允许的启动电流和所需要的启动转矩选用不同的变压器电压抽头,故适用于容量较大的电动机。
图1 自耦减压启动工作原理如图1所示:启动电动机时,将刀柄推向启动位置,此时三相交流电源通过自耦变压器与电动机相连接。
待启动完毕后,把刀柄扳至运行位置切除自耦变压器,使电动机直接接到三相电源上,电动机正常运转。
此时吸合线圈KV得电吸合,通过连锁机构保持刀柄在运行位置。
停转时,按下SB按钮即可。
自耦变压器次级设有多个抽头,可输出不同的电压。
一般自耦变压器次级电压是初级的40%、65%、80%等,可根据启动转矩需要选用。
二、手动控制Y-△降压启动Y-△降压启动的特点是方法简便、经济。
其启动电流是直接启动时的1/3,故只适用于电动机在空载或轻载情况下启动。
图2 手动控制Y-△降压启动图2所示为QX1型手动Y-△启动器接线图。
图中L1、L2和L3接三相电源,D1、D2、D3、D4、D5和D6接电动机。
当手柄扳到“0”位时,八副触点都断开,电动机断电不运转;当手柄扳到“Y”位置时,1、2、5、6、8触点闭合,3、4、7触点断开,电动机定子绕组接成Y形降压启动;当电动机转速上升到一定值时。
将手柄扳到“△”位置,这时l、2、3、4、7、8触点接通,5、6触点断开,电动机定子绕组接成△形正常运行。
三、定子绕组串联电阻启动控制电动机启动时,在电动机定子绕组中串联电阻,由于电阻上产生电压降,加在电动机绕组上的电压低于电源电压,待启动后,再将电阻短接,使电动机在额定电压下运行,达到安全启动的目的。
定子绕组串联电阻启动控制线路如图3所示。
当启动电动机时,按下按钮SB1,接触器KM1线圈得电吸合,使电动机串入电阻降压启动。
这时时间继电器KT线圈也得电,KT常开触点经过延时后闭合,使KM2线圈得电吸合。
降压启动控制电路原理降压启动控制电路是一种常用于电源电路中的控制电路,它主要用于在电源启动时,通过降低输出电压来控制电源的启动过程,以避免启动时电流过大对电源和负载设备造成的损坏。
该电路的工作原理可以简单地描述为以下几个步骤:1. 初始状态下,电源输出电压为零,且控制电路处于未工作状态。
2. 当电源启动信号触发时,控制电路开始工作。
一般情况下,启动信号可以是一个外部的开关,或者通过其他电路的控制信号触发。
3. 控制电路根据启动信号的触发,开始工作。
它会通过一定的逻辑电路和元件,控制电源输出电压的变化。
4. 在电源启动的过程中,控制电路会逐渐增加输出电压,直到达到设定的工作电压。
这个过程中,控制电路会监测电源的输出电压,并根据设定的规则进行调整。
5. 一旦电源输出电压达到设定的工作电压,控制电路会停止调整输出电压,并保持在设定的数值范围内。
降压启动控制电路的应用场景比较广泛,主要用于电源启动过程中的保护和控制。
下面我们来看几个具体的应用示例:1. 电源启动保护:在某些电源系统中,启动时的电流过大可能会对电源和负载设备造成损坏。
通过使用降压启动控制电路,可以在启动过程中逐步增加输出电压,从而避免电流过大对设备的损害。
2. 电动机启动:在某些电动机系统中,启动时的电流也会非常大,可能会引起线路过载和设备损坏。
通过使用降压启动控制电路,可以在电动机启动过程中逐步增加输出电压,从而避免电流过大对电动机和线路的损害。
3. LED照明系统:在LED照明系统中,启动时的电流波动可能会导致照明效果不稳定。
通过使用降压启动控制电路,可以在启动过程中逐步增加输出电压,从而保证LED照明系统的正常工作和稳定照明效果。
降压启动控制电路是一种常见的电源控制电路,它通过逐步增加输出电压,来保护设备和线路免受启动时的电流冲击。
在各种电源系统和设备中都有广泛的应用,为电源系统的启动提供了可靠的保护和控制。
降压启动控制电路原理引言:降压启动控制电路是一种能够实现电源电压降低并控制启动的电路。
它在电子设备中起到重要的作用,可以保护设备和电路免受过高电压的损害,并提供稳定的电源供应。
本文将介绍降压启动控制电路的原理及其应用。
一、降压启动控制电路的原理降压启动控制电路的原理是通过控制开关管的开关状态来实现电源电压的降低和启动。
该电路通常由开关管、电感、电容和控制电路组成。
1. 开关管:开关管是降压启动控制电路的核心元件,通常采用MOSFET或IGBT。
通过控制开关管的导通和截断状态,可以实现电源电压的降低和启动。
2. 电感:电感是降压启动控制电路中的另一个重要元件。
它能够储存电能,并在需要时释放出来。
通过选择合适的电感值,可以实现电源电压的稳定输出。
3. 电容:电容是降压启动控制电路中的另一个关键元件。
它能够储存电荷,并在需要时释放出来。
通过选择合适的电容值,可以实现电源电压的平滑输出。
4. 控制电路:控制电路是降压启动控制电路中的重要组成部分,它能够控制开关管的开关状态。
通常,控制电路会根据电源电压的变化来控制开关管的导通和截断状态,从而实现电源电压的降低和启动。
二、降压启动控制电路的应用降压启动控制电路被广泛应用于各种电子设备和系统中,如电源供应、电动车充电器、LED照明等。
下面将分别介绍其在这些应用中的具体应用原理。
1. 电源供应:在电源供应中,降压启动控制电路可以实现对电源电压的降低和启动,保护设备和电路免受过高电压的损害。
同时,它还可以提供稳定的电源供应,确保设备的正常运行。
2. 电动车充电器:在电动车充电器中,降压启动控制电路可以将市电的高电压降低到适合电动车电池充电的电压。
通过控制开关管的开关状态,可以实现电源电压的降低和启动,从而实现对电动车电池的充电。
3. LED照明:在LED照明中,降压启动控制电路可以将市电的高电压降低到适合LED灯的工作电压。
通过控制开关管的开关状态,可以实现电源电压的降低和启动,从而实现对LED灯的驱动。
顺序启动电路图原理
顺序启动电路图用于控制电路在一定的时间间隔内依次启动各个电源或装置。
它主要由主开关、计时器和电磁继电器组成。
电路的工作原理如下:
1. 当主开关关闭时,电路中的电源完全断电,各个电源和装置都处于关闭状态。
2. 当主开关打开时,电源开始供电,计时器开始计时。
3. 在计时器设定的时间间隔之后,第一个电源或装置接通。
这是因为计时器到达设定的时间后会触发一个信号,通过电磁继电器控制第一个电源或装置的开关闭合。
4. 第一个电源或装置接通后,计时器会继续计时,直到达到下一个设定的时间间隔。
5. 当计时器再次触发信号时,通过电磁继电器控制第二个电源或装置的开关闭合,第二个电源或装置接通。
6. 接着,计时器继续计时并触发信号,依次控制其他电源或装置的开关闭合,使它们依次接通。
通过这种方式,顺序启动电路图可以实现对多个电源或装置的有序控制。
它广泛应用于各种自动化控制系统中,确保电路在正确的顺序下进行启动,避免电流突变或过载。