第九组短应力线轧机结构分析
- 格式:ppt
- 大小:21.64 MB
- 文档页数:25
短应力线轧机机械结构分析何永清【摘要】分析了短应力线轧机的机械结构特点.【期刊名称】《现代冶金》【年(卷),期】2012(040)004【总页数】3页(P4-6)【关键词】短应力线轧机;轧机机芯;轴向定位;减速齿轮箱【作者】何永清【作者单位】宝钢苏冶重工有限公司,江苏苏州215151【正文语种】中文【中图分类】TG333.6+2引言短应力线轧机又称高刚度轧机、红圈轧机。
作为二辊热轧机,其舍弃了沿用轧机上部压下轴承座的二侧牌坊式机架结构,改为二侧各用二根正反旋向的螺杆拉紧上、下轴承座的结构,在保证轧机足够刚度的前提下,取消了二侧牌坊,使整机结构更为简捷,同时在此基础上实现了轧制线恒定、轧辊离线更换等高速、连续轧制的要求。
短应力线轧机由驱动部分和轧机部分组成,统称为轧机机列。
驱动部分包含调速电机和底座、联轴器和减速齿轮箱。
轧机部分包含轧机底座、接轴和接轴托架、轧机机芯和辊缝调节装置(俗称“压下装置”)。
驱动部分和轧机部分的安装连接形式稍作变化可形成立式和水平二种轧制方式,增加回转架即可实现立式和水平二种轧制方式的转换,成为平立转换轧机。
1 拉杆、螺母与其间隙消除结构拉杆、螺母与其间隙消除结构的主要功能是减小轧制中进、出钢时的弹跳现象。
目前常见的结构有液压缸撑开上下轴承座,同时消除拉杆螺母间隙;弹性阻尼体撑开上下轴承座,同时消除拉杆螺母间隙;碟簧撑开拉杆的主辅螺母消除间隙,同时撑开上下轴承座;弹簧(弹性阻尼体)压紧拉杆的主辅螺母消除间隙,同时撑开上下轴承座等 4种。
1.1 液压缸撑开方式液压缸撑开方式如图 1所示,拉杆受到较大预拉应力,轧辊辊面直径变化时撑开力保持不变。
但在轧制时拉杆的拉应力因之叠加,提高了对拉杆的刚度要求。
液压缸撑开方式的主要缺陷是由于使用状况恶劣造成的泄漏、失效。
图1 液压缸撑开方式示意图1.2 弹性阻尼体撑开方式弹性阻尼体撑开方式如图 2所示,消除了使用液压缸撑开方式产生的泄漏、失效现象。
DOI:10.3969/j.issn.l006-110X.2020.05.019短应力线轧机机架结构的改进及优化李辉,李树杰(天津钢铁集团有限公司,天津3003011[摘要]天津钢铁集团有限公司棒材厂的轧机全部采用短应力线轧机,在棒材轧制过程中,由于受钢坯的冲击、减速机输岀轴等因素的影响,造成轧机机架与拉杆接触部位铜套的紧固螺丝经常发生切断。
螺丝的切断往往导致机架铜套脱落,从而引发轧机在轧制过程中失去工作精度,造成轧制事故。
本文通过对轧制过程中可能导致该现象的原因进行分析,并结合现场对机架与拉杆相结合部位铜套的结构进行了改造,对该问题提岀解决方法。
[关键词]机架4精度4改造4事故Improvement and optimization of the f$+mestructure of the short stress line rolling millLI Hui and LI Shu-jie(Tianjin Iron and Steel Gronp Company LimiteP,TIANJIN300301)Abstract The rolling mill of Tianjin Iron and Steel Group Co.,Ltd.^s bar mill uses a short stress line mill.During the bar rolling process,due to the impact of the billet and the output shaft of the reducer, causes the mill stand and the pull rod contact position copper sleeve fastening screw to occur often the root to cut.Undercutting of screws often causes the copper bushing of the stand to fall off,which causes the rolling mill to lose its working accuracy during the rolling process,causes rolling accidents.This article analyzes the reasons that may cause this phenomenon during the rolling process,and combined with the field,the structure of the copper sleeve in the joint part of the frame and the pull rod is modified,on the spot to propose a solution to this problem.Key words frame,accuracy,transform,accidentg M -# 0 CM0 CM 0引言棒材厂轧机是用来将钢坯轧制成规定尺寸的圆钢或螺纹钢筋的专属设备。
短应力线结构对机械强度影响分析摘要:短应力线结构对机械强度的影响受着非常多因素的影响,因此,在开发阶段就应该对其充分剖析。
本文就针对短应力线结构来分析,通过比较具体的轧机来分析当前其对机械的强度,从而更加合理地分析出短应力线结构到底对机械强度有着那些影响。
因此,着重对立柱斜楔孔的斜度与强度的影响作为分析的重点,逐一分析出其他几种因素对强度的影响,比如结构形式、连接方式的变化都会对机械强度产生一定的影响,以及如何才能避免这些影响导致机械强度不足则是设计师们以后研究的方向。
同时本文也为工业机械发展中机械的制作提出了短应力线结构这一看法,以期能够从不同角度来分析机械强度并做好相关的理论依据,这也填补了当前改领域的空白。
关键词:短应力线结构;机械强度;斜楔孔斜度1.立柱斜楔孔的斜度与强度的影响一个机械如果能够达到正常的运转,其中机架的作用是不容小觑的,它不仅需要足够的精度,还需要一定的强度。
短应力线轧机主要结构包括辊系,压下装置,轴向整装置,机架和导卫装置等。
我们从短应力线轧机机架的分析上来看,强度的作用力在于立柱斜楔孔的倾斜程度上。
以短应力线轧机机构受力情况分析(如图1-1)可以得出结果。
1为上轴承座,2为机架立柱,3为上轧辊,4为机架下横梁,5为下轧辊,6为下轴承座。
从各个作用力的分析上来看,垂直力R 对通过斜楔面来达到对作用面也就是立柱产生的不同方向的作用力F。
5也就是下辊轴承座在垂直力R的作用下产生的力可以使得立柱的上部会沿着窗口靠近。
从侧面来看,T作为立柱和上辊轴承座之间的作用力,其实不固定的,因此需要对其进行求解而得出相应的值。
它的值是由机架立柱挠区和下横梁挠区相加的和来体现轴承座与两立柱间的间隙。
经过卡式定理和材料力学公式可以得出不同的公程式,由材料力学的角度来看,当斜楔对立柱的产生水平分力时,则立柱斜楔孔是为斜楔对立足垂直分力的角度的函数,最后求出T值后,分析出弯矩图的形状,就可以显而易见的发现当立柱的危险断面倾向于斜楔孔时,则说明应力较为集中,断面的可能性较小。
工作机的应力回线短的型材轧机.工作机座的应力回线是指轧机受轧制力后,轧机中受力零件弹性变形断面的中性线的联线,应力回线的长度就是轧机中受力零件长度之和。
轧钢机座中各受力零件所产生的弹性变形量与其断面积成正比,与其长度成反比,机座中应力回线越短,所产生的弹性变形量越小,则轧机的刚度(见轧机刚度系数)越大,所轧制产品的精度越高。
缩短轧机应力回线有两个途径:一是改变轧机承载结构的形式,即减少轧钢机座中承载件的数量,如无牌坊(机架)轧机,通过缩短受力零件的长度缩短应力回线;二是改变力的传递路径,如使轧制力不直接作用在牌坊窗口的上方,而使其作用在靠近轧机立柱上,使应力回线缩短。
一般轧机同短应力线轧机应力线的比较如图。
短应力线轧机主要用于改造横列式轧机,研制复二重式短应力线轧机(见复二重短应力线精轧机组)和研究立式短应力线轧机,建在平一立交替布置的连轧生产线上。
短应力线轧机的优点有:(1)轧机的高刚度保证了产品的高精度,容易实现负偏差轧制。
(2)能实现对称调整。
这对于稳定操作,提高作业率,节省检修和更换导卫横梁时间,减少操作事故,避免轧件弯头、冲击、缠辊等工艺事故,提高导卫寿命具有重要意义。
(3)由于轧机改变了力的传递途径、将压下螺丝的集中载荷改变为分散在轴承座两侧的分散载荷,使轴承和轴承座受力情况更好,轴承寿命较普通轧机提高1.5倍以上,从而降低了产品的成本费用。
(4)该种轧机的辊系在换辊前进行预安装并调整好,停车后10min左右即可换好新辊系。
而调好的新辊系轧过一二根钢后即可保证产品合格。
因此,本轧机预调性能好,换辊快,成材率高。
短应力线轧机又称为无牌坊轧机,是一种高刚度轧机,在做为型钢轧机使用时,它不仅应该具有较高的径向刚度,而且还应该具有较高的轴向刚度。
目前国内已经研制出多种型式的短应力线轧机如:GY型,HB 型,CW型,SY型,GW型,DW型等,其中有代表性的有三种, 短应力线轧机又称为无牌坊轧机,是一种高刚度轧机,在做为型钢轧机使用时,它不仅应该具有较高的径向刚度,而且还应该具有较高的轴向刚度。
探讨短应力线轧机机列设计的问题短应力线轧机广泛应用于国内棒、线及小型型钢轧制生产线上,因其重量轻,投资少,刚度高而受到轧钢厂的青睐。
顾名思义,短应力线轧机因其在轧制受力时机体应力圈比传统牌坊轧机短,轧制时刚度高,变形小。
短应力线轧机于上世纪40年代中期起源于摩伽沙玛公司,国内目前使用最多的两种形式分别是DANIELI机型与POMINI机型,在设计过程中主要注意的问题:1万向接轴的选型;2轧辊装配端部的结构形式;3轧机锁紧缸的型式;4轧机压下形式;5导卫型式。
1、万向接轴的选型万向接轴有很多形式,在冶金行业轧机机列中大多选用鼓型齿式万向接轴和十字轴万向接轴两种。
鼓型齿式万向接轴重量轻,对中性较好,十字头万向接轴重量偏重,传递扭矩大,适合较大轧机机列的使用。
在轧机机列设计时在长度方向上应长短适宜,过长则重量增加对接轴轴承磨损较大,过短则造成万向轴中心线偏角大,缩短万向轴的使用寿命。
设计时必须提出动平衡要求,级别为6.3级,否则现场使用时接轴托架会出现周期摆动现象,导致托架销轴疲劳断裂。
接轴托架主要功能为换辊时托住万向接轴,基本为自对中形式,在轧制过程中不起作用。
摩根牌坊轧机的接轴托架只是起到换辊时托举功能,在轧制时与万向接轴完全脱开。
万向接轴在换辊时必须考虑与轧辊配合部分的自重耷头问题,必须在接轴托架设计防旋转的结构,一般在两侧伸出轴设计键连接。
2、轧辊装配端部的结构形式在万向接轴选型后在轧辊装配的端部结构问题,由于鼓型齿式万向接轴和十字轴万向接轴结构的不同,要求在装配中有所区别,轧辊上下辊缝由于要对齐,上辊一般轴向有3~5mm调整余量,鼓性齿式万向接轴端部有伸缩量,要求顶紧配合,而十字轴式万向接轴(轴端没有伸缩余量)则要求与端部留有10mm左右的间隙。
两者要求轧辊装配的端部有所区别,鼓型齿式万向接轴端部顶紧时所有零部件之间端面没有间隙,最终受力零部件为轴承内圈,不得有轴向窜动,各零部件与轧辊轴颈之间为过渡配合。