AHP(层次分析法)基础教程
- 格式:ppt
- 大小:595.50 KB
- 文档页数:116
层次分析法(AHP )对于草地农业生态系统这个涉及复杂的社会、经济、生态问题的系统,过去的系统分析与设计常常凭经验,靠主观判断进行,缺乏应有的科学性,因而往往造成重大失误。
层次分析法是一种新的定性分析与定量分析相结合的系统分析方法,是将人的主观判断用数量形式表达和处理的方法,简称AHP(The Analytic Hierarchy Process法。
近年来,层次分析法在草地农业生态系统的系统分析、设计与决策中日益受到重视。
1层次分析法的基本方法和步骤层次分析法是把复杂问题分解成各个组成因素,又将这些因素按支配关系分组形成递阶层次结构。
通过两两比较的方式确定各个因素相对重要性,然后综合决策者的判断,确定决策方案相对重要性的总排序。
运用层次分析法进行系统分析、设计、决策时,可分为4 个步骤进行;(1)分析系统中各因素之间的关系,建立系统的递阶层次结构;(2)对同一层次的各元素关于上一层中某一准则的重要性进行两两比较,构造两两比较的判断矩阵;(3)由判断矩阵计算被比较元素对于该准则的相对权重;(4)计算各层元素对系统目标的合成权重,并进行排序,2 递阶层次结构的建立首先把系统问题条理化、层次化,构造出一个层次分析的结构模型。
在模型中,复杂问题被分解,分解后各组成部分称为元素,这些元素又按属性分成若干组,形成不同层次。
同一层次的元素作为准则对下一层的某些元素起支配作用,同时它又受上面层次元素的支配。
层次可分为三类;(1)最高层:这一层次中只有一个元素,它是问题的预定目标或理想结果,因此也叫目标层;(2)中间层:这一层次包括要实现目标所涉及的中间环节中需要考虑的准则。
该层可由若干层次组成,因而有准则和子准则之分,这一层也叫准则层;(3)最底层:这一层次包括为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。
上层元素对下层元素的支配关系所形成的层次结构被称为递阶层次结构。
当然,上一层元素可以支配下层的所有元素,但也可只支配其中部分元素。
层次分析法(AHP)————————————————————————————————作者:————————————————————————————————日期:层次分析法(AHP)对于草地农业生态系统这个涉及复杂的社会、经济、生态问题的系统,过去的系统分析与设计常常凭经验,靠主观判断进行,缺乏应有的科学性,因而往往造成重大失误。
层次分析法是一种新的定性分析与定量分析相结合的系统分析方法,是将人的主观判断用数量形式表达和处理的方法,简称AHP(The Analytic Hierarchy Process)法。
近年来,层次分析法在草地农业生态系统的系统分析、设计与决策中日益受到重视。
1层次分析法的基本方法和步骤层次分析法是把复杂问题分解成各个组成因素,又将这些因素按支配关系分组形成递阶层次结构。
通过两两比较的方式确定各个因素相对重要性,然后综合决策者的判断,确定决策方案相对重要性的总排序。
运用层次分析法进行系统分析、设计、决策时,可分为4个步骤进行;(1)分析系统中各因素之间的关系,建立系统的递阶层次结构;(2)对同一层次的各元素关于上一层中某一准则的重要性进行两两比较,构造两两比较的判断矩阵;(3)由判断矩阵计算被比较元素对于该准则的相对权重;(4)计算各层元素对系统目标的合成权重,并进行排序,2递阶层次结构的建立首先把系统问题条理化、层次化,构造出一个层次分析的结构模型。
在模型中,复杂问题被分解,分解后各组成部分称为元素,这些元素又按属性分成若干组,形成不同层次。
同一层次的元素作为准则对下一层的某些元素起支配作用,同时它又受上面层次元素的支配。
层次可分为三类;(1)最高层:这一层次中只有一个元素,它是问题的预定目标或理想结果,因此也叫目标层;(2)中间层:这一层次包括要实现目标所涉及的中间环节中需要考虑的准则。
该层可由若干层次组成,因而有准则和子准则之分,这一层也叫准则层;(3)最底层:这一层次包括为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。
用人话讲明白AHP层次分析法(非常详细原理+简单工具实现)文章目录1、前言与算法简述2、AHP层次分析法过程 2.1 构建层次评价模型 2.2 构造判断矩阵2.3 层次单排序与一致性检验 2.3.1 层次单排序 2.3.2 求解最大特征根与CI值 2.3.3 根据CI、RI值求解CR值,判断其一致性是否通过。
2.4 层次总排序与一致性检验3、案例以及工具实现 3.1 外出旅游最重视的因素3.1.1 使用工具 3.1.2 案例操作 3.1.3 分析结果解读 3.1.4 小结 3.2 选择最佳外出旅游地 3.2.1 使用工具 3.2.2 案例操作3.1.3 分析结果解读 3.2.4 小结4、代码实现1、前言与算法简述今天应粉丝要求,梳理一下层次分析法。
层次分析法,即Analytic HierarchyProcess(AHP) ,是美国运筹学家 Saaty 于20世纪70年代初期提出的一种主观赋值评价方法。
层次分析法将与决策有关的元素分解成目标、准则、方案等多个层次,并在此基础上进行定性和定量分析,是一种系统、简便、灵活有效的决策方法。
这个算法是一个多指标综合评价算法,由于这个算法简单、实用,因此在经管类或者实际生活中应用的非常多,其一般有两个用途:指标定权给指标制定权重,打个比方,例如选择旅游地这个决策,可能一般我们由以下5个因素组成,但是每个人(主观)对因素的重视程度不一,ahp可以实现在无需搜集数据的情况下,给这些指标制定权重。
量化方案选择同样是选择旅游地这个决策,可能我们有一些方案,例如苏杭、北戴河、桂林这三个方案,层次分析法可以综合以上5个因素,给这些方案计算得出一个量化得分,例如苏杭0.3分、北戴河0.35分、桂林0.45分,这样根据分值大小,我们就可以选择得到内心或者经验上最心怡的方案了。
通过上面讲解层次分析法的作用,在生活、工作中其实我们可以应用这个模型的渠道是非常广的,特别是那些需要主观决策的、或者需要用经验判断的决策方案,例如:买房子(主观决策)选择旅游地(主观决策)给员工进行绩效评估(经验判断)选择开店地址(经验判断)2、AHP层次分析法过程层次分析法的原理,是在分析一个现象或问题之前,首先将现象或问题根据它们的性质分解为有关因素,并根据它们之间的关系分类而形成一个多层次的结构模型。
AHP 法是将各要素配对比较,根据要素的相对重要程度进行判断,然后通过计算判断矩阵的特征值获得权重向量。
对于各级指标将同级指标配对比较构成判断矩阵为:
(1) 其中
的标度方法[9]如下
表1 九级标度
标度
含义 1
表示两个因素相比,具有同样重要性 }
3
表示两个因素相比,一个因素比另外一个因素稍微重要 5
表示两个因素相比,一个因素比另外一个因素明显重要 7
表示两个因素相比,一个因素比另外一个因素强烈重要 9 表示两个因素相比,一个因素比另外一个因素极端重要 2,4,6,8
上述两相邻判断的中值 \
倒数
因素i 和就j 比较的判断,则因素j 和i 比较判断
通过解矩阵A 的特征值,可求得相应的特征向量,经归一化后得到的权重向量为:
(2)
其中就是不同指标的相对权重。
为了度量判断的可靠程度,可以计算一致性指标[10]: max 1n CI n λ-=
- (3)
○
1CI =0,有完全的一致性 ○
2CI 接近于0,有满意的一致性 …
○
3CI 越大,不一致越严重 为了衡量CI 的大小,引入随机一致性指标RI :
表2随机一致性指标
r12345,
7891011
6
RI00
得到一致性比率[11]:
CR 时,认为的不一致程度在容许范围当一致性比率0.1
内,有满意的一致性,通过一致性检验,可用其归一化特征向量作为全向量,否则要重新构造成对比较矩阵,对加以调整。
运用以上方法求得每个指标的权重矩阵:
(5)。