- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方法二(自然语言):用文字语言来描述出的集合,例如“所有的正方 形”组成的集合等等.
3.元素与集合的关系
“属于”和“不属于”分别用“∈”和“”表示.
-5-
4.集合元素的性质 (1)确定性:即任给一个元素和一个集合,那么这 个元素和这个集合的关系只有两种:这个元素要么属 于这个集合,要么不属于这个集合 (2)互异性:一个给定集合的元素是互不相同的, 即集合中的元素是不重复出现的 (3)无序性:集合中的元素是没有顺序的 (4)集合相等:如果两个集合中的元素完全相同 ,那么这两个集合是相等的.
解 : (1) 设 小 于 10 的 所 有 自 然 数 组 成 的 集 合 为 A, 那 么 A={0,1,2,3,4,5,6,7,8,9}.
(2)设方程x2=x的所有实数根组成的集合为B,那么B={0,1}. (3) 设 由 1~20 以 内 的 所 有 质 数 组 成 的 集 合 为 C, 那 么 C={2,3,5,7,11,13,17给对象不能构成集合的是( ) A.一个平面内的所有点 B.所有大于零的正数 C.某校高一(4)班的高个子学生 D.某一天到商场买过货物的顾客
答案:C
-11-
2.用另一种形式表示下列集合: (1){绝对值不大于3的整数}; (2){所有被3整除的数}; (3){x|x=|x|,x∈Z且x<5}; (4){x|(3x-5)(x+2)(x2+3)=0,x∈Z}; (5){(x,y)|x+y=6,x>0,y>0,x∈Z,y∈Z}.
-12-
3.已知集合A={x|ax2-3x+2=0,a∈R},若A中至少有一个元素,求a的 取值范围.
解:当 a=0 时,原方程为-3x+2=0 x= 2 ,符合题意; 3
当
a≠0
时,方程
ax2-3x+2=0
为一元二次方程,则
a 9
0, 8a
解得
0.
a≠0
且
a≤
9 8
.
综上所得 a 的取值范围是{a|a≤ 9 }. 8
-7-
例1.下列各组对象不能组成集合的是( ) A.大于6的所有整数 B.高中数学的所有难题 C.被3除余2的所有整数 D.函数y= 1 图像上所有的点
x
答案:B
-8-
例2.用列举法表示下列集合: (1)小于10的所有自然数组成的集合;
(2)方程x2=x的所有实数根组成的集合;
(3)由1~20以内的所有质数组成的集合.
-9-
例3.试分别用列举法和描述法表示下列集合: (1)方程x2-2=0的所有实数根组成的集合; (2)由大于10小于20的所有整数组成的集合.
解:(1)设方程 x2-2=0 的实根为 x,它满足条件 x2-2=0,因此,用描述法表示为 A={x∈R|x2-2=0}.
方程 x2-2=0 的两个实数根为 2 , 2 ,因此,用列举法表示为
-6-
问题4: (1)请列举出“小于5的所有自然数组成的集合A”. (2)你能写出不等式2-x>3的所有解吗?怎样表示这个不等 式的解集?
列举法:把集合中的全部元素一一列举出来,并用大括号“{}”括起来表示集合, 这种表示集合的方法叫做列举法;
描述法:在大括号内先写上表示这个集合元素的一般符号及其取值(或变化)范 围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.这种用集合所 含元素的共同特征表示集合的方法叫做描述法.注:在不致混淆的情况下,也可以简 写成列举法的形式,只是去掉竖线和元素代表符号,例如:所有直角三角形的集合可 以表示为{x|x是直角三角形},也可以写成{直角三角形}.
1.1.1集合的含义与表示
-2-
问题1:下面这5个实例的共同特征是什么? (1)1~20以内的所有质数; (2)我国古代的四大发明;
(3)所有的安理会常任理事国;
(4)所有的正方形;
. (5)北京大学2014年9月入学的全体学生
共同特征:都是有某些对象组成的全体
-3-
1.集合的含义: 一般地,指定的某些对象的全体称为集合(简称
-13-
4.用适当的方法表示下列集合:
(1)方程组
2x 3x
- 3y 14, 2y 8 的解集;
(2)1000以内被3除余2的正整数所组成的集合;
(3)直角坐标平面上在第二象限内的点所组成的集合;
(4)所有正方形;
(5)直角坐标平面上在直线x=1和x=-1的两侧的点所组成的集合.
解:
(1){(4,-2)}; (2){x|x=3k+2,k∈N且x<1000}; (3){(x,y)|x<0且y>0}; (4){正方形}; (5){(x,y)|x<-1或x>1}.
答案: (1){绝对值不大于3的整数}还可以表示为{x||x|≤3,x∈Z},也可表示 为{-3,-2,-1,0,1,2,3}. (2){x|x=3n,n∈Z}. (3)∵x=|x|,∴x≥0. ∵x∈Z且x<5, {x|x=|x|,x∈Z且x<5}还可以表示为 {0,1,2,3,4}. (4){-2}. (5){(1,5),(2,4),(3,3),(4,2),(5,1)}.
-14-
请同学们想一想 (1)本节课我们学习过哪些知识内容? (2)你认为学习集合有什么意义? (3)选择集合的表示法时应注意些什么?
[作业精选,巩固提高] 1.课本P11习题1.1A组4. 2.元素、集合间有何种关系?如何用符号表示?
A={ 2 , 2 }.
(2)设大于 10 小于 20 的整数为 x,它满足条件 x∈Z,且 10<x<20,因此,用描述法表示为 B={x∈Z|10<x<20}.
大于 10 小于 20 的整数有 11,12,13,14,15,16,17,18,19,因此,用列举法表示为
B={11,12,13,14,15,16,17,18,19}.
为集),集合中的每个对象叫做这个集合的元素. 问题2:集合应当如何表示呢?元素与集合是什么样 的关系?
-4-
2.集合的表示:
方法一(字母表示法):大写的英文字母表示集合, 集合常用大写字 母A,B,C,D,…表示,元素常用小写字母a,b,c,d,…表示. 国际标准化组 织(ISO)制定了常用数集的记法: 自 然 数 集 ( 包 含 零 ):N, 正 整 数 集 :N*(N+), 整 数 集 :Z, 有 理 数 集 :Q, 实 数 集:R.