第二章 连续LTI系统微分方程式的建立
- 格式:ppt
- 大小:3.96 MB
- 文档页数:105
建立系统微分方程的一般步骤引言:系统微分方程是描述自然界中动态系统行为的重要工具。
在建立系统微分方程时,我们需要根据问题的实际背景和要求,确定系统的物理模型,并通过一系列步骤将其转化为微分方程组。
本文将介绍建立系统微分方程的一般步骤,帮助读者更好地理解和应用系统微分方程。
步骤一:确定系统的物理模型建立系统微分方程的第一步是确定系统的物理模型。
物理模型是对系统行为的抽象描述,可以基于实验观测、理论分析或经验推测。
在确定物理模型时,需要考虑系统的特性、变量和参数,并确定它们之间的关系。
例如,对于机械系统,我们需要考虑质量、力、速度和位移等变量之间的关系。
步骤二:建立系统的状态方程在确定物理模型后,我们需要建立系统的状态方程。
状态方程描述了系统在不同时间点的状态变化情况。
常用的状态方程形式是一阶线性微分方程,可以表示为dx/dt = f(x, u),其中x是系统的状态变量,u是系统的输入信号,f(x, u)是状态方程的右侧表达式。
通过分析系统的物理特性和输入输出关系,可以确定状态方程中的函数f(x, u)。
步骤三:建立系统的输出方程除了状态方程,我们还需要建立系统的输出方程。
输出方程描述了系统的输出变量与状态变量和输入信号之间的关系。
常用的输出方程形式是线性方程,可以表示为y = g(x, u),其中y是系统的输出变量,g(x, u)是输出方程的右侧表达式。
通过分析系统的特性和输出变量与状态变量、输入信号之间的关系,可以确定输出方程中的函数g(x, u)。
步骤四:建立系统的微分方程组在确定状态方程和输出方程后,我们可以将它们组合成一个微分方程组。
微分方程组由状态方程和输出方程组成,可以表示为dx/dt = f(x, u),y = g(x, u)。
通过联立和整理微分方程组,可以得到系统的一般形式。
在建立微分方程组时,需要注意方程的数量与未知数的数量相等,且方程之间无冲突。
步骤五:确定系统的初值条件和边界条件在建立微分方程组后,我们需要确定系统的初值条件和边界条件。
信号与系统(郑君⾥)第⼆版讲义第⼆章第⼆章连续时间系统的时域分析第⼀讲微分⽅程的建⽴与求解⼀、微分⽅程的建⽴与求解对电路系统建⽴微分⽅程,其各⽀路的电流、电压将为两种约束所⽀配: 1.来⾃连接⽅式的约束:KVL 和KIL ,与元件的性质⽆关。
2.来⾃元件伏安关系的约束:与元件的连接⽅式⽆关。
例2-1 如图2-1所⽰电路,激励信号为,求输出信号。
电路起始电压为零。
图2-1解以输出电压为响应变量,列回路电压⽅程:所以齐次解为:。
因激励信号为,若,则,将其代⼊微分⽅程:所以,从⽽求得完全解:由于电路起始电压为零并且输⼊不是冲激信号,所以电容两端电压不会发⽣跳变,,从⽽若,则特解为,将其代⼊微分⽅程,并利⽤起始条件求出系数,从⽽得到:⼆、起始条件的跳变——从到1.系统的状态(起始与初始状态)(1)系统的状态:系统在某⼀时刻的状态是⼀组必须知道的最少量的数据,利⽤这组数据和系统的模型以及该时刻接⼊的激励信号,就能够完全确定系统任何时刻的响应。
由于激励信号的接⼊,系统响应及其各阶导数可能在t=0时刻发⽣跳变,所以以表⽰激励接⼊之前的瞬时,⽽以表⽰激励接⼊以后的瞬时。
(2)起始状态:,它决定了零输⼊响应,在激励接⼊之前的瞬时t=系统的状态,它总结了计算未来响应所需要的过去的全部信息。
(3)初始状态:跳变量,它决定了零状态响应,在激励接⼊之后的瞬时系统的状态。
(4)初始条件:它决定了完全响应。
这三个量的关系是:。
2.初始条件的确定(换路定律)电容电压和电感电流在换路(电路接通、断开、接线突变、电路参数突变、电源突变)瞬间前后不能发⽣突变,即是连续的。
时不变:时变:例电路如图2-2所⽰,t=0以前开关位于"1"已进⼊稳态,t=0时刻,开关⾃"1"转⾄"2"。
(1)试从物理概念判断、和、。
(2)写出t>0时间内描述系统的微分⽅程式,求的完全响应。
图2-2解(1)换路前电路处于稳态电感相当于短路,电感电流,电容相当于开路= 0,= = 0。