高三数学大一轮复习 6.3等比数列及其前n项和
- 格式:ppt
- 大小:445.00 KB
- 文档页数:25
第六章 数 列第三讲 等比数列及其前n 项和1。
[2021陕西百校联考]已知等比数列{a n }的公比为q ,前4项的和为a 1+14,且a 2,a 3+1,a 4成等差数列,则q 的值为( )A.12或2 B 。
1或12C.2D.32。
[2021安徽省四校联考]已知正项等比数列{a n }的前n 项和为S n ,若a 4=18,S 3-a 1=34,则S 4=( )A.116B.18C 。
3116D.1583.[2020合肥三检][数学文化题]公元前1650年左右的埃及《莱因德纸草书》上载有如下问题:“十人分十斗玉米,从第二人开始,各人所得依次比前人少八分之一,问每人各得玉米多少斗?”在上述问题中,第一人分得玉米( ) A .70×89810-1斗 B .10×810810-710斗 C 。
10×89810-710斗 D 。
10×88810-710斗4.[2020南昌市测试]公比不为1的等比数列{a n }中,若a 1a 5=a m a n ,则mn 不可能为( ) A 。
5 B .6 C 。
8 D .95。
[2020成都市高三摸底测试]已知等比数列{a n }的各项均为正数,若log 3a 1+log 3a 2+…+log 3a 12=12,则a 6a 7=( ) A.1 B 。
3 C 。
6 D .96.[2021四省八校联考]已知等比数列{a n }的公比为q ,前n 项和为S n =m —q n ,若a 5=—8a 2,则S 5= .7。
[2020大同市高三调研]已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6= .8。
[2020全国卷Ⅲ,17,12分]设等比数列{a n }满足a 1+a 2=4,a 3—a 1=8。
(1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m.9。
第三节等比数列及其前n项和[最新考纲][考情分析][核心素养]1.理解等比数列的概念。
2.掌握等比数列的通项公式与前n项和公式.3.了解等比数列与指数函数的关系。
等比数列的基本运算,等比数列的判断与证明,等比数列的性质与应用仍是2021年高考考查的热点,三种题型都有可能出现,分值为5~12分.1.数学运算2.逻辑推理‖知识梳理‖1.等比数列的有关概念(1)定义①文字语言:从错误!第2项起,每一项与它的前一项的错误!比都等于错误!同一个常数.②符号语言:错误!错误!=q(n∈N*,q为非零常数).(2)等比中项:如果a,G,b成等比数列,那么错误!G叫做a 与b的等比中项.即:G是a与b的等比中项⇔a,G,b成等比数列⇒G26ab.2.等比数列的有关公式(1)通项公式:a n=错误!a1q n-1.(2)前n项和公式3.等比数列的性质(1)通项公式的推广:a n=a m·q n-m(m,n∈N*).(2)对任意的正整数m,n,p,q,若m+n=p+q,则错误!a m·a n =错误a p·a q.特别地,若m+n=2p,则a m·a n=a2p.(3)若等比数列前n项和为S n,则S m,S2m-S m,S3m-S2m仍成等比数列,即(S2m-S m)213S m(S3m-S2m)(m∈N*,公比q≠1).(4)数列{a n}是等比数列,则数列{pa n}(p≠0,p是常数)也是错误!等比数列.(5)在等比数列{a n}中,等距离取出若干项也构成一个等比数列,即a n,a n+k,a n+2k,a n+3k,…为等比数列,公比为错误!q k.►常用结论1.若{a n},{b n}(项数相同)是等比数列,则{λa n}(λ≠0),错误!,{a2,n},{a n·b n},错误!仍是等比数列.2.一个等比数列各项的k次幂仍组成一个等比数列,新公比是原公比的k次幂.3.{a n}为等比数列,若a1·a2·…·a n=T n,则T n,错误!,错误!,…成等比数列.4.当q≠0且q≠1时,S n=k-k·q n(k≠0)是{a n}成等比数列的充要条件,这时k=错误!.5.有穷等比数列中,与首末两项等距离的两项的积相等,特别地,若项数为奇数时,还等于中间项的平方.‖基础自测‖一、疑误辨析1.判断下列结论是否正确(请在括号中打“√”或“×”).(1)若一个数列从第2项起每一项与它的前一项的比都是常数,则这个数列是等比数列.()(2)三个数a,b,c成等比数列的充要条件是b2=ac。
第03节 等比数列及其前n 项和【考纲解读】【知识清单】一.等比数列的有关概念 1. 等比数列定义一般地,如果一个数列从第二项起....,每一项与它的前一项的比等于同一个常数..,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母q 表示(0)q ≠,即:)0(1≠=+q q a a nn ,(注意:“从第二项起”、“常数”q 、等比数列的公比和项都不为零) 2.等比数列通项公式为:)0(111≠⋅⋅=-q a q a a n n .说明:(1)由等比数列的通项公式可以知道:当公比1d =时该数列既是等比数列也是等差数列;(2)等比数列的通项公式知:若{}n a 为等比数列,则m n mna q a -=. 3.等比中项如果在b a 与中间插入一个数G ,使b G a ,,成等比数列,那么G 叫做b a 与的等比中项(两个符号相同的非零实数,都有两个等比中项) 4.等比数列前n 项和公式 一般地,设等比数列123,,,,,n a a a a 的前n 项和是=n S 123n a a a a ++++,当1≠q 时,qq a S n n --=1)1(1或11n n a a qS q -=-;当1q =时,1na S n =(错位相减法).说明:(1)(1)n S n q a ,,,1和n n S q a a ,,,1各已知三个可求第四个;(2)注意求和公式中是nq ,通项公式中是1-n q不要混淆;(3)应用求和公式时1≠q ,必要时应讨论1=q 的情况.5. 等差数列与等比数列的区分与联系 (1)如果数列{}n a 成等差数列,那么数列{}na A(na A总有意义)必成等比数列.(2)如果数列{}n a 成等比数列,且0n a >,那么数列{log }a n a (0a >,且1a ≠)必成等差数列.(3)如果数列{}n a 既成等差数列又成等比数列,那么数列{}n a 是非零常数数列.数列{}n a 是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.(4)如果由一个等差数列与一个等比数列的公共项顺次组成新数列,那么常选用“由特殊到一般”的方法进行讨论,且以等比数列的项为主,探求等比数列中哪些项是它们的公共项,构成什么样的新数列. 对点练习:【2017 届浙江省杭州高级中学高三2月模拟】已知数列{}n a 的前n 项和为n S ,对任意正整数n , 13n n a S +=,则下列关于{}n a 的论断中正确的是( ) A. 一定是等差数列 B. 一定是等比数列C. 可能是等差数列,但不会是等比数列D. 可能是等比数列,但不会是等差数列 【答案】C【解析】∵a n+1=3S n , ∴S n+1−S n =3S n , ∴S n+1=4S n ,若S 1=0,则数列{a n }为等差数列;若S 1≠0,则数列{S n }为首项为S 1,公比为4的等比数列,∴S n =S 1⋅4n −1, 此时a n =S n −S n −1=3S 1⋅4n −2(n ⩾2),即数列从第二项起,后面的项组成等比数列。
第三讲 等比数列及其前n 项和A 组基础巩固一、单选题1.在等比数列{a n }中,a 1=12,q =12,a n =132,则项数n 为( C )A .3B .4C .5D .6[解析] a n =132=a 1q n -1=12×⎝ ⎛⎭⎪⎫12n -1=⎝ ⎛⎭⎪⎫12n ,∴n =5,故选C.2.(2021·陕西西安中学六模)已知数列{a n }是各项均为正数的等比数列,S n 是它的前n 项和.若a 2a 6=4,且a 4+2a 7=52,则S 5=( C )A .29B .30C .31D .32[解析] 本题考查等比数列性质及基本量的运算.∵a 2a 6=a 24=4,且a n >0,∴a 4=2.又a 4+2a 7=52,∴a 7=14.设{a n }的公比为q ,则a 7a 4=q 3=18,q =12,∴a n =a 4⎝ ⎛⎭⎪⎫12n -4=25-n ,∴S 5=16+8+4+2+1=31.3.设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( B ) A .152B .314C .334D .172[解析] 设数列{a n }的公比为q ,则显然q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 11-q 31-q =7,解得⎩⎪⎨⎪⎧a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9,q =-13(舍去),∴S 5=a 11-q 51-q=4×⎝ ⎛⎭⎪⎫1-1251-12=314.4.(2021·全国甲理)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则( B )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件[解析] 当q =1,a 1<0时,等比数列{a n }的前n 项和S n =na 1<0,可知{S n }是单调递减数列,因此甲不是乙的充分条件;若{S n }是递增数列,则当n ≥2时,a n =S n -S n -1>0,即a 1qn -1>0恒成立,而只有当a 1>0,q >0时,a 1q n -1>0恒成立,所以可得q >0,因此甲是乙的必要条件.综上,甲是乙的必要条件但不是充分条件.故选B.5.(2021·深圳一模)已知等比数列{a n }的前n 项和S n =a ·3n -1+b ,则a b=( A )A .-3B .-1C .1D .3[解析] 解法一:a 1=a +b ,当n ≥2时,a n =S n -S n -1=2a ·3n -2,又∵{a n }是等比数列,∴a +b =2a ·31-2,∴a b=-3.故选A.解法二:a 1=a +b ,a 2=2a ,a 3=6a . 又∵{a n }是等比数列, ∴a 2a 1=a 3a 2,∴2a a +b =6a 2a, ∴a =-3b ,∴a b=-3,故选A.6.(2022·广东惠州一中月考)已知数列{a n }是等比数列,且a 2=2,a 5=14,则a 1a 2+a 2a 3+…+a n a n +1=( C )A .16(1-4-n) B .16(1-2-n) C .323(1-4-n)D .323(1-2-n )[解析] 因为等比数列{a n }中,a 2=2,a 5=14,所以a 5a 2=q 3=18,所以q =12.由等比数列的性质,易知数列{a n a n +1}为等比数列,其首项为a 1a 2=8,公比为q 2=14,所以要求的a 1a 2+a 2a 3+…+a n a n +1为数列{a n a n +1}的前n 项和.由等比数列的前n 项和公式得a 1a 2+a 2a 3+…+a n a n +1=8⎝ ⎛⎭⎪⎫1-14n 1-14=323(1-4-n).故选C.二、多选题7.(2021·辽宁大连八中模拟改编)记等比数列{a n }的前n 项和为S n ,若a 1=2,S 3=6,则S 4=( AC )A .-10B .-8C .8D .10[解析] 设等比数列的公比为q ,因为a 1=2,S 3=6,所以S 3=2+2q +2q 2=6,则q 2+q -2=0,所以q =1或q =-2.当q =1时,S 4=S 3+2=8;当q =-2时,S 4=S 3+a 1q 3=6+2×(-2)3=-10,故选A 、C.8.(2021·山西大同期中改编)中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗.苗主责之粟五斗.羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟,羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半,”打算按此比例偿还,他们各应偿还多少?已知牛、马、羊的主人应分别偿还a 升,b 升,c 升,1斗为10升,则下列判断正确的是( BD )A .a =507B .c =507C .a ,b ,c 依次成公比为2的等比数列D .a ,b ,c 依次成公比为12的等比数列[解析] 由题意得a ,b ,c 依次成公比为12的等比数列,且c +2c +4c =50,即c =507,故选B 、D.三、填空题9.(2021·四川南充一诊)数列{a n }满足:log 2a n +1=1+log 2a n ,若a 3=10,则a 8= 320 . [解析] 由题意知log 2a n +1=log 2(2a n ),∴a n +1=2a n ,∴{a n }是公比为2的等比数列,又a 3=10,∴a 8=a 3·25=320.10.(2021·北京东城区期末)已知{a n }是各项均为正数的等比数列,S n 为其前n 项和.若a 1=6,a 2+2a 3=6,则公比q = 12 ,S 4=454. [解析] 本题考查等比数列的通项公式、前n 项和公式.由题意,数列{a n }是各项均为正数的等比数列,由a 1=6,a 2+2a 3=6,可得a 1q +2a 1q 2=6q +12q 2=6,即2q 2+q -1=0,解得q =12或q =-1(舍去).由等比数列的前n 项和公式,可得S 4=6×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1241-12=454.11.等比数列{a n }的各项均为实数,其前n 项和为S n .已知S 3=74,S 6=634,则a 8= 32 .[解析] 由题意知S 3=a 1+a 2+a 3=74,a 4+a 5+a 6=S 6-S 3=634-74=14=74·q 3,∴q =2.又a 1+2a 1+4a 1=74,∴a 1=14,∴a 8=14×27=32.12.(2021·长春市高三一检)等比数列{a n }的首项为a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q = -12.[解析] 由S 10S 5=3132,a 1=-1,知公比q ≠1,S 10-S 5S 5=-132.由等比数列前n 项和的性质知S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,故q 5=-132,所以q =-12.四、解答题13.(2021·陕西榆林一模)已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式. [解析] (1)由条件可得a n +1=2n +1na n , 将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.理由如下: 由条件可得a n +1n +1=2a nn,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a n n=2n -1,所以a n =n ·2n -1.14.(2021·安徽联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4.(1)证明:{S n -n +2}为等比数列; (2)求数列{S n }的前n 项和T n .[解析] (1)证明:由题意知S n -2(S n -S n -1)=n -4(n ≥2), 即S n =2S n -1-n +4,所以S n -n +2=2[S n -1-(n -1)+2], 又易知a 1=3,所以S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2的等比数列. (2)由(1)知S n -n +2=2n +1,所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n =41-2n1-2+n n +12-2n =2n +3+n 2-3n -82.B 组能力提升1.(2021·安徽六安一中调研)已知1,a 1,a 2,4成等差数列,1,b 1,b 2,b 3,4成等比数列,则a 1+a 2b 2的值是( C ) A .52或-52 B .-52C .52D .12[解析] 由题意得a 1+a 2=5,b 22=4,又b 2与第一项的符号相同,所以b 2=2.所以a 1+a 2b 2=52.故选C. 2.(多选题)(2021·海南海口模拟)已知正项等比数列{a n }满足a 1=2,a 4=2a 2+a 3.若设其公比为q ,前n 项和为S n ,则下面结论不正确的是( C 、D )A .q =2B .a n =2nC .S 10=2 047D .a n +a n +1>a n +2[解析] 本题考查等比数列基本量的计算.因为a 1=2,a 4=2a 2+a 3,公比为q ,所以2q 3=4q +2q 2,得q 2-q -2=0,解得q =2(负值舍去),故A 正确;a n =2×2n -1=2n,故B 正确;S n =2×2n -12-1=2n +1-2,所以S 10=2 046,故C 错误;a n +a n +1=2n +2×2n=3a n ,而a n +2=4a n >3a n ,故D 错误.故选C 、D.3.《张丘建算经》中“今有马行转迟,次日减半,疾七日,行七百里.问日行几何?”意思是:“现有一匹马行走的速度逐渐变慢,每天走的里数是前一天的一半,连续行走7天,共走了700里路,问每天走的里数为多少?”则该匹马第一天走的里数为( B )A .128127B .44 800127C .700127D .17532[解析] 由题意知每日所走的路程成等比数列{a n },且公比q =12,S 7=700,由等比数列的求和公式得a 1⎝⎛⎭⎪⎫1-1271-12=700,解得a 1=44 800127.故选B. 4.(2022·南昌模拟)在等比数列{a n }中,a 1+a n =66,a 2a n -1+a 3a n -2=256,且前n 项和S n =126,则n =( C )A .2B .4C .6D .8[解析] 因为数列{a n }是等比数列,所以a 2a n -1=a 3a n -2=a 1a n ,又因为a 2a n -1+a 3a n -2=256,所以a 1a n =128,又因为a 1+a n =66.所以a 1=2,a n =64或a 1=64,a n =2.因为S n =a 1-a n q1-q,且S n =126,所以若a 1=2,a n =64,则2-64q 1-q =126,得q =2.此时a n =2×2n -1=2n=64,n=6;若a 1=64,a n =2,则64-2q 1-q =126,得q =12,此时a n =64×⎝ ⎛⎭⎪⎫12n -1=2,得n =6.综上知,n =6.5.设等比数列{a n }满足a 1+a 2=4,a 3-a 1=8. (1)求{a n }的通项公式;(2)记S n 为数列{log 3a n }的前n 项和.若S m +S m +1=S m +3,求m . [解析] (1)设{a n }的公比为q ,则a n =a 1qn -1.由已知得⎩⎪⎨⎪⎧a 1+a 1q =4,a 1q 2-a 1=8,解得a 1=1,q =3.所以{a n }的通项公式为a n =3n -1.(2)由(1)知log 3a n =n -1. 故S n =n n -12.由S m +S m +1=S m +3得m (m -1)+(m +1)m =(m +3)(m +2),即m 2-5m -6=0.解得m =-1(舍去)或m =6.。
2024年高考数学一轮复习课件(新高考版)第六章 数 列§6.3 等比数列考试要求1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.了解等比数列与指数函数的关系.内容索引第一部分第二部分第三部分落实主干知识探究核心题型课时精练第一部分1.等比数列有关的概念(1)定义:如果一个数列从第 项起,每一项与它的前一项的比都等于 常数,那么这个数列叫做等比数列,这个常数叫做等比数列的,公比通常用字母q (q ≠0)表示.(2)等比中项:如果在a 与b 中间插入一个数G ,使 成等比数列,那么G 叫做a 与b 的等比中项,此时,G 2= .2同一个公比a ,G ,b ab2.等比数列的通项公式及前n项和公式a1q n-1(1)若等比数列{a n}的首项为a1,公比是q,则其通项公式为a n=.(2)等比数列通项公式的推广:a n=a m q n-m.(3)等比数列的前n项和公式:当q=1时,S n=na1;当q≠1时,S n=________= .3.等比数列性质(1)若m +n =p +q ,则,其中m ,n ,p ,q ∈N *.特别地,若2w =m +n ,则 ,其中m ,n ,w ∈N *.(2)a k ,a k +m ,a k +2m ,…仍是等比数列,公比为 (k ,m ∈N *).a m a n =a p a q q mS2n-S n S3n-S2n(4)等比数列{a n}的前n项和为S n,则S n,,仍成等比数列,其公比为q n.(n为偶数且q=-1除外)增减常用结论1.等比数列{a n}的通项公式可以写成a n=cq n,这里c≠0,q≠0.2.等比数列{a n}的前n项和S n可以写成S n=Aq n-A(A≠0,q≠1,0).3.数列{a n}是等比数列,S n是其前n项和.判断下列结论是否正确(请在括号中打“√”或“×”)(1)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(2)当公比q >1时,等比数列{a n }为递增数列.( )(3)等比数列中所有偶数项的符号相同.( )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( )√×××1.设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的A.充分不必要条件√B.必要不充分条件C.充要条件D.既不充分也不必要条件若a,b,c,d成等比数列,则ad=bc,数列-1,-1,1,1.满足-1×1=-1×1,但数列-1,-1,1,1不是等比数列,即“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.2.设等比数列{a n}的前n项和为S n.若S2=3,S4=15,则S6等于√A.31B.32C.63D.64根据题意知,等比数列{a n}的公比不是-1.由等比数列的性质,得(S4-S2)2=S2·(S6-S4),即122=3×(S6-15),解得S6=63.3.已知三个数成等比数列,若它们的和等于13,积等于27,则这三个数1,3,9或9,3,1为____________.∴这三个数为1,3,9或9,3,1.第二部分例1 (1)(2022·全国乙卷)已知等比数列{a n}的前3项和为168,a2-a5=42,则a6等于√A.14B.12C.6D.3方法一 设等比数列{a n}的公比为q,易知q≠1.所以a6=a1q5=3,故选D.方法二 设等比数列{a n}的公比为q,所以a6=a1q5=3,故选D.(2)(2023·桂林模拟)朱载堉(1536~1611)是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中阐述了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”.即一个八度13个音,相邻两个音之间的频率之比相等,且最后一√设第一个音的频率为a ,相邻两个音之间的频率之比为q ,那么a n =aq n -1,根据最后一个音的频率是最初那个音的2倍,得a 13=2a =aq 12,即q = ,1122思维升华等比数列基本量的运算的解题策略(1)等比数列中有五个量a1,n,q,a n,S n,一般可以“知三求二”,通过列方程(组)可迎刃而解.(2)解方程组时常常利用“作商”消元法.(3)运用等比数列的前n项和公式时,一定要讨论公比q=1的情形,否则会漏解或增解.跟踪训练1 (1)设正项等比数列{a n}的前n项和为S n,若S2=3,S4=15,则公比q等于√A.2B.3C.4D.5∵S2=3,S4=15,∴q≠1,(2)在1和2之间插入11个数使包含1和2的这13个数依次成递增的等比数列,记插入的11个数之和为M,插入11个数后这13个数之和为N,则依此规则,下列说法错误的是A.插入的第8个数为B.插入的第5个数是插入的第1个数的倍C.M>3√D.N<7设该等比数列为{a n},公比为q,则a1=1,a13=2,插入的第5个数为a6=a1q5,插入的第1个数为a2=a1q,112112-要证M >3,即证-1- >3,112112-112121-即证 >4,1122N =M +3.1122112121 所以 >5,所以-1- >4,即M >4,112112 所以N =M +3>7,故D 错误.例2 已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等比数列;②数列{S n+a1}是等比数列;③a2=2a1.注:如果选择不同的组合分别解答,则按第一个解答计分.选①②作为条件证明③:设S n+a1=Aq n-1(A≠0),则S n=Aq n-1-a1,当n=1时,a1=S1=A-a1,所以A=2a1;当n≥2时,a n=S n-S n-1=Aq n-2(q-1),解得q=2,所以a2=2a1.选①③作为条件证明②:因为a2=2a1,{a n}是等比数列,所以公比q=2,选②③作为条件证明①:设S n+a1=Aq n-1(A≠0),则S n=Aq n-1-a1,当n=1时,a1=S1=A-a1,所以A=2a1;当n≥2时,a n=S n-S n-1=Aq n-2(q-1),因为a2=2a1,所以A(q-1)=A,解得q=2,所以当n≥2时,a n=S n-S n-1=Aq n-2(q-1)=A·2n-2=a1·2n-1,所以{a n}为等比数列.思维升华(3)前n项和公式法:若数列{a n}的前n项和S n=k·q n-k(k为常数且k≠0,q≠0,1),则{a n}是等比数列.跟踪训练2 在数列{a n}中,+2a n+1=a n a n+2+a n+a n+2,且a1=2,a2=5.(1)证明:数列{a n+1}是等比数列;所以(a n+1+1)2=(a n+1)(a n+2+1),因为a1=2,a2=5,所以a1+1=3,a2+1=6,所以数列{a n+1}是以3为首项,2为公比的等比数列.(2)求数列{a n}的前n项和S n.由(1)知,a n+1=3·2n-1,所以a n=3·2n-1-1,√∵a1,a13是方程x2-13x+9=0的两根,∴a1+a13=13,a1·a13=9,又数列{a n}为等比数列,等比数列奇数项符号相同,可得a7=3,(2)已知正项等比数列{a n}的前n项和为S n且S8-2S4=6,则a9+a10+a1124+a12的最小值为______.由题意可得S8-2S4=6,可得S8-S4=S4+6,由等比数列的性质可得S4,S8-S4,S12-S8成等比数列,则S4(S12-S8)=(S8-S4)2,当且仅当S4=6时等号成立.综上可得,a9+a10+a11+a12的最小值为24.思维升华(1)等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n项和公式的变形,根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(2)巧用性质,减少运算量,在解题中非常重要.跟踪训练3 (1)(2023·六安模拟)在等比数列{a n}中,若a1+a2=16,a3+a4=24,则a7+a8等于√A.40B.36C.54D.81在等比数列{a n}中,a1+a2,a3+a4,a5+a6,a7+a8成等比数列,∵a1+a2=16,a3+a4=24,(2)等比数列{a n}共有奇数个项,所有奇数项和S奇=255,所有偶数项和S偶=-126,末项是192,则首项a1等于√A.1B.2C.3D.4∵a n=192,√∵a1a2…a8=16,∴a1a8=a2a7=a3a6=a4a5=2,第三部分1.(2023·岳阳模拟)已知等比数列{a n}满足a5-a3=8,a6-a4=24,则a3等于√A.1B.-1C.3D.-3设a n=a1q n-1,∵a5-a3=8,a6-a4=24,2.数列{a n}中,a1=2,a m+n=a m a n,若a k+1+a k+2+…+a k+10=215-25,则k等于√A.2B.3C.4D.5令m=1,则由a m+n=a m a n,得a n+1=a1a n,所以a n=2n,所以a k+1+a k+2+…+a k+10=2k (a1+a2+…+a10)=215-25=25×(210-1),解得k=4.3.若等比数列{a n}中的a5,a2 019是方程x2-4x+3=0的两个根,则log3a1+log3a2+log3a3+…+log3a2 023等于√。
6.3 等比数列及其前n项和考纲要求1.理解等比数列的概念.2.掌握等比数列的通项公式和前n项和公式.3.能在具体的问题情境中,识别数列的等比关系,并能用有关知识解决相应的问题.4.了解等比数列与指数函数的关系.1相关名词等比数列{a n}的有关概念及公式定义a n+1a n=q(q是常数且q≠0,n∈N*)或a na n-1=q(q是常数且q≠0,n∈N*且n≥2)通项公式a n=__________,a n=a m·q n-m前n项和公式()()_________,1,_________,1 nqSq=⎧⎪=⎨≠⎪⎩等比中项如果三个数a,G,b组成等比数列,则G叫做a和b的等比中项,且__________.2(1)在等比数列中,若m +n =p +q ,则a m ·a n =__________(m ,n ,p ,q ∈N *). (2)间隔相同的项,如a 1,a 3,a 5,…仍为等比数列,且公比为__________.(3)等比数列{a n }的前n 项和为S n (S n ≠0),则S n ,S 2n -S n ,S 3n -S 2n 成等比数列,公比为__________.(4)单调性 若⎩⎪⎨⎪⎧ a 1>0,q >1或⎩⎪⎨⎪⎧ a 1<0,0<q <1⇔{a n }__________. 若⎩⎪⎨⎪⎧a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1⇔{a n }__________.q =1⇔{a n }为常数列,q <0⇔{a n }为摆动数列.1.在等比数列{a n }中,若a 5=4,则a 2a 8等于( ). A .4 B .8 C .16 D .322.在等比数列{a n }中,若a 4=8,q =-2,则a 7的值为( ). A .-64 B .64 C .-48 D .483.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=( ).A .-11B .-8C .5D .114.设数列1,(1+2),…,(1+2+22+…+2n -1),…的前n 项和为S n ,则S n =__________.一、等比数列的判定与证明【例1】设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明数列{b n }是等比数列; (2)证明数列⎩⎨⎧⎭⎬⎫a n 2n 是等差数列.方法提炼等比数列的判定方法: (1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a n a n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)中项公式法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. (3)通项公式法:若数列通项公式可写成a n =c ·q n -1(c ,q 均是不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n-k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.提醒:(1)前两种方法是判定等比数列的常用方法,常用于证明,而后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比即可.请做演练巩固提升5二、等比数列的基本运算 【例2-1】(2012重庆高考)首项为1,公比为2的等比数列的前4项和S 4=__________. 【例2-2】设等比数列{a n }的前n 项和为S n .已知a 2=6,6a 1+a 3=30,求a n 和S n . 方法提炼1.等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.2.解决此类问题的关键是熟练掌握等比数列的有关公式,并灵活运用,在运算过程中,还应善于运用整体代换思想简化运算的过程.3.在使用等比数列的前n 项和公式时,应根据公比q 的情况进行分类讨论,切不可忽视q 的取值而盲目用求和公式.提醒:数列{a n }的前n 项和为S n ,若S n =aq n+b (a ,b ∈R ),{a n }是等比数列,则a ,b应满足a +b =0且a ,b 均不为0.∵由S n =aq n+b ,可知{a n }的公比q ≠1,∴S n =a 11-q n 1-q =-a 11-q ·q n+a 11-q .观察可知a =-a 11-q ,b =a 11-q,∴a +b =0且a 与b 不等于0.请做演练巩固提升1,3三、等比数列的性质及其应用【例3-1】(1)已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,求b 5+b 9的值.(2)在等比数列{a n }中,若a 1a 2a 3a 4=1,a 13a 14a 15a 16=8,求a 41a 42a 43a 44.【例3-2】已知方程(x 2-mx +2)(x 2-nx +2)=0的四个根组成以12为首项的等比数列,求m n的值.方法提炼1.等比数列的性质可以分为三类:(1)通项公式的变形,(2)等比中项的变形,(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.2.等比数列的常用性质(1)数列{a n }是等比数列,则数列{pa n }(p ≠0,p 是常数)也是等比数列;(2)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k;(3)a n =a m ·q n -m (n ,m ∈N *);(4)若m +n =p +q (m ,n ,p ,q ∈N *),则a m ·a n =a p ·a q ;(5)若等比数列{a n }的公比不为-1,前n 项和为S n ,则S k ,S 2k -S k ,S 3k -S 2k ,S 4k -S 3k是等比数列.请做演练巩固提升4未注意数列首项的特殊而致误【典例】已知数列{a n }满足a 1=1,a 2=2,a n +2=a n +a n +12,n ∈N *.(1)令b n =a n +1-a n ,证明:{b n }是等比数列; (2)求{a n }的通项公式.错解:(1)证明:∵b n =a n +1-a n =a n -1+a n2-a n=-12(a n -a n -1)=-12b n -1,∴{b n }是等比数列.(2)解:b n =a n +1-a n =⎝ ⎛⎭⎪⎫-12n -1,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+⎝ ⎛⎭⎪⎫-12+…+⎝ ⎛⎭⎪⎫-12n -2=1+1-⎝ ⎛⎭⎪⎫-12n -11-⎝ ⎛⎭⎪⎫-12=1+23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n -1=53-23⎝ ⎛⎭⎪⎫-12n -1, ∴a n =53-23⎝ ⎛⎭⎪⎫-12n -1(n ∈N ).正解:(1)证明:b 1=a 2-a 1=1,当n ≥2时,b n =a n +1-a n =a n -1+a n2-a n=-12(a n -a n -1)=-12b n -1,∴{b n }是首项为1,公比为-12的等比数列.(2)解:由(1)知b n =a n +1-a n =⎝ ⎛⎭⎪⎫-12n -1,当n ≥2时,a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1)=1+1+⎝ ⎛⎭⎪⎫-12+…+⎝ ⎛⎭⎪⎫-12n -2=1+1-⎝ ⎛⎭⎪⎫-12n -11-⎝ ⎛⎭⎪⎫-12=1+23⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n -1=53-23⎝ ⎛⎭⎪⎫-12n -1,当n =1时,53-23⎝ ⎛⎭⎪⎫-121-1=1=a 1,∴{a n }的通项公式为a n =53-23⎝ ⎛⎭⎪⎫-12n -1(n ∈N *).答题指导:本题难度并不大,属于一道中等难度的题目,但大部分考生都因解题不规范,步骤不完整等原因被扣分,如解(1)题时未说明{b n }的首项和公比.解第(2)题时未对n =1的情况进行检验等,因此在解题时一定注意步骤的完整性及逻辑的严谨性.1.(2012大纲全国高考)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( ).A .2n -1B .⎝ ⎛⎭⎪⎫32n -1C .⎝ ⎛⎭⎪⎫23n -1 D .12n -12.已知数列{a n }满足:a 1=1,a n +1=2a n +n +1,n ∈N *,若数列{a n +pn +q }是等比数列,则实数p ,q 的值分别等于( ).A .1,2B .2,1C .2,2D .1,33.设等比数列{a n }的公比q =3,前n 项和为S n ,则S 4a 2等于__________. 4.在正项等比数列{a n }中,若1a 2a 4+2a 24+1a 4a 6=81,则1a 3+1a 5=__________.5.(2012陕西高考)已知等比数列{a n }的公比q =-12.(1)若a 3=14,求数列{a n }的前n 项和;(2)证明:对任意k ∈N +,a k ,a k +2,a k +1成等差数列.参考答案基础梳理自测 知识梳理1.a 1·q n -1na 1 a 1(1-q n )1-q G 2=ab2.(1)a p ·a q (2)q 2 (3)q n(4)递增递减 基础自测1.C 解析:∵{a n }是等比数列且2+8=2×5,∴a 2·a 8=a 52=16.2.A 解析:依题意得a 7=a 4q 3=8×(-2)3=-64. 故选A.3.A 解析:由8a 2+a 5=0, ∴a 5a 2=-8,即q 3=-8,q =-2.∴S 5S 2=a 1(1-q 5)1-q a 1(1-q 2)1-q=1-q 51-q 2=33-3=-11. 4.2n +1-n -2 解析:由已知得数列的通项a n =1×(1-2n)1-2=2n-1,∴S n =(2+22+…+2n )-n =2×(1-2n)1-2-n =2n +1-n -2.考点探究突破【例1】证明:(1)由a 1=1,S n +1=4a n +2得a 1+a 2=4a 1+2,a 2=3a 1+2=5, ∴b 1=a 2-2a 1=3. 由S n +1=4a n +2,①则当n ≥2时,有S n =4a n -1+2.② ①-②得a n +1=4a n -4a n -1, ∴a n +1-2a n =2(a n -2a n -1). 又∵b n =a n +1-2a n . ∴b n =2b n -1.∴数列{b n }是首项为3,公比为2的等比数列.(2)由(1)可得b n =a n +1-2a n =3·2n -1, ∴a n +12n +1-a n 2n =34. ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为12,公差为34的等差数列.【例2-1】15 解析:由等比数列前n 项和公式S n =a 1(1-q n )1-q 得,S 4=1-241-2=15.【例2-2】解:设{a n }的公比为q ,由题设得⎩⎪⎨⎪⎧a 1q =6,6a 1+a 1q 2=30.解得⎩⎪⎨⎪⎧a 1=3,q =2,或⎩⎪⎨⎪⎧a 1=2,q =3.当a 1=3,q =2时,a n =3×2n -1,S n =3×(2n-1);当a 1=2,q =3时,a n =2×3n -1,S n =3n-1.【例3-1】解:(1)∵a 3a 11=a 72=4a 7,且a 7≠0, ∴a 7=4.∴b 7=4. ∵{b n }为等差数列,∴b 5+b 9=2b 7=8.(2)a 1a 2a 3a 4=a 1·a 1q ·a 1q 2·a 1q 3=a 41q 6=1,①a 13a 14a 15a 16=a 1q 12·a 1q 13·a 1q 14·a 1q 15=a 41·q 54=8,②②÷①得,a 14·q 54a 14·q6=q 48=8⇒q 16=2,又a 41a 42a 43a 44=a 1q 40·a 1q 41·a 1q 42·a 1q 43=a 41·q 166=a 41·q 6·q 160=(a 41·q 6)·(q 16)10=1·210=1 024.【例3-2】解:设a ,b ,c ,d 是方程(x 2-mx +2)(x 2-nx +2)=0的四个根,不妨设a<c <d <b ,则a ·b =c ·d =2,a =12,故b =4,根据等比数列的性质,得到:c =1,d =2,则m =a +b =92,n =c +d =3,或m =c +d =3,n =a +b =92,则m n =32或m n =23.演练巩固提升1.B 解析:∵S n =2a n +1,∴S n -1=2a n (n ≥2), 两式相减得:a n =2a n +1-2a n , ∴a n +1a n =32. ∴数列{a n }从第2项起为等比数列.又n =1时,S 1=2a 2,∴a 2=12.∴S n =a 1+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫32n -11-32=1-⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫32n -1=⎝ ⎛⎭⎪⎫32n -1.2.A 解析:依题意有a n +1+p (n +1)+q a n +pn +q=m 对任意n ∈N *都成立,得a n +1+p (n +1)+q =ma n +mpn +mq , 又a n +1=2a n +n +1,则2a n +n +1+pn +p +q =ma n +mpn +mq ,即(2-m )a n +(p +1-mp )n +p +1+q -mq =0. 由已知可得a n >0,所以⎩⎪⎨⎪⎧2-m =0,p +1-mp =0,p +1+q -mq =0,解得⎩⎪⎨⎪⎧m =2,p =1,q =2.故选A.3.403 解析:由题意得S 4=a 1(1-34)1-3=40a 1,a 2=3a 1,∴S 4a 2=403. 4.9 解析:∵a 2a 4=a 32,a 4a 6=a 52,a 42=a 3·a 5,∴1a 2a 4+2a 42+1a 4a 6=1a 32+2a 3a 5+1a 52=81,即⎝⎛⎭⎪⎫1a 3+1a 52=81.又a 3>0,a 5>0, 故1a 3+1a 5=9.5.解:(1)由a 3=a 1q 2=14及q =-12,得a 1=1,所以数列{a n }的前n 项和S n =1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=2+⎝ ⎛⎭⎪⎫-12n -13.(2)证明:对任意k ∈N +,2a k +2-(a k +a k +1)=2a 1q k +1-(a 1q k -1+a 1q k )=a 1q k -1(2q 2-q -1),由q =-12得2q 2-q -1=0,故2a k +2-(a k +a k +1)=0.所以,对任意k ∈N +,a k ,a k +2,a k +1成等差数列.。
第3讲 等比数列及其前n 项和1.等比数列的有关概念 (1)定义如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (q ≠0,n ∈N *). (2)等比中项如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔G 2=ab .“a ,G ,b 成等比数列”是“G 是a 与b 的等比中项”的充分不必要条件. 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的性质已知数列{a n }是等比数列,S n 是其前n 项和(m ,n ,p ,q ,r ,k ∈N *) (1)若m +n =p +q =2r ,则a m ·a n =a p ·a q =a 2r ; (2)数列a m ,a m +k ,a m +2k ,a m +3k ,…仍是等比数列;(3)数列S m ,S 2m -S m ,S 3m -S 2m ,…仍是等比数列(此时{a n }的公比q ≠-1). 4.等比数列的单调性当q >1,a 1>0或0<q <1,a 1<0时,{a n }是递增数列; 当q >1,a 1<0或0<q <1,a 1>0时,{a n }是递减数列; 当q =1时,{a n }是常数列. 5.等比数列与指数函数的关系当q ≠1时,a n =a 1q ·q n,可以看成函数y =cq x ,是一个不为0的常数与指数函数的乘积,因此数列{a n }各项所对应的点都在函数y =cq x 的图象上.[疑误辨析]判断正误(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的比都是常数,则这个数列是等比数列.( )(2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( ) (3)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( ) (4)如果{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( ) (5)等比数列中不存在数值为0的项.( ) 答案:(1)× (2)× (3)× (4)× (5)√ [教材衍化]1.(必修5P54A 组T8改编)在3与192中间插入两个数,使它们同这两个数成等比数列,则这两个数为________.解析:设该数列的公比为q ,由题意知, 192=3×q 3,q 3=64,所以q =4.所以插入的两个数分别为3×4=12,12×4=48. 答案:12,482.(必修5P51例3改编)已知{a n }是等比数列,a 2=2,a 5=14,则公比q =________.解析:由题意知q 3=a 5a 2=18,所以q =12.答案:123.(必修5P61A 组T1改编)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则{a n }的通项公式a n =________.解析:因为S 10S 5=3132,所以S 10-S 5S 5=-132,因为S 5,S 10-S 5,S 15-S 10成等比数列,且公比为q 5,所以q 5=-132,q =-12,则a n =-1×⎝⎛⎭⎫-12n -1=-⎝⎛⎭⎫-12n -1.答案:-⎝⎛⎭⎫-12n -1[易错纠偏](1)忽视项的符号判断; (2)忽视公比q =1的特殊情况; (3)忽视等比数列的项不为0.1.在等比数列{a n }中,a 3=4,a 7=16,则a 3与a 7的等比中项为________.解析:设a 3与a 7的等比中项为G ,因为a 3=4,a 7=16,所以G 2=4×16=64,所以G =±8.答案:±82.数列{a n }的通项公式是a n =a n (a ≠0),则其前n 项和S n =________.解析:因为a ≠0,a n =a n ,所以{a n }是以a 为首项,a 为公比的等比数列.当a =1时,S n =n ;当a ≠1时S n =a (1-a n )1-a.答案:⎩⎪⎨⎪⎧n ,a =1,a (1-a n )1-a,a ≠0,a ≠13.已知x ,2x +2,3x +3是一个等比数列的前三项,则x 的值为________. 解析:因为x ,2x +2,3x +3是一个等比数列的前三项, 所以(2x +2)2=x (3x +3), 即x 2+5x +4=0, 解得x =-1或x =-4.当x =-1时,数列的前三项为-1,0,0, 不是等比数列,舍去. 答案:-4等比数列的基本运算(高频考点)等比数列的基本运算是高考的常考内容,题型既有选择题、填空题,也有解答题,难度为中、低档题.主要命题角度有:(1)求首项a 1、公比q 或项数n ; (2)求通项或特定项; (3)求前n 项和.角度一 求首项a 1、公比q 或项数n(1)已知S 3=a 2+10a 1,a 5=9,则a 1等于( ) A.13 B .-13C.19D .-19(2)设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________. 【解析】 (1)设等比数列{a n }的公比为q ,由S 3=a 2+10a 1,得a 1+a 2+a 3=a 2+10a 1,即a 3=9a 1,q 2=9, 又a 5=a 1q 4=9,所以a 1=19.(2)当q ≠1时,a 1(1-q 3)1-q=3a 1q 2,解得q =1(舍去)或-12.当q =1时,S 3=a 1+a 2+a 3=3a 3也成立.【答案】 (1)C (2)1或-12角度二 求通项或特定项已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0,则a n =________.【解析】 由a 2n -(2a n +1-1)a n -2a n +1=0得2a n +1(a n +1)=a n (a n +1). 因为{a n }的各项都为正数,所以a n +1a n =12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.【答案】12n -1角度三 求前n 项和(2020·温州模拟)已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________.【解析】 设等比数列的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q 3=9,a 21·q 3=8,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎪⎨⎪⎧a 1=8,q =12.又{a n }为递增数列,所以⎩⎪⎨⎪⎧a 1=1,q =2,所以S n =1-2n 1-2=2n-1.【答案】 2n -1解决等比数列有关问题的三种常见思想方法(1)方程思想:等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论思想:因为等比数列的前n 项和公式涉及对公比q 的分类讨论,所以当某一参数为公比进行求和时,就要对参数是否为1进行分类讨论.(3)整体思想:应用等比数列前n 项和公式时,常把q n 或a 11-q当成整体进行求解.1.设等比数列{a n }的各项均为正数,其前n 项和为S n ,若a 1=1,a 3=4,S k =63,则k =( )A .4B .5C .6D .7解析:选C.设等比数列{a n }的公比为q ,由已知a 1=1,a 3=4,得q 2=a 3a 1=4.又{a n }的各项均为正数,所以q =2.而S k =1-2k1-2=63,所以2k -1=63, 解得k =6.2.(2020·绍兴市柯桥区高三期中考试)已知正数数列{a n }的前n 项和S n 满足:S n 和2的等比中项等于a n 和2的等差中项,则a 1=________,S n =________.解析:由题意知a n +22=2S n ,平方可得S n =(a n +2)28,①由a 1=S 1得a 1+22=2a 1,从而可解得a 1=2.又由①式得S n -1=(a n -1+2)28(n ≥2),②①-②可得a n =S n -S n -1=(a n +2)28-(a n -1+2)28(n ≥2),整理得(a n +a n -1)(a n -a n -1-4)=0, 因为数列{a n }的各项都是正数, 所以a n -a n -1-4=0,即a n -a n -1=4.故数列{a n }是以2为首项4为公差的等差数列, 所以S n =2n +n (n -1)2×4=2n 2.当n =1时,S 1=a 1=2. 故S n =2n 2. 答案:2 2n 2等比数列的判定与证明(1)已知等比数列{a n }的前n 项和为S n ,若a 2=12,a 3a 5=4,则下列说法正确的是( )A .{a n }是单调递减数列B .{S n }是单调递减数列C .{a 2n }是单调递减数列D .{S 2n }是单调递减数列(2)设数列{a n }的前n 项和为S n ,n ∈N *.已知a 1=1,a 2=32,a 3=54,且当n ≥2时,4S n +2+5S n =8S n +1+S n -1.①求a 4的值;②证明:⎩⎨⎧⎭⎬⎫a n +1-12a n 为等比数列.【解】 (1)选C.由于{a n }是等比数列,则a 3a 5=a 24=4,又a 2=12,则a 4>0,a 4=2,q 2=16,当q =-66时,{a n }和{S n }不具有单调性,选项A 和B 错误;a 2n =a 2q 2n -2=12×⎝⎛⎭⎫16n -1单调递减,选项C 正确;当q =-66时,{S 2n }不具有单调性,选项D 错误. (2)①当n =2时,4S 4+5S 2=8S 3+S 1,即4(1+32+54+a 4)+5⎝⎛⎭⎫1+32=8⎝⎛⎭⎫1+32+54+1, 解得a 4=78.②证明:由4S n +2+5S n =8S n +1+S n -1(n ≥2),得4S n +2-4S n +1+S n -S n -1=4S n +1-4S n (n ≥2),即4a n +2+a n =4a n +1(n ≥2).因为 4a 3+a 1=4×54+1=6=4a 2,所以4a n +2+a n =4a n +1,所以a n +2-12a n +1a n +1-12a n=4a n +2-2a n +14a n +1-2a n =4a n +1-a n -2a n +14a n +1-2a n=2a n +1-a n 2(2a n +1-a n )=12,所以数列⎩⎨⎧⎭⎬⎫a n +1-12a n 是以a 2-12a 1=1为首项,12为公比的等比数列.(变问法)在本例(2)条件下,求数列{a n }的通项公式. 解:由本例(2)的②知,a n +1-12a n =⎝⎛⎭⎫12n -1, 即a n +1⎝⎛⎭⎫12n +1-a n⎝⎛⎭⎫12n =4. 所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n ⎝⎛⎭⎫12n 是以a 112=2为首项,4为公差的等差数列,所以a n⎝⎛⎭⎫12n =2+4(n -1)=4n -2,即a n =(2n -1)·⎝⎛⎭⎫12n -1,所以数列{a n }的通项公式为a n =(2n -1)·⎝⎛⎭⎫12n -1.等比数列的判定方法(1)定义法:若a n +1a n =q (q 为非零常数)或a na n -1=q (q 为非零常数且n ≥2),则{a n }是等比数列.(2)中项公式法:若数列{a n }中a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列.(3)通项公式法:若数列的通项公式可写成a n =c ·q n -1(c ,q 均为不为0的常数,n ∈N *),则{a n }是等比数列.(4)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n -k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.[提醒] (1)前两种方法是判定等比数列的常用方法,常用于证明;后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.(2020·瑞安市龙翔中学高三月考)各项为正的数列{a n }满足a 1=12,a n +1=a 2nλ+a n (n ∈N *). (1)取λ=a n +1,求证:数列⎩⎨⎧⎭⎬⎫a n +1a n 是等比数列,并求其公比; (2)取λ=2时令b n =1a n +2,记数列{b n }的前n 项和为S n ,数列{b n }的前n 项之积为T n ,求证:对任意正整数n ,2n +1T n +S n 为定值.解:(1)由λ=a n +1,得a n +1=a 2na n +1+a n ,所以a 2n +1-a n +1a n -a 2n =0.两边同除a 2n 可得:⎝⎛⎭⎫a n +1a n 2-a n +1a n -1=0, 解得a n +1a n =1±52.因为a n >0,所以a n +1a n =1+52为常数,故数列⎩⎨⎧⎭⎬⎫a n +1a n 是等比数列,公比为1+52.(2)证明:当λ=2时,a n +1=a 2n2+a n ,得2a n +1=a n (a n +2),所以b n =1a n +2=12·a na n +1.所以T n =b 1·b 2…b n =⎝⎛⎭⎫12·a 1a 2⎝⎛⎭⎫12·a 2a 3…⎝⎛⎭⎫12·a n a n +1=⎝⎛⎭⎫12na 1a n +1=⎝⎛⎭⎫12n +11a n +1,又b n =12·a n a n +1=a 2n2a n a n +1=2a n +1-2a n 2a n a n +1=1a n -1a n +1,所以S n =b 1+b 2+…+b n =1a 1-1a n +1=2-1a n +1,故2n +1T n +S n =2n +1·⎝⎛⎭⎫12n +11a n +1+2-1a n +1=2为定值.等比数列的性质(高频考点)等比数列的性质是高考的热点,多以选择题、填空题的形式出现,其难度为中等.主要命题角度有:(1)等比数列项的性质的应用; (2)等比数列前n 项和的性质的应用. 角度一 等比数列项的性质的应用(1)在等比数列{a n }中,a 3,a 15是方程x 2-6x +8=0的根,则a 1a 17a 9的值为( )A .2 2B .4C .-22或2 2D .-4或4(2)(2020·温州八校联考)数列{a n }的通项公式为a n =2n -1,则使不等式a 21+a 22+…+a 2n <5×2n+1成立的n 的最大值为( )A .2B .3C .4D .5【解析】 (1)因为a 3,a 15是方程x 2-6x +8=0的根, 所以a 3a 15=8,a 3+a 15=6,易知a 3,a 15均为正,由等比数列的性质知,a 1a 17=a 29=a 3a 15=8, 所以a 9=22,a 1a 17a 9=22,故选A. (2)因为a n =2n -1,a 2n=4n -1, 所以a 21+a 22+…+a 2n =1×(1-4n )1-4=13(4n-1). 因为a 21+a 22+…+a 2n <5×2n +1, 所以13(4n -1)<5×2n +1,因为2n (2n -30)<1,对n 进行赋值,可知n 的最大值为4.【答案】 (1)A (2)C角度二 等比数列前n 项和的性质的应用等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15的值为( ) A .1 B .2 C .3D .5【解析】 法一:因为{a n }为等比数列,所以a 5+a 7是a 1+a 3与a 9+a 11的等比中项,所以(a 5+a 7)2=(a1+a 3)·(a 9+a 11),故a 9+a 11=(a 5+a 7)2a 1+a 3=428=2. 同理,a 9+a 11是a 5+a 7与a 13+a 15的等比中项, 所以(a 9+a 11)2=(a 5+a 7)(a 13+a 15), 故a 13+a 15=(a 9+a 11)2a 5+a 7=224=1.所以a 9+a 11+a 13+a 15=2+1=3. 法二:在等比数列{a n }中, 得q 4=a 5+a 7a 1+a 3=12,所以a 9+a 11+a 13+a 15=q 8(a 1+a 3+a 5+a 7)=14(8+4)=3.【答案】 C等比数列常见性质的应用等比数列性质的应用可以分为三类: (1)通项公式的变形; (2)等比中项的变形;(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.1.已知等比数列{a n }中,a 4+a 8=-2,则a 6(a 2+2a 6+a 10)的值为( ) A .4 B .6 C .8D .-9解析:选A.a 6(a 2+2a 6+a 10)=a 6a 2+2a 26+a 6a 10=a 24+2a 4a 8+a 28=(a 4+a 8)2,因为a 4+a 8=-2,所以a 6(a 2+2a 6+a 10)=4.2.设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18B .-18C.578D.558解析:选A.因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.3.(2020·杭州学军中学高三月考)已知数列{a n }满足a 1=2且对任意的m ,n ∈N *,都有a n +ma m=a n ,则a 3=________;{a n }的前n 项和S n =________. 解析:因为a n +ma m =a n ,所以a n +m =a n ·a m ,所以a 3=a 1+2=a 1·a 2=a 1·a 1·a 1=23=8; 令m =1,则有a n +1=a n ·a 1=2a n ,所以数列{a n }是首项为a 1=2,公比q =2的等比数列, 所以S n =2(1-2n )1-2=2n +1-2.答案:8 2n +1-2思想方法系列4 分类讨论思想求解数列问题等差数列{a n }的前n 项和为S n ,数列{b n }是等比数列,满足a 1=3,b 1=1,b 2+S 2=10,a 5-2b 2=a 3.(1)求数列{a n }和{b n }的通项公式;(2)令c n =⎩⎪⎨⎪⎧2S n ,n 为奇数,b n ,n 为偶数,设数列{c n }的前n 项和为T n ,求T 2n .【解】 (1)设数列{a n }的公差为d ,数列{b n }的公比为q ,由⎩⎪⎨⎪⎧b 2+S 2=10,a 5-2b 2=a 3,得⎩⎪⎨⎪⎧q +6+d =10,3+4d -2q =3+2d , 解得⎩⎪⎨⎪⎧d =2,q =2,所以a n =3+2(n -1)=2n +1,b n =2n -1.(2)由a 1=3,a n =2n +1,得S n =n (a 1+a n )2=n (n +2),则c n =⎩⎪⎨⎪⎧2n (n +2),n 为奇数,2n -1,n 为偶数,即c n =⎩⎪⎨⎪⎧1n -1n +2,n 为奇数,2n -1,n 为偶数,所以T 2n =(c 1+c 3+…+c 2n -1)+(c 2+c 4+…+c 2n )=⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫12n -1-12n +1+(2+23+…+22n -1) =1-12n +1+2(1-4n )1-4=2n 2n +1+23(4n -1).分类讨论思想在数列中应用较多,常见的分类讨论有: (1)已知S n 与a n 的关系,要分n =1,n ≥2两种情况. (2)等比数列中遇到求和问题要分公比q =1,q ≠1讨论. (3)项数的奇、偶数讨论.(4)等比数列的单调性的判断注意与a 1,q 的取值的讨论.1.(2020·宁波模拟)设等比数列{a n }的前n 项和为S n ,若S n =2n +1+λ,则λ=( ) A .-2 B .-1 C .1D .2解析:选A.法一:当n =1时,a 1=S 1=4+λ. 当n ≥2时,a n =S n -S n -1=(2n +1+λ)-(2n +λ)=2n,此时a n +1a n =2n +12n =2.因为{a n }是等比数列,所以a 2a 1=2,即44+λ=2,解得λ=-2.故选A. 法二:依题意,a 1=S 1=4+λ,a 2=S 2-S 1=4,a 3=S 3-S 2=8,因为{a n }是等比数列,所以a 22=a 1·a 3,所以8(4+λ)=42,解得λ=-2.故选A.2.已知等比数列{a n }中a 2=1,则其前3项的和S 3的取值范围是( ) A .(-∞,-1] B .(-∞,0)∪[1,+∞) C .[3,+∞)D .(-∞,-1]∪[3,+∞)解析:选D.设等比数列{a n }的公比为q , 则S 3=a 1+a 2+a 3=a 2⎝⎛⎭⎫1q +1+q =1+q +1q . 当公比q >0时,S 3=1+q +1q≥1+2q ·1q=3,当且仅当q =1时,等号成立; 当公比q <0时,S 3=1-⎝⎛⎭⎫-q -1q ≤1-2(-q )·⎝⎛⎭⎫-1q =-1,当且仅当q =-1时,等号成立.所以S 3∈(-∞,-1]∪[3,+∞).[基础题组练]1.(2020·宁波质检)在单调递减的等比数列{a n }中,若a 3=1,a 2+a 4=52,则a 1=( )A .2B .4 C. 2D .2 2解析:选B.在等比数列{a n }中,a 2a 4=a 23=1,又a 2+a 4=52,数列{a n }为递减数列,所以a 2=2,a 4=12,所以q 2=a 4a 2=14,所以q =12,a 1=a 2q=4.2.(2020·衢州模拟)设S n 为等比数列{a n }的前n 项和,a 2-8a 5=0,则S 8S 4的值为( )A.12B.1716 C .2D .17解析:选B.设{a n }的公比为q ,依题意得a 5a 2=18=q 3,因此q =12.注意到a 5+a 6+a 7+a 8=q 4(a 1+a 2+a 3+a 4),即有S 8-S 4=q 4S 4,因此S 8=(q 4+1)S 4,S 8S 4=q 4+1=1716,选B.3.(2020·瑞安四校联考)已知数列{a n }的首项a 1=2,数列{b n }为等比数列,且b n =a n +1a n,若b 10b 11=2,则a 21=( )A .29B .210C .211D .212解析:选C.由b n =a n +1a n ,且a 1=2,得b 1=a 2a 1=a 22,a 2=2b 1;b 2=a 3a 2,a 3=a 2b 2=2b 1b 2;b 3=a 4a 3,a 4=a 3b 3=2b 1b 2b 3;…;a n =2b 1b 2b 3…b n -1,所以a 21=2b 1b 2b 3…b 20,又{b n }为等比数列,所以a 21=2(b 1b 20)(b 2b 19)…(b 10b 11)=2(b 10b 11)10=211.4.(2020·丽水市高考数学模拟)设等比数列{a n }的前n 项和为S n ,下列结论一定成立的是( )A .a 1+a 3≥2a 2B .a 1+a 3≤2a 2C .a 1S 3>0D .a 1S 3<0解析:选C.选项A ,数列-1,1,-1为等比数列,但a 1+a 3=-2<2a 2=2,故A 错误;选项B ,数列1,-1,1为等比数列,但a 1+a 3=2>2a 2=-2,故B 错误;选项D ,数列1,-1,1为等比数列,但a 1S 3=1>0,故D 错误;对于选项C ,a 1(a 1+a 2+a 3)=a 1(a 1+a 1q +a 1q2)=a 21(1+q +q 2),因为等比数列的项不为0,故a 21>0,而1+q +q 2=⎝⎛⎭⎫q +122+34>0, 故a 21(1+q +q 2)>0,故C 正确.5.(2020·郑州市第一次质量预测)已知数列{a n }满足a 1a 2a 3…a n =2n 2(n ∈N *),且对任意n ∈N *都有1a 1+1a 2+…+1a n<t ,则实数t 的取值范围为( )A .(13,+∞)B .[13,+∞)C .(23,+∞)D .[23,+∞)解析:选D.依题意得,当n ≥2时,a n =a 1a 2a 3…a n a 1a 2a 3…a n -1=2n 22(n -1)2=2n 2-(n -1)2=22n -1,又a 1=21=22×1-1,因此a n =22n -1,1a n =122n -1,数列{1a n }是以12为首项,14为公比的等比数列,等比数列{1a n }的前n 项和等于12(1-14n )1-14=23(1-14n )<23,因此实数t 的取值范围是[23,+∞),选D.6.(2020·江南十校联考)设数列{a n }是各项均为正数的等比数列,T n 是{a n }的前n 项之积,a 2=27,a 3a 6a 9=127,则当T n 最大时,n 的值为( )A .5或6B .6C .5D .4或5解析:选D.数列{a n }是各项均为正数的等比数列,因为a 3a 6a 9=127,所以a 36=127,所以a 6=13.因为a 2=27,所以q 4=a 6a 2=1327=181,所以q =13.所以a n =a 2q n -2=27×⎝⎛⎭⎫13n -2=⎝⎛⎭⎫13n -5.令a n =⎝⎛⎭⎫13n -5=1,解得n =5,则当T n 最大时,n 的值为4或5.7.已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n =________.解析:设数列{a n }的公比为q ,由a 25=a 10,得(a 1q 4)2=a 1·q 9,即a 1=q .又由2(a n +a n +2)=5a n +1,得2q 2-5q +2=0,解得q =2⎝⎛⎭⎫q =12舍去,所以a n =a 1·q n -1=2n .答案:2n8.已知等比数列{a n }的首项为1,项数是偶数,所有的奇数项之和为85,所有的偶数项之和为170,则这个等比数列的项数为________.解析:由题意得a 1+a 3+…=85,a 2+a 4+…=170, 所以数列{a n }的公比q =2,由数列{a n }的前n 项和公式S n =a 1(1-q n )1-q ,得85+170=1-2n1-2,解得n =8.答案:89.(2020·温州市十校联合体期初)设等比数列{a n }的公比为q ,前n 项和为S n ,若S n +1,S n ,S n +2成等差数列,则q 的值为________.解析:设等比数列{a n }的公比为q ,前n 项和为S n ,且S n +1,S n ,S n +2成等差数列, 则2S n =S n +1+S n +2,若q =1,则S n =na 1,等式显然不成立,若q ≠1,则为2·a 1(1-q n )1-q =a 1(1-q n +1)1-q +a 1(1-q n +2)1-q ,故2q n =q n +1+q n +2, 即q 2+q -2=0, 因此q =-2. 答案:-210.(2020·台州市高考模拟)已知数列{a n }的前m (m ≥4)项是公差为2的等差数列,从第m -1项起,a m -1,a m ,a m +1,…成公比为2的等比数列.若a 1=-2,则m =________,{a n }的前6项和S 6=________.解析:由a 1=-2,公差d =2,得a m -1=-2+2(m -2)=2m -6, a m =-2+2(m -1)=2m -4,则a m a m -1=2m -42m -6=2,所以m =4;所以S 6=a 1+a 2+a 3+a 4+a 5+a 6 =-2+0+2+4+8+16=28. 答案:4 2811.已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.(1)若a 3+b 3=5,求{b n }的通项公式; (2)若T 3=21,求S 3.解:设{a n }的公差为d ,{b n }的公比为q ,则a n =-1+(n -1)d ,b n =q n -1. 由a 2+b 2=2得d +q =3.① (1)由a 3+b 3=5得2d +q 2=6.② 联立①和②解得⎩⎪⎨⎪⎧d =3,q =0(舍去),⎩⎪⎨⎪⎧d =1,q =2.因此{b n }的通项公式为b n =2n -1.(2)由b 1=1,T 3=21得q 2+q -20=0, 解得q =-5,q =4.当q =-5时,由①得d =8,则S 3=21. 当q =4时,由①得d =-1,则S 3=-6.12.(2020·瑞安市龙翔中学高三月考)已知数列{a n }是首项为2的等差数列,其前n 项和S n 满足4S n =a n ·a n +1.数列{b n }是以12为首项的等比数列,且b 1b 2b 3=164.(1)求数列{a n },{b n }的通项公式;(2)设数列{b n }的前n 项和为T n ,若对任意n ∈N *不等式1S 1+1S 2+…+1S n ≥14λ-12T n 恒成立,求λ的取值范围.解:(1)设等差数列{a n }的公差为d ,由题意得4a 1=a 1(a 1+d ),解得d =2,所以a n =2n ,由b 1b 2b 3=b 32=164⇒b 2=14, 从而公比q =b 2b 1=12,所以b n =⎝⎛⎭⎫12n.(2)由(1)知1S n =1n (n +1)=1n -1n +1,所以1S 1+1S 2+…+1S n =⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1=1-1n +1, 又T n =12⎝⎛⎭⎫1-12n 1-12=1-12n ,所以对任意n ∈N *,1S 1+1S 2+…+1S n ≥14λ-12T n等价于32-1n +1-12n +1≥14λ,因为32-1n +1-12n +1对n ∈N *递增,所以⎝⎛⎭⎫32-1n +1-12n +1min =32-12-14=34,所以34≥14λ⇒λ≤3,即λ的取值范围为(-∞,3].[综合题组练]1.(2020·丽水模拟)已知等比数列{a n }的各项均为正数且公比大于1,前n 项积为T n ,且a 2a 4=a 3,则使得T n >1的n 的最小值为( )A .4B .5C .6D .7解析:选C.因为{a n }是各项均为正数的等比数列且a 2a 4=a 3,所以a 23=a 3,所以a 3=1.又因为q >1,所以a 1<a 2<1,a n >1(n >3),所以T n >T n -1(n ≥4,n ∈N *),T 1<1,T 2=a 1·a 2<1,T 3=a 1·a 2·a 3=a 1a 2=T 2<1,T 4=a 1a 2a 3a 4=a 1<1,T 5=a 1·a 2·a 3·a 4·a 5=a 53=1,T 6=T 5·a 6=a 6>1,故n 的最小值为6,故选C.2.(2020·温州十校联合体期初)已知数列{a n }是等差数列,数列{b n }是等比数列(b n >0).( )A .若b 7≤a 6,则b 4+b 10≥a 3+a 9B .若b 7≤a 6,则b 4+b 10≤a 3+a 9C .若b 6≥a 7,则b 3+b 9≥a 4+a 10D .若b 6≤a 7,则b 3+b 9≤a 4+a 10解析:选C.因为数列{a n }是等差数列,数列{b n }是等比数列(b n >0), 在A 中,因为b 7≤a 6,b 4+b 10≥2b 4b 10=2b 7,a 3+a 9=2a 6,所以b 4+b 10≥a 3+a 9不一定成立,故A 错误; 在B 中,因为b 7≤a 6,b 4+b 10≥2b 4b 10=2b 7,a 3+a 9=2a 6,所以b 4+b 10≤a 3+a 9不一定成立,故B 错误;在C 中,因为b 6≥a 7,所以b 3+b 9≥2b 3·b 9=2b 6,a 4+a 10=2a 7,所以b 3+b 9≥a 4+a 10,故C 正确;在D 中,因为b 6≤a 7,所以b 3+b 9≥2b 3·b 9=2b 6,a 4+a 10=2a 7,所以b 3+b 9≤a 4+a 10不一定成立,故D 错误.3.已知直线l n :y =x -2n 与圆C n :x 2+y 2=2a n +n 交于不同的两点A n ,B n ,n ∈N *,数列{a n }满足:a 1=1,a n +1=14|A n B n |2,则数列{a n }的通项公式为________.解析:圆C n 的圆心到直线l n 的距离d n =|2n |2=n ,半径r n =2a n +n ,故a n +1=14|A n B n |2=r 2n -d 2n =2a n ,故数列{a n }是以1为首项,2为公比的等比数列,故a n =2n -1(n ∈N *). 答案:a n =2n -1(n ∈N *)4.设数列{a n }的前n 项和为S n ,已知a 1=13,且对任意正整数m ,n 都有a m +n =a m ·a n ,若S n <a 恒成立,则实数a 的最小值为________.解析:因为a m +n =a m ·a n ,令m =1得a n +1=a 1·a n ,即a n +1a n =a 1=13,所以{a n }为等比数列,所以a n =13n ,所以S n =13⎝⎛⎭⎫1-13n 1-13=12⎝⎛⎭⎫1-13n <12,所以a ≥12.故a 的最小值为12. 答案:125.(2020·温州瑞安七中高考模拟)已知数列{a n }的各项均为正数,记A (n )=a 1+a 2+…+a n ,B (n )=a 2+a 3+…+a n +1,C (n )=a 3+a 4+…+a n +2,n =1,2,…(1)若a 1=1,a 2=5,且对任意n ∈N *,三个数A (n ),B (n ),C (n )组成等差数列,求数列{a n }的通项公式;(2)证明:数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.解:(1)因为对任意n ∈N *,三个数A (n ),B (n ),C (n )组成等差数列,所以B (n )-A (n )=C (n )-B (n ),即a n +1-a 1=a n +2-a 2,亦即a n +2-a n +1=a 2-a 1=4.故数列{a n }是首项为1,公差为4的等差数列,于是a n =1+(n -1)×4=4n -3. (2)证明:(必要性):若数列{a n }是公比为q 的等比数列,对任意n ∈N *,有a n +1=a n q .由a n >0知,A (n ),B (n ),C (n )均大于0,于是B (n )A (n )=a 2+a 3+…+a n +1a 1+a 2+…+a n =q (a 1+a 2+…+a n )a 1+a 2+…+a n =q ,C (n )B (n )=a 3+a 4+…+a n +2a 2+a 3+…+a n +1=q (a 2+a 3+…+a n +1)a 2+a 3+…+a n +1=q ,即B (n )A (n )=C (n )B (n )=q ,所以三个数A (n ),B (n ),C (n )组成公比为q 的等比数列;(充分性):若对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列,则 B (n )=qA (n ),C (n )=qB (n ),于是C (n )-B (n )=q [B (n )-A (n )],即a n +2-a 2= q (a n +1-a 1),亦即a n +2-qa n +1=a 2-qa 1. 由n =1时,B (1)=qA (1), 即a 2=qa 1,从而a n +2-qa n +1=0. 因为a n >0,所以a n +2a n +1=a 2a 1=q .故数列{a n }是首项为a 1,公比为q 的等比数列.综上所述,数列{a n }是公比为q 的等比数列的充分必要条件是:对任意n ∈N *,三个数A (n ),B (n ),C (n )组成公比为q 的等比数列.6.(2020·杭州市七校高三联考)已知等比数列{a n }的公比为q (0<q <1),且a 2+a 5=98,a 3a4=18. (1)求数列{a n }的通项公式;(2)若b n =a n ·(log 2a n ),求{b n }的前n 项和T n ;(3)设该等比数列{a n }的前n 项和为S n ,正整数m ,n 满足S n -m S n +1-m <12,求出所有符合条件的m ,n 的值.解:(1)由等比数列的性质可知a 3a 4=a 2a 5=18,a 2+a 5=98,所以a 2,a 5是方程x 2-98x +18=0的两根,由题意可知a 2>a 5, 解得a 2=1,a 5=18,由等比数列的性质可知a 5=a 2·q 3,解得q =12,a n =a 2·⎝⎛⎭⎫12n -2=⎝⎛⎭⎫12n -2,所以数列{a n }的通项公式为a n =⎝⎛⎭⎫12n -2.(2)由(1)可知b n =a n ·(log 2a n )=2-n2n -2, {b n }的前n 项和T n =b 1+b 2+b 3+…+b n =2+0+⎝⎛⎭⎫-12+⎝⎛⎭⎫-222+⎝⎛⎭⎫-323+…+2-n 2n -2, 12T n =1+0+⎝⎛⎭⎫-122+⎝⎛⎭⎫-223+⎝⎛⎭⎫-324+…+2-n 2n -1, 两式相减可得12T n =1-⎝⎛⎭⎫12+14+18+…+12n -2-2-n 2n -1 =1-12-12n -11-12-2-n 2n -1=1-⎝⎛⎭⎫1-12n -2-2-n2n -1=12n -2-2-n 2n -1=n2n-1,所以T n =n2n -2.(3)因为S n =4⎝⎛⎭⎫1-12n , 由S n -m S n +1-m <12⇒2<2n (4-m )<6,2n (4-m )为偶数,因此只能取2n (4-m )=4,所以有⎩⎪⎨⎪⎧2n =24-m =2或⎩⎪⎨⎪⎧2n =44-m =1⇒⎩⎪⎨⎪⎧n =1m =2或⎩⎪⎨⎪⎧n =2m =3.。