第八章高等数学答案
- 格式:doc
- 大小:37.50 KB
- 文档页数:4
习题8−11. 判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所成的点集(称为导集)和边界.(1){(x , y )|x ≠0, y ≠0};解 开集, 无界集, 导集为R 2, 边界为{(x , y )|x =0或y =0}.(2){(x , y )|1<x 2+y 2≤4};解 既非开集, 又非闭集, 有界集, 导集为{(x , y )|1≤x 2+y 2≤4},边界为{(x , y )|x 2+y 2=1或x 2+y 2=4}.(3){(x , y )|y >x 2};解 开集, 区域, 无界集, 导集为{(x , y )| y ≥x 2}, 边界为{(x , y )| y =x 2}.(4){(x , y )|x 2+(y −1)2≥1}∩{(x , y )|x 2+(y −2)2≤4}.解 闭集, 有界集, 导集与集合本身相同,边界为{(x , y )|x 2+(y −1)2=1}∪{(x , y )|x 2+(y −2)2=4}.2. 已知函数yx xy y x y x f tan ),(22−+=, 试求f (tx , ty ). 解 )(tan )()()()(),(22tytx ty tx ty tx ty tx f ⋅⋅−+= ),(tan 2222y x f t y x xy y x t =⎟⎠⎞⎜⎝⎛−+=. 3. 试证函数F (x , y )=ln x ⋅ln y 满足关系式:F (xy , uv )=F (x , u )+F (x , v )+F (y , u )+F (y , v ).证明 F (xy , uv )=ln((x , y )⋅ln(uv )=(ln x +ln y )(ln u +ln v )=ln x ⋅ln u +ln x ⋅ln v +ln y ⋅ln u +ln y ⋅ln v=F (x , u )+F (x , v )+F (y , u )+F (y , v ).4. 已知函数f (u , v , w )=u w +w u +v , 试求f (x +y , x −y , xy ).解 f (x +y , x −y , xy )=(x +y )xy +(xy )(x +y )+(x −y )=(x +y )xy +(xy )2x .5. 求下列各函数的定义域:(1)z =ln(y 2−2x +1);高等数学下册第八章习题解答解 要使函数有意义, 必须y 2−2x +1>0,故函数的定义域为D ={(x , y )|y 2−2x +1>0}.(2)yx y x z −++=11; 解 要使函数有意义, 必须x +y >0, x −y >0,故函数的定义域为D ={(x , y )|x +y >0, x −y >0}.(3)y x z −=;解 要使函数有意义, 必须y ≥0,0≥−y x 即y x ≥, 于是有x ≥0且x 2≥y , 故函数定义域为D ={(x , y )| x ≥0, y ≥0, x 2≥y }.(4)221)ln(yx x x y z −−+−=; 解 要使函数有意义, 必须y −x >0, x ≥0, 1−x 2−y 2>0,故函数的定义域为D ={(x , y )| y −x >0, x ≥0, x 2+y 2<1}.(5)222222221rz y x z y x R u −+++−−−=(R >r >0); 解 要使函数有意义, 必须R 2−x 2−y 2−z 2≥0且x 2+y 2+z 2−r 2>0, 故函数的定义域为D ={(x , y , z )| r 2<x 2+y 2+z 2≤R 2}.(6)22arccos yx z u +=. 解 要使函数有意义, 必须x 2+y 2≠0, 且1||22≤+y x z 即z 2≤x 2+y 2, 故函数定义域为D ={(x , y , z )|z 2≤x 2+y 2, x 2+y 2≠0}.6. 求下列各极限:(1)22)1,0(),(1limy x xy y x +−→; 解110011lim 22)1,0(),(=+−=+−→y x xy y x .(2)22)0,1(),()ln(lim yx e x y y x ++→; 解 2ln 01)1ln()ln(lim 22022)0,1(),(=++=++→e y x e x y y x . (3)xy y x 42lim)0,0(),(+−→; 解 xy y x 42lim)0,0(),(+−→)42()42)(42(lim )0,0(),(+++++−=→xy xy xy xy y x 41)42(1lim)0,0(),(−=++−=→xy y x . (4)11lim )0,0(),(−+→xy xy y x ; 解 11lim )0,0(),(−+→xy xy y x )11)(11()11(lim )0,0(),(−+++++=→xy xy xy xy y x 2)11lim )11(lim )0,0(),()0,0(),(=++=++=→→xy xy xy xy y x y x . (5)y xy y x )sin(lim )0,2(),(→; 解 y xy y x )sin(lim )0,2(),(→221sin lim )0,2(),(=⋅=⋅=→x xyxy y x . (6)22)()cos(1lim 2222)0,0(),(yx y x e y x y x ++−→. 解 22221lim )cos(1lim )()cos(1lim )0,0(),(2222)0,0(),(2222)0,0(),(y x y x y x y x y x e y x y x e y x y x →→→⋅++−=++− 01sin lim cos 1lim 00==−=→→t t t t t . 7. 证明下列极限不存在:(1)y x y x y x −+→)0,0(),(lim; 证明 如果动点p (x , y )沿y =0趋向(0, 0),则 1lim lim00)0,0(),(==−+→=→x x y x y x x y y x ; 如果动点p (x , y )沿x =0趋向(0, 0),则 1lim lim00)0,0(),(−=−=−+→=→y y y x y x y x y x . 因此, 极限y x y x y x −+→)0,0(),(lim不存在. (2)22222)0,0(),()(lim y x y x y x y x −+→. 证明 如果动点p (x , y )沿y =x 趋于(0, 0),则 1lim )(lim 44022222 )0,0(),(==−+→=→x x y x y x y x x xy y x ; 如果动点p (x , y )沿y =2x 趋向(0, 0),则 044lim )(lim 2440222222 )0,0(),(=+=−+→=→x x x y x y x y x x xy y x . 因此, 极限22222)0,0(),()(lim y x y x y x y x −+→不存在. 8. 函数xy x y z 2222−+=在何处间断? 解 因为当y 2−2x =0时, 函数无意义,所以在y 2−2x =0处, 函数x y x y z 2222−+=间断. 9. 证明0lim 22)0,0(),(=+→yx xy y x .证明 因为22||||2222222222y x yx y x y x xy y x xy +=++≤+=+, 所以 02lim ||lim 022)0,0(),(22)0,0(),(=+≤+≤→→y x yx xy y x y x . 因此 0lim 22)0,0(),(=+→yx xy y x . 证明 因为2||22y x xy +≤, 故22||22222222y x yx y x y x xy +=++=+. 对于任意给定的ε>0, 取δ=2ε, 当δ<+<220y x 时恒有εδ=<+≤−+22|0|2222y x yx xy , 所以0lim 22)0,0(),(=+→yx xy y x . 10. 设F (x , y )=f (x ), f (x )在x 0处连续, 证明: 对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.证明 由题设知, f (x )在x 0处连续, 故对于任意给定的ε>0, 取δ>0, 当|x −x 0|<δ时, 有|f (x )−f (x 0)|<ε.作(x 0, y 0)的邻域U ((x 0, y 0), δ), 显然当(x , y )∈U ((x 0, y 0), δ)时, |x −x 0|<δ, 从而 |F (x , y )−F (x 0, y 0)|=|f (x )−f (x 0)|<ε,所以F (x , y )在点(x 0, y 0)处连续.又因为y 0是任意的, 所以对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.习题8−21. 求下列函数的偏导数:(1) z =x 3y −y 3x ;解 323y y x xz −=∂∂, 233xy x y z −=∂∂. (2)uvv u s 22+=; 解 21)(u v v u v v u u u s −=+∂∂=∂∂, 21)(v u u u v v u v v s −=+∂∂=∂∂. (3))ln(xy z =;解 x y x y x x x z 1ln ln 121)ln ln (⋅+⋅=+∂∂=∂∂)ln(21xy x =. 同理)ln(21xy y y z =∂∂. (4) z =sin(xy )+cos 2(xy );解 y xy xy y xy xz ⋅−⋅+⋅=∂∂)]sin([)cos(2)cos()]2sin()[cos(xy xy y −= 根据对称性可知)]2sin()[cos(xy xy x yz −=∂∂. (5)yx z tan ln =; 解 y x y y y x yxx z 2csc 21sec tan 12=⋅⋅=∂∂, y x y x y x y x yx y z 2csc 2sec tan 1222−=−⋅⋅=∂∂. (6) z =(1+xy )y ;解 121)1()1(−−+=⋅+=∂∂y y xy y y xy y xz , ]1)1[ln()1ln()1ln(xyx y xy e e y y z xy y xy y +⋅++=∂∂=∂∂++]1)1[ln()1(xy xy xy xy y ++++=. (7)z yx u =;解 )1(−=∂∂z y x zy x u , x x zz x x y u z yz y ln 11ln ⋅=⋅=∂∂, x x zy z y x x z u z y z y ln )(ln 22⋅−=−=∂∂. (8) u =arctan(x −y )z ;解 z z y x y x z x u 21)(1)(−+−=∂∂−, z z y x y x z y u 21)(1)(−+−−=∂∂−, z z y x y x y x z u 2)(1)ln()(−+−−=∂∂. 2. 设gl T π2=, 试证0=∂∂+∂∂g T g l T l . 解 因为l g l T ⋅⋅=∂∂1π, g g g l gT 121(223⋅−=⋅−⋅=∂∂−ππ, 所以 0=⋅−⋅=∂∂+∂∂gl g l g T g l T l ππ. 3. 设)11(y x e z +−=, 求证z yz y x z x 222=∂∂+∂∂. 解 因为211(1xe x z y x ⋅=∂∂+−, 2)11(1y e y z y x ⋅=∂∂+−, 所以 z e e y z y x z x y x y x 2)11()11(22=+=∂∂+∂∂+−+− 4. 设yx y x y x f arcsin )1(),(−+=, 求. )1 ,(x f x解 因为x x x x f =−+=1arcsin )11()1 ,(, 所以1)1 ,()1 ,(==x f dxd x f x . 5. 曲线⎪⎩⎪⎨⎧=+=4422y y x z 在点(2, 4, 5)处的切线与正向x 轴所成的倾角是多少? 解 242x x x z ==∂∂, αtan 1)5,4,2(==∂∂xz , 故4πα=. 6. 求下列函数的22x z ∂∂, 22y z ∂∂, yx z ∂∂∂2. (1) z =x 4+y 4−4x 2y 2;解 2384xy x x z −=∂∂, 2222812y x xz −=∂∂; y x y y z 2384−=∂∂, 2222812x y yz −=∂∂; xy y x y yy x z 16)84(232−=−∂∂=∂∂∂. (2)x y z arctan=; 解 22222)(11y x y x y xy x z +−=−⋅+=∂∂, 22222)(2y x xy x z +=∂∂; 2222)1(11y x x x xy y z +=⋅+=∂∂, 22222)(2y x xy y z +−=∂∂; 22222222222222)()(2)()(y x x y y x y y x y x y y y x z +−=+−+−=+−∂∂=∂∂∂. (3) z =y x .解 y y x z x ln =∂∂, y y xzx 222ln =∂∂; 1−=∂∂x xy y z , 222)1(−−=∂∂x y x x y z ;)1ln (1ln )ln (112+=⋅+=∂∂=∂∂∂−−y x y yy y xy y y y y x z x x x x . 7. 设f (x , y , z )=xy 2+yz 2+zx 2, 求f xx (0, 0, 1), f xz (1, 0, 2), f yz (0, −1, 0)及f zzx (2, 0, 1). 解 因为f x =y 2+2xz , f xx =2z , f xz =2x ,f y =2xy +z 2, f yz =2z ,f z =2yz +x 2, f zz =2y , f zzx =0,所以 f xx (0, 0, 1)=2, f xz (1, 0, 2)=2,f yz (0, −1, 0)=0, f zzx (2, 0, 1)=0.8. 设z =x ln(xy ), 求y x z ∂∂∂23及23y x z ∂∂∂. 解 1)ln()ln(+=⋅+=∂∂xy xyy x xy x z , x xy y x z 122==∂∂, 023∂∂∂yx z , y xy x y x z 12==∂∂∂, 2231y y x z −=∂∂∂. 9. 验证:(1)满足nx e y tkn sin 2−=22xy k t y ∂∂=∂∂; 证明 因为nx e kn kn nx e ty t kn t kn sin )(sin 2222⋅−=−⋅⋅=∂∂−−, nx ne x y t kn cos 2−=∂∂, nx e n xy t kn sin 2222−−=∂∂, nx e kn xy k t kn sin 222−−=∂∂, 所以22x y k t y ∂∂=∂∂. (2)222z y x r ++=满足rz r y r x r 2222222=∂∂+∂∂+∂∂.证明 r x z y x x x r =++=∂∂222, 322222r x r r x r x r x r −=∂∂−=∂∂, 由对称性知32222ry r y r −=∂∂, 32222r z r z r −=∂∂, 因此 322322322222222rz r r y r r x r z r y r x r −+−+−=∂∂+∂∂+∂∂ r r r r r z y x r 23)(332232222=−=++−=.习题8−31. 求下列函数的全微分:(1)yx xy z +=; 解 dy y z dx x z dz ∂∂+∂∂=dy yxx dx y y )()1(2−++=. (2)x ye z =;解 xdy e x dx e x y dy y z dx x z dz y x y 12+−=∂∂+∂∂=. (3) 22yx y z +=; 解 因为2/3222322)()(21y x xy y x y x z +−=+−=∂∂−, 2/3222222222)(y x x y x y x y y y x z +=++⋅−+=∂, 所以 dy y x x dx y x xy dz 2/32222/322)()(+++−=)()(2/322xdy ydx y x x −+−=. (4)u =x yz .解 因为1−⋅=∂∂yz x yz x u , x zx y u yz ln =∂∂, x yx zu yz ln =∂∂, 所以xdz yx xdy zx dx yzx du yz yz yz ln ln 1++=− 2. 求函数z =ln(1+x 2+y 2)当x =1, y =2时的全微分.解 因为2212y x x x z ++=∂∂, 2212y x y y z ++=∂∂, 3121=∂∂==y x x z, 3221=∂∂==y x y z,所以 dy dx dz y x 323121⋅+===. 3. 求函数xy z =当x =2, y =1, Δx =0.1, Δy =−0.2时的全增量和全微分. 解 因为x y x x y y z −Δ+Δ+=Δ, y x x xy dz Δ+Δ−=12, 所以, 当x =2, y =1, Δx =0.1, Δy =−0.2时,119.0211.02)2.0(1−=−+−+=Δz , 125.0)2.0(211.041−=−+×−=dz . 4. 求函数z =e xy 当x =1, y =1, Δx =0.15, Δy =0.1时的全微分.解 因为y xe x ye y yz x x z dz xy xy Δ+Δ=Δ∂∂+Δ∂∂= 所以, 当x =1, y =1, Δx =0.15, Δy =0.1时,e e e dz 25.01.015.0=⋅+⋅=*5. 计算33)97.1()102(+的近似值.解 设33y x z +=, 由于y y z x x z y x y y x x Δ∂∂+Δ∂∂++≈Δ++Δ+3333)()(332233233y x y y x x y x +Δ+Δ++=, 所以取x =1, y =2, Δx =0.02, Δy =−0.03可得95.2212)03.0(2302.0321)97.1()02.1(32333=+−⋅⋅+⋅++≈+.*6. 计算(1.97)1.05的近似值(ln2=0.693).解 设z =x y , 由于y yz x x z x x x y y y Δ∂∂+Δ∂∂+≈Δ+Δ+)(y x x x yx x y y y Δ+Δ+=−ln 1, 所以取x =2, y =1, Δx =−0.03, Δy =0.05可得(1.97)1.05≈2−0.03+2ln2⋅0.05+1.97+0.0693 ≈2.093.*7. 已知边长为x =6m 与y =8m 的矩形, 如果x 边增加5cn 而y 边减少10cm ,问这个矩形的对角线的近似变化怎样?解 矩形的对角线为22y x z +=,)(122y y x x yx y dy dz x dx dz dz z Δ+Δ+=Δ+Δ=≈Δ, 当x =6, y =8, Δx =0.05, Δy =−0.1时,05.0)1.0805.0686122−=⋅−⋅+≈Δz . 这个矩形的对角线大约减少5cm .*8. 设有一无盖圆柱形容器, 容器的壁与底的厚度均为0.1cm , 内高为20cm ,内半径为4厘米, 求容器外壳体积的近似值.解 圆柱体的体积公式为V =πR 2h ,ΔV ≈dV =2πRh ΔR +πR 2Δh ,当R =4, h =20, ΔR =Δh =0.1时,ΔV ≈2×3.14×4×20×0.1+3.14×42×0.1≈55.3(cm 3)这个容器外壳的体积大约是55.3cm 3.*9. 设有直角三角形, 测得其两腰的长分别为7±0.1cm 和24±0.1cm , 试求利用上述二值来计算斜边长度时的绝对误差.解 设两直角边的长度分别为x 和y , 则斜边的长度为22y x z +=.||||||||||||y y z x x z dz z Δ⋅∂∂+Δ⋅∂∂≤≈Δ|)|||(122y y x x yx Δ+Δ+=. 令x =7, y =24, |Δx |≤0.1, |Δy |≤0.1, 则得斜边长度z 的绝对误差约为124.0)1.0241.07(247122=⋅+⋅+=z δcm . *10. 测得一块三角形土地的两边长分别为63±0.1m 和78±0.1m ,这两边的夹角为60°±1°, 试求三角形面积的近似值, 并求其绝对误差和相对误差.解 设三角形的两边长为x 和y , 它们的夹角z , 为则三角形面积为z xy s sin 21=. zdz xy zdy x zdx y dS cos 21sin 21sin 21++=||cos 21||sin 21||sin 21||||dz z xy dy z x dx z y dS S ++≤≈Δ. 令x =63, y =78, 3π=z , |dx |=0.1, |dy |=0.1, 180π=dz , 则 55.2718021278631.0232631.023278=×××+××+××≈πδs , 82.21273sin 786321=⋅⋅⋅=πS , %29.182.212755.27==S s δ, 所以三角形面积的近似值为2127.82m 2, 绝对误差为27.55 m 2, 相对误差为1.29%.*11. 利用全微分证明: 两数之和的绝对误差等于它们各自的绝对误差之和. 证明 设u =x +y , 则||||||||||||y x y x y yu x x u du u Δ+Δ≤Δ+Δ=Δ∂∂+Δ∂∂=≈Δ. 所以两数之和的绝对误差|Δu |等于它们各自的绝对误差|Δx |与|Δy |的和.*12. 利用全微分证明: 乘积的相对误差等于各因子的相对误差之和; 商的相对误差等于被除数及除数的相对误差之和.证明 设u =xy , yx v =, 则Δu ≈du =ydx +xdy , 2y xdy ydx dv v −=≈Δ, 由此可得相对误差;ydy x dx xy xdy ydx u du u u +=+=≈Δy y x x y dy x dx Δ+Δ=+≤; y dy x dx yx y xdy ydx v dv v v −=⋅−==Δ2y y x x y dy x dx Δ+Δ=+≤.习题8−41. 设z =u 2−v 2, 而u =x +y , v =x −y , 求x z ∂∂, yz ∂∂. 解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅1=2(u +v )=4x , yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅(−1)=2(u −v )=4y . 2. 设z =u 2ln v , 而yx u =, v =3x −2y , 求x z ∂∂, y z ∂∂. 解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂ 31ln 22⋅+⋅=v u y v u 222)23(3)23ln(2yy x x y x y x −+−=, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂ )2()(ln 222−+−⋅=v u y x v u 2232)23(2)23ln(2y y x x y x y x −−−−=. 3. 设z =e x −2y , 而x =sin t , y =t 3, 求dtdz . 解 dtdy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=2223)2(cos t e t e y x y x ⋅−⋅+=−− .)6(cos )6(cos 22sin 223t t e t t e t t y x −=−=−− 4. 设z =arcsin(x − y ), 而x +3t , y =4t 3, 求dtdz . 解 dt dy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=22212)(113)(11t y x y x −−−+⋅−−= 232)43(1)41(3t t t −−−=. 5. 设z =arctan(xy ), 而y =e x , 求dxdz . 解 dx dy y z x z dx dz ⋅∂∂+∂∂=xx x e x x e e y x x y x y 2222221)1(11++=⋅+++=.6. 设1)(2+−=a z y e u ax , 而y =a sin x , z =cos x , 求dx du . 解 dxdz dz u dx dy y u x u dx du ⋅∂+⋅∂∂+∂∂= )sin (1cos 11)(222x a e x a a e a z y ae ax ax ax −⋅+−⋅+++−= )sin cos cos sin (122x x a x a x a a e ax ++−+=x e ax sin =. 7. 设y x z arctan =, 而x =u +v , y =u −v , 验证22v u v uv z u z +−=∂∂+∂∂. 证明 )()(vy y z v x x z u y y z u x x z v z u z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂+∂∂ )()(111)(11222y x y x y y x −⋅++⋅+=)1()()(111)(11222−⋅−⋅++⋅++y x yx y y x 22222v u v u y x y +−=+=. 8. 求下列函数的一阶偏导数(其中f 具有一阶连续偏导数):(1) u =f (x 2−y 2, e xy );解 将两个中间变量按顺序编为1, 2号,2122212)()(f ye f x xe f x y x f x u xy xy ′+′=∂∂⋅′+∂−∂⋅′=∂∂, 212)2212)((f xe f y ye f y y x f y u xy xy ′+′−=∂∂⋅′+∂−∂⋅′=∂∂. (2) ,(zy y x f u =; 解 1211)()(f yz y x f y x x f x u ′=∂∂⋅′+∂∂⋅′=∂∂, )()(21z y y f y x y f y u ∂∂⋅′+∂∂′=∂∂2121f z f yx′+′−=,)()(21z y z f z x z f z u ∂∂⋅′+∂∂′=∂∂22f z y ′−=. (3) u =f (x , xy , xyz ).解 yz f y f f xu ⋅′+⋅′+⋅′=∂∂3211321f yz f y f ′+′+′=, 3232f xz f x xz f x f yu ′+′=⋅′+⋅′=∂∂, 33f xy xy f zu ′=⋅′=∂∂. 9. 设z =xy +xF (u ), 而xy u =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅. 证明 y z y x z x ∂∂⋅+∂∂⋅)([])()([yu u F x x y x u u F x u F y x ∂∂′+⋅+∂∂′++= )]([)]()([u F x y u F xy u F y x ′+⋅+′−+= =xy +xF (u )+xy =z +xy .10. 设)(22y x f y z −=, 其中f (u )为可导函数, 验证211y zy z y x z x =∂∂+∂∂.证明 ()()u f f xy u f x f y x z 2222′−=⋅′⋅−=∂∂, ()()u f f y u f u f y f y u f y z 2222)(1)2()(′−+=−⋅′⋅−=∂∂, 所以 )(11221122u f y u f f y u f f y y z y x z x ⋅+′+′−=∂∂⋅+∂∂⋅211y z zy y =⋅. 11. 设z =f (x 2+y 2), 其中f 具有二阶导数, 求22xz ∂∂, y x z ∂∂∂2, 22y z ∂∂. 解 令u =x 2+y 2, 则z =f (u ),f x xu u f x z ′=∂∂′=∂∂2)(, f y y u u f y z ′=∂∂′=∂∂2)(, f x f x u f x f xz ′′+′=∂∂⋅′′+′=∂∂2224222,f xy yu f x y x z ′′=∂∂⋅′′=∂∂∂422, f y f y u f y f y z ′′+′=∂∂⋅′′+′=∂∂422222. 12. 求下列函数的22x z ∂∂,y x z ∂∂∂2,22y z ∂∂(其中f 具有二阶连续偏导数): (1) z =f (xy , y );解 令u =xy , v =y , 则z =f (u , v ).u f y vf y u f x v v f x u u f x z ∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂0, vf u f x v f x u f y v v f y u u f y z ∂∂+∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂1. 因为f (u , v )是u 和v 的函数, 所以u f ∂∂和v f ∂∂也是u 和v 的函数, 从而u f ∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数.)()()(22u f x y uf y x x z x x z ∂∂∂∂=∂∂∂∂=∂∂∂∂=∂∂ 222222222)0()(u f y v u f y u f y x v v u f x u u f y ∂∂=⋅∂∂∂+⋅∂∂=∂∂⋅∂∂∂+∂∂⋅∂∂=, )(1)()(2uf y y u f u f y y x z y y x z ∂∂∂∂+∂∂⋅=∂∂∂∂=∂∂∂∂=∂∂∂ )(222yv v u f y u u f y u f ∂∂⋅∂∂∂+∂∂⋅∂∂+∂∂= v u f y uf xy u f v u f x u f y u f ∂∂∂+∂∂+∂∂=⋅∂∂∂+⋅∂∂+∂∂=222222)1(, )()()()(22v f y u f y x vf u f x y y z y y z ∂∂∂∂+∂∂∂∂=∂∂+∂∂∂∂=∂∂∂∂=∂∂ yv v f y u u v f y v v u f y u u f x ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂=222222)( 1)1(222222⋅∂∂+⋅∂∂∂+⋅∂∂∂+⋅∂∂=vf x u v f v u f x u f x2222222v f v u f x u f x ∂∂+∂∂∂+∂∂=. (2)) ,(yx x f z =; 解 令u =x , yx v =, 则z =f (u , v ). v f y u f x v v f dx du u f x z ∂∂⋅+∂∂=∂∂⋅∂∂+⋅∂∂=∂∂1, vf y xdy dv v f y z ∂∂⋅−=⋅∂∂=∂∂2. 因为f (u , v )是u 和v 的函数, 所以u f ∂∂和v f ∂∂也是u 和v 的函数, 从而u f ∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数. )(1)()1()(22vf x y u f x v f y u f x x z x x z ∂∂∂∂⋅+∂∂∂∂=∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂ )(1)(222222xv v f dx du u v f y x v v u f dx du u f ∂∂⋅∂∂+⋅∂∂∂+∂∂⋅∂∂∂+⋅∂∂= 22222212v f y v u f y u f ∂∂⋅+∂∂∂⋅+∂∂=, 1()(2vf y u f y x z y y x z ∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂∂)(1)1()(v f y y v f y dy d u f y ∂∂∂∂⋅+∂∂⋅+∂∂∂∂= yv v f y v f y y v v u f ∂∂⋅∂∂⋅+∂∂⋅−∂∂⋅∂∂∂=22211 221v f y x v f y v u f y x ∂∂⋅−∂∂⋅−∂∂∂⋅−= ()()(2222vf y y x v f y x y y z y y z ∂∂∂∂⋅−∂∂⋅−∂∂=∂∂∂∂=∂∂22423222322vf y x v f y x y v v f y x v f y x ∂∂⋅+∂∂⋅=∂∂⋅∂∂⋅−∂∂⋅=. (3) z =f (xy 2, x 2y );解 z x =f 1′⋅y 2+f 2′⋅2xy =y 2f 1′+2xyf 2′,z y =f 1′⋅2xy +f 2′⋅x 2=2xyf 1′+x 2f 2′;z xx =y 2[f 11′′⋅y 2+f 12′′⋅2xy ]+2yf 2′′+2xy [f 21′′⋅y 2+f 22′′⋅2xy ] =y 4f 11′′+2xy 3f 12′′+2yf 2′′+2xy 3f 21′′+4x 2y 2 f 22′′=y 4f 11′′+4xy 3f 12′′+2yf 2′′+4x 2y 2 f 22′′,z xy =2y f 1′+y 2[f 11′′⋅2xy +f 12′′⋅x 2]+2xf 2′+2xy [f 21′′⋅2xy +f 22′′⋅x 2] =2y f 1′+2xy 3f 11′′+x 2y 2 f 12′′+2xf 2′+4x 2y 2f 21′′+2x 3yf 22′′ =2y f 1′+2xy 3f 11′′+5x 2y 2 f 12′′+2xf 2′+2x 3yf 22′′,z yy =2xf 1′+2xy [f 11′′⋅2xy +f 12′′⋅x 2]+x 2[f 21′′⋅2xy +f 22′′⋅x 2] =2xf 1′+4x 2y 2f 11′′+2x 3y f 12′′+2x 3yf 21′′+x 4f 22′′=2xf 1′+4x 2y 2f 11′′+4x 3y f 12′′+x 4f 22′′.(4) z =f (sin x , cos y , e x +y ).解 z x =f 1′⋅cos x + f 3′⋅e x +y =cos x f 1′+e x +y f 3′,z y =f 2′⋅(−sin y )+ f 3′⋅e x +y =−sin y f 2′+e x +y f 3′,z xx =−sin x f 1′+cos x ⋅(f 11′′⋅cos x + f 13′′⋅e x +y )+e x +y f 3′+e x +y (f 31′′⋅cos x + f 33′′⋅e x +y ) =−sin x f 1′+cos 2x f 11′′+e x +y cos x f 13′′+e x +y f 3′+e x +y cos x f 31′′+e 2(x +y ) f 33′′ =−sin x f 1′+cos 2x f 11′′+2e x +y cos x f 13′′+e x +y f 3′+e 2(x +y ) f 33′′, z xy =cos x [f 12′′⋅(−sin y )+ f 13′′⋅e x +y ]+e x +y f 3′+e x +y [f 32′′⋅(−sin y )+ f 33′′⋅e x +y ] =−sin y cos x f 12′′+e x +y cos x f 13′+e x +y f 3′−e x +y sin y f 32′+e 2(x +y )f 33′ =−sin y cos x f 12′′+e x +y cos x f 13′′+e x +y f 3′−e x +y sin y f 32′′+e 2(x +y )f 33′′, z yy =−cos y f 2′−sin y [f 22′′⋅(−sin y )+ f 23′′⋅e x +y ]+e x +y f 3′+e x +y [f 32′′⋅(−sin y )+ f 33′′⋅e x +y ] =−cos y f 2′+sin 2y f 22′′−e x +y sin y f 23′′+e x +y f 3′−e x +y sin y f 32′′+ f 33′′⋅e 2(x +y ) =−cos y f 2′+sin 2y f 22′′−2e x +y sin y f 23′′+e x +y f 3′+f 33′′⋅e 2(x +y ).13. 设u =f (x , y )的所有二阶偏导数连续, 而3t s x −=, 3t s y +=, 证明2222)()()()(t u s u y u x u ∂∂+∂∂=∂∂+∂∂及22222222t u s u y u x u ∂∂+∂∂=∂∂+∂∂证明 因为y u x u s yy u s x x u s u ∂∂⋅+∂∂⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2321y u x u t yy u t x x u t u ∂∂⋅+∂∂⋅−=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2123所以2222)2123()2321()()(y u x u y u x u t u s u ∂∂+∂∂−+∂∂+∂∂=∂∂+∂∂22)()(y u x u ∂∂+∂∂=. 又因为)2321()(2yu x u s s u s s u ∂∂⋅+∂∂⋅∂∂=∂∂∂∂=∂∂ (23)(212222s y y u s x x y u s y y x u s x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂= 2321(23)2321(212222y u x y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂∂⋅+∂∂⋅= 222432341y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂⋅=, )2123()(2yu x u t t u t t u∂∂⋅+∂∂⋅−∂∂=∂∂∂∂=∂∂ )(21)(232222t y y u t x x y u t y y x u t x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂−= )2123(21)2123(232222y u x y u y x u x u ∂∂⋅+∂∂∂⋅−+∂∂∂⋅+∂∂⋅−−=22222412343y uy x u x u ∂∂⋅+∂∂∂⋅−∂∂⋅=,所以 22222222y u x u t u s u ∂∂+∂∂=∂∂+∂∂.习题8−51. 设sin y +e x −xy 2=0, 求dxdy . 解 令F (x , y )=sin y +e x −xy 2, 则F x =e x −y 2, F y =cos y −2xy , xy y e y xy y y e F F dx dy xy x 2cos 2cos 222−−=−−−=−=.2. 设x y y x arctan ln 22=+, 求dxdy. 解 令xyy x y x F arctan ln ),(22−+=, 则22222222)()(11221y x y x xy x y y x x y x F x ++=−⋅+−+⋅+=,22222221)(11221yx x y x xy y x y y x F y +−=⋅+−+⋅+=,yx y x F F dx dyy x −+=−=. 3. 设022=−++xyz z y x , 求x z ∂∂及y z ∂∂.解 令xyz z y x z y x F 22),,(−++=, 则 xyz yz F x −=1, xyzxz F y −=2, xyz xyF z −=1,xy xyz xyz yz F F x z z x −−=−=∂∂, xy xyz xyz xz F F y zz y −−=−=∂∂2. 4. 设y z z x ln =, 求x z ∂∂及yz ∂∂, 解 令yz z x z y x F ln ),,(−=, 则z F x 1=, y yzyz F y 1)(12=−⋅−=, 2211z z x y y z z x F z +−=⋅−−=,所以 z x z F F x z z x +=−=∂∂, )(2z x y z F F y z z y +=−=∂∂.5. 设2sin(x +2y −3z )=x +2y −3z , 证明1=∂∂+∂∂yz x z证明 设F (x , y , z )=2sin(x +2y −3z )−x −2y +3z , 则 F x =2cos(x +2y −3z )−1,F y =2cos(x +2y −3z )⋅2−2=2F x , F z =2cos(x +2y −3z )⋅(−3)+3=−3F x ,313=−−=−=∂∂x x z x F F F F x z , 3232=−−=−=∂∂x x z y F F F F y z ,于是 13231=+=−−=∂∂+∂∂z z z x F FF F yz x z .6. 设x =x (y , z ), y =y (x , z ), z =z (x , y )都是由方程F (x , y , z )=0所确定的具有连续偏导数的函数, 证明1−=∂∂⋅∂∂⋅∂∂xz z yy x .解 因为x y F F y x −=∂∂, y z F F zy −=∂∂, z x F F x z−=∂∂,所以 1()()(−=−⋅−⋅−=∂∂⋅∂∂⋅∂∂z x y z x y F F F F F F xz z yy x .7. 设ϕ(u , v )具有连续偏导数, 证明由方程ϕ(cx −az , cy −bz )=0 所确定的函数z =f (x , y )满足c yz b x z a =∂∂+∂∂.证明 因为v u uv u u b a c b a c x z ϕϕϕϕϕϕ+=⋅−⋅−⋅−=∂∂,vu vv u v b a c b a c y z ϕϕϕϕϕϕ+=⋅−⋅−⋅−=∂∂,所以 c b a c b b a c a y z b x z a v u vv u u =+++⋅=∂∂+∂∂ϕϕϕϕϕϕ.8. 设e z−xyz =0, 求22x z ∂∂. 解 设F (x , y , z )=e z −xyz , 则F x =−yz , F z =e z −xy , xye yzF F x z z x −=−=∂∂,222)()()()(xy e y x z e yz xy e x z y x z x x z z z z −−∂∂−−∂∂=∂∂∂∂=∂∂ 222)()(xy e xye yzyze xy ye z y z z z −−−−+=32232)(22xy e e z y z xy ze y z zz −−−=. 9. 设z 3−3xyz =a 3, 求yx z ∂∂∂2. 解 令F (x , y , z )=z 3−3xyz −a 3, 则xy z yz xy z yz F F x z z x −=−−−=−=∂∂22333, xyz xz xy z xz F F y z z y −=−−−=−=∂∂22333, )()(22xyz yzy x z y y x z −∂∂=∂∂∂∂=∂∂∂222)()2())((xy z x y z z yz xy z yz y z −−∂∂−−∂∂+=22222)()2()()(xy z x xyz xz z yz xy z xy z xz y z −−−−−⋅−+=322224)()2(xy z y x xyz z z −−−=.10. 求由下列方程组所确定的函数的导数或偏导数:(1)设, 求⎩⎨⎧=+++=203222222z y x y x z dx dy , dx dz; 解 视y =y (x ), z =z (x ), 方程两边对x 求导得⎪⎩⎪⎨⎧=+++=064222dx dz z dx dy y x dx dy y x dx dz , 即⎪⎩⎪⎨⎧−=+−=−xdx dz z dxdy y xdx dz dx dy y 3222.解方程组得)13(2)16(++−=∂∂z y z x x y , 13+=z x dx dz.(2)设, 求⎩⎨⎧=++=++10222z y x z y x dz dx ,dz dy ;解 视x =x (z ), y =y (z ), 方程两边对z 求导得⎪⎩⎪⎨⎧=++=++022201z dz dy y dzdx x dz dy dz dx , 即⎪⎩⎪⎨⎧−=+−=+zdz dy y dz dx x dz dy dz dx 2221.解方程组得y x z y z x −−=∂∂, yx xz z y −−=∂∂. (3)设, 其中f , g 具有一阶连续偏导数, 求⎩⎨⎧−=+=),(),(2y v x u g v y v ux f u x u ∂∂,x v ∂∂; 解 视u =u (x , y ), v =v (x , y ), 方程两边对x 求偏导得⎪⎩⎪⎨⎧∂∂⋅′+−∂∂⋅′=∂∂∂∂⋅′+∂∂+⋅′=∂∂x v yv g x u g x v x v f x u x u f x u 21212)1()( , 即⎪⎩⎪⎨⎧′=∂∂⋅⋅−′+∂∂′′′−=∂∂⋅′+∂∂−′121121)12()1(g x v g yv x u g f u x v f x u f x . 解之得1221221)12)(1()12(g f g yv f x g f g yv f u x u ′′−−′−′′′−−′′−=∂∂, 1221111)12)(1()1(g f g yv f x f u f x g x v ′′−−′−′−′+′′=∂∂.(4)设, 求⎩⎨⎧−=+=v u e y v u e x u u cos sin x u ∂∂, y u ∂∂, x v ∂∂, y v ∂∂. 解 视u =u (x , y ), v =v (x , y ), 方程两边微分得, 即, ⎩⎨⎧+−=++=vdv u vdu du e dy vdv u vdu du e dx uu sin cos cos sin ⎩⎨⎧=+−=++dy vdv u du v e dxvdv u du v e u u sin )cos (cos )sin (从中解出du , dv 得dy v v e v dxv v e v du u u 1)cos (sin cos 1)cos (sin sin +−−++−=, v v e u e v dx v v e u e v dv u uu u ]1)cos (sin [sin ]1)cos (sin [cos +−+++−−=,从而1)cos (sin sin +−=∂∂v v e v x u u , 1)cos (sin cos +−−=∂∂v v e vy u u ,]1)cos (sin [cos +−−=∂∂v v e u e v x v u , ]1)cos (sin [sin +−+=∂∂v v e u e v y v u.11. 设y =f (x , t ), 而t 是由方程F (x , y , t )=0所确定的x , y 的函数, 其中f , F 都具有一阶连续偏导数, 试证明:tF y F t f x F t f t F x f dx dy ∂∂+∂∂⋅∂∂∂∂⋅∂∂−∂∂⋅∂∂=. 证明 由方程组可确定两个一元隐函数, 方⎩⎨⎧==0),,(),(t y x F t x f y ⎩⎨⎧==)()(x t t x y y 程两边对x 求导可得⎪⎩⎪⎨⎧=⋅∂∂+⋅∂∂+∂∂⋅∂∂+∂∂=0dxdt t F dx dy y F x F dxdt t f x f dx dy ,移项得⎪⎩⎪⎨⎧∂∂−=∂∂+⋅∂∂∂∂=⋅∂∂−x F dxdt t F dx dy y F x f dx dt t f dx dy ,在01≠∂∂⋅∂∂+∂∂=∂∂∂∂∂∂−=y F t f t F tF y F t fD 的条件下 yF t f t F x Ft f t F x f t Fx F t f x f D dx dy ∂∂⋅∂∂+∂∂∂∂⋅∂∂−∂∂⋅∂∂=∂∂∂∂−∂∂−∂∂⋅=1.习题8−61. 求曲线x =t −sin t , y =1−cos t , 2sin 4t z =在点)22 ,1 ,12 (−π处的切线及法平面方程.解 x ′(t )=1−cos t , y ′(t )=sin t , 2cos 2)(t t z =′. 因为点)22 ,1 ,12 (−π所对应的参数为2 π=t , 故在点)22 ,1 ,12 (−π处的切向量为)2 ,1 ,1(=T .因此在点)22 ,1 ,12(−π处, 切线方程为22211121−=−=−+z y x π, 法平面方程为0)22(2)1(1)12(1=−+−⋅++−⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, tt y +=1, z =t 2在对应于t =1的点处的切线及法平面方程. 解 2)1(1)(t t x +=′, 21)(t t y −=′, z ′(t )=2t .在t =1所对应的点处, 切向量)2 ,1 ,41(−=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为21124121−=−−=−z y x , 即8142121−=−−=−z y x ; 法平面方程为0)1(2)2()21(41=−+−−−z y x , 即2x −8y +16z −1=0.3. 求曲线y 2=2mx , z 2=m −x 在点(x 0, y 0, z 0)处的切线及法平面方程. 解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m −x 的两边 对x 求导, 得m dx dyy22=, 12−=dxdz z , 所以y m dx dy=, z dx dz 21−=.曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m −=T , 所求的切线方程为000211z z z y m y y x x −−=−=−, 法平面方程为0)(21)()(00000=−−−+−z z z y y y m x x . 4. 求曲线在点(1, 1, 1)处的切线及法平面方程.⎩⎨⎧=−+−=−++0453203222z y x x z y x 解 设曲线的参数方程的参数为x , 对x 求导得,⎪⎩⎪⎨⎧=+−=−++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=−+−=+2533222dxdz dx dy x dx dz z dx dy y .解此方程组得z y z x dx dy 61015410−−−−=, z y y x dx dz 610946−−−+=. 因为169)1,1,1(=dx dy, 161)1,1,1(−=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111−−=−=−z y x , 即1191161−−=−=−z y x ; 法平面方程为0)1(161)1(169)1(=−−−+−z y x , 即16x +9y −z −24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4. 解 已知平面的法线向量为n =(1, 2, 1).因为x ′=1, y ′=2t , z ′=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =−1, 31−=t . 于是所求点的坐标为(−1, 1, −1)和)271 ,91 ,31(−−. 6. 求曲面e z −z +xy =3在点(2,1,0)处的切平面及法线方程.解 令F (x , y , z )=e z −z +xy −3, 则n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z −1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x −2)+2(y −1)+0⋅(z −0)=0, 即x +2y −4=0,法线方程为02112−=−=−z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程.解 令F (x , y , z )=ax 2+by 2+cz 2−1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为ax 0(x −x 0)+by 0(y −y 0)+cz 0(z −z 0)=0,即 , 202020000cz by ax z cz y by x ax ++=++法线方程为00000cz z z by y y ax x x −=−=−.8. 求椭球面x 2+2y 2+z 2=1上平行于平面x −y +2z =0的切平面方程.解 设F (x , y , z )=x 2+2y 2+z 2−1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, −1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =−=, 即z x 21=, z y 41−=, 代入椭球面方程得1)4(2)2(222=+−+z z z , 解得1122±=z , 则1122±=x , 11221∓=y . 所以切点坐标为)1122,11221,112(±±∓. 所求切平面方程为0)1122(2)11221()112(=±+−±z y x ∓, 即 2112±=+−z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(−1, −2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2−16, 则点(−1, −2, 3)处的法向量为n 2=(F x , F y , F z )|(−1, −2, 3)=(6x , 2y , 2z )|(−1, −2, 3)=(−6, −4, 6).点(−1, −2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F −++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为0)(1)(1)(1000000=−+−+−z z z y y y x x x , 即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为a z y x a az ay ax =++=++)(000000.习题8−71. 求函数z =x 2+y 2在点(1, 2)处沿从点(1, 2)到点)32 ,2(+的方向的方向导数 解 因为从点(1, 2)到点)32 ,2(+的向量为)3 ,1(=l , 故)cos ,(cos 23 ,21(||βα===l l e l . 又因为22)2,1()2,1(==∂∂x x z , 42)2,1()2,1(==∂∂y y z , 故所求方向导数为321234212cos cos +=⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 2. 求函数z =ln(x +y )在抛物线y 2=4x 上点(1, 2)处, 沿这抛物线在该点处偏向x 轴正向的切线方向的方向导数.解 方程y 2=4x 两边对x 求导得2yy ′=4, 解得yy 2=′. 在抛物线y 2=4x 上点(1, 2)处, 切线的斜率为y ′(1)=1, 切向量为l =(1, 1), 单位切向量为)cos ,(cos )21 ,21(βα==l e . 又因为31 1)2,1()2,1(=+=∂∂y x x z , 31 1)2,1()2,1(=+=∂∂y x y z , 故所求方向导数为3221312131cos cos =⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 3. 求函数)(12222b y a x z +−=在点)2,2(b a 处沿曲线12222=+b y a x 在这点的内法线方向的方向导数.解 令1),(2222−+=b y a x y x F , 则22a x F x =, 22b y F y =. 从而点(x , y )处的法向量为)2 ,2() ,(22by a xF F y x ±=±=n . 在)2,2(b a 处的内法向量为 )2 ,2()2 ,2()2,2(22b a b y a x b a −=−=n , 单位内法向量为)cos ,(cos ,(2222βα=+−+−=b a a b a b n e . 又因为a a x x zb a b a 222,2(2)2,2(−=−=∂∂, bb y y z b a b a 222,2(2)2,2(−=−=∂∂, 所以 222222222cos cos b a abb a a b b a b a y z x z n z +=+⋅++⋅=∂∂+∂∂=∂∂βα. 4. 求函数u =xy 2+z 3−xyz 在点(1, 1, 2)处沿方向角为3 πα=, 4 πβ=, 3 πγ=的方向的方向导数.解 因为方向向量为)21 ,22 ,21()cos ,cos ,(cos ==γβαl , 又因为 1)()2,1,1(2)2,1,1(−=−=∂∂yz y x u, 0)2()2,1,1()2,1,1(=−=∂∂xz xy y u , 11)3()2,1,1(2)2,1,1(=−=∂∂xy z z u , 所以 5211122021)1(cos cos cos =⋅+⋅+⋅−=∂∂+∂∂+∂∂=∂∂γβαz u y u x u l u .5. 求函数u =xyz 在点(5,1,2)处沿从点(5, 1, 2)到点(9, 4, 14)的方向的方向导数.解 因为l =(9−5, 4−1, 14−2)=(4, 3, 12), )1312 ,133 ,134(||==l l e l , 并且 2)2,1,5()2,1,5(==∂∂yz x u , 10)2,1,5()2,1,5(==∂∂xz y u , 5)2,1,5()2,1,5(==∂∂xy z u, 所以 139813125133101342cos cos cos =⋅+⋅+⋅=∂∂+∂∂+∂∂=∂∂γβαz u y u x u l u . 6. 求函数u =x 2+y 2+z 2在曲线x =t , y =t 2, z =t 3上点(1, 1, 1)处, 沿曲线在该点的切线正方向(对应于t 增大的方向)的方向导.解 曲线x =t , y =t 2, z =t 3上点(1, 1, 1)对应的参数为t =1, 在点(1, 1, 1)的切线正向为)3 ,2 ,1()3 ,2 ,1(12===t t t l , )143,142,141(||==l l e l , 又 22)1,1,1()1,1,1(==∂∂x x u , 22)1,1,1()1,1,1(==∂∂y y u , 22)1,1,1()1,1,1(==∂∂z z u, 所以 1412143214221412cos cos cos )1,1,1(=⋅+⋅+⋅=∂∂+∂∂+∂∂=∂∂γβαz u y u x u l u . 7. 求函数u =x +y +z 在球面x 2+y 2+z 2=1上点(x 0, y 0, z 0)处, 沿球面在该点的外法线方向的方向导数.解 令F (x , y , z )=x 2+y 2+z 2−1, 则球面x 2+y 2+z 2=1在点(x 0, y 0, z 0)处的外法向量为)2 ,2 ,2() , ,(000),,(000z y x F F F z y x z y x ==n , )cos ,cos ,(cos ) , ,(||000γβα===z y x n n n e , 又 1=∂∂=∂∂=∂∂zu y u x u , 所以 000000111cos cos cos z y x z y x zu y u x u n u ++=⋅+⋅+⋅=∂∂+∂∂+∂∂=∂∂γβα. 8. 设f (x , y , z )=x 2+2y 2+3z 2+xy +3x −2y −6z , 求grad f (0, 0, 0)及grad f (1, 1, 1).。
高等数学课后习题答案第八章1第八章习题解答节8.1部分习题解答 5、求极限(1)、101011l i m 2201=+-=+-→→yx xy y x (2)、xy y x y x 1sin)(lim 0+→→。
由y x xyy x +≤+≤1sin )(0,而0)(lim 00=+→→y x y x 所以01sin)(lim 00=+→→xyy x y x (3)、2ln 214)02ln()sin ln(lim2202=++=++→→y x y x y x (4)、=+-→→xy xy y x 42lim 041421)42(lim 00-=+-=++-→→xy xy xy y x (5)、110c o s 1c o s l i m000==++→→e y x y e x y x (6)、=++-→→xy y x ey x y x )()cos(1lim22220=++→→xy y x ey x y x )()(21sin 2lim 222220 )(21)(21sin lim 222200y x y x y x ++→→0101)(21sin lim 2200=?=+?→→xy y x e y x 6、证明下列极限不存在(1)、yx yx y x -+→→00l i m 证明:取路径0=x 有=-+→→y x y x y x 00lim1lim0-=-→=yyy x 取路径0=y 有=-+→→y x y x y x 00lim1lim 00=→=xx x y ,所以y x yx y x -+→→00lim 不存在(2)、xy x x y x -+→→2220l i m证明:取路径x y =有xy x x y x -+→→22200lim x x x y x -=→→2202lim 0142lim 00=-=→→x x y x 取路径x y =有x y x x y x -+→→2220 0lim 1lim 220==→→x x y x ,所以xy x x y x -+→→22200lim 不存在。
第八章习题解答(2) 节8.4部分习题解答1、设22v uv u z ++= y x v y x u -=+=,,求x z ∂∂,yz ∂∂ 解:v u u z +=∂∂2 v u vz 2+=∂∂ 1=∂∂x u ,1=∂∂x v ;1=∂∂y u ,1-=∂∂yv 所以x z ∂∂⋅∂∂=u z +∂∂x u ⋅∂∂v z =∂∂xvx v u v u v u 6)(3)2()2(=+=+++y z ∂∂⋅∂∂=u z +∂∂y u ⋅∂∂v z =∂∂yv y v u v u v u 2)2()2(=-=+-+ 2、设v u z ln 2= y x v yxu 23,-==,求x z ∂∂,y z ∂∂解:v u u zln 2=∂∂ vu v z 2=∂∂ y x u 1=∂∂,3=∂∂x v ;2yx y u -=∂∂,2-=∂∂y v所以 x z ∂∂⋅∂∂=u z +∂∂x u ⋅∂∂v z =∂∂x v )23(3)23l n (23ln 21222y x y x y x y x v u v u y -+-=+y z ∂∂⋅∂∂=u z +∂∂y u ⋅∂∂v z =∂∂y v )23(2)23l n (22ln 2223222y x y x y x y x v u v u y x ----=-- 3、设v e z uln = 22222,2y x v y x u -=-=,求x z ∂∂,yz∂∂ 解:v e u z uln =∂∂ ve v z u =∂∂ x x u 4=∂∂,x x v 2=∂∂;y y u 2-=∂∂,y yv 4-=∂∂ 所以x z ∂∂⋅∂∂=u z +∂∂x u ⋅∂∂v z =∂∂xv]21)2ln(2[22ln 42222222yx y x xe v e x v xe y x u u-+-=+-y z ∂∂⋅∂∂=u z +∂∂y u ⋅∂∂v z =∂∂yv ]22)2ln(2[24ln 2222222yx y x ye v e y v ye y x u u-+--=--- 4、设y x e z 2-= 3,sin t y t x ==,求 dtdz解:y x e x z 2-=∂∂ y x e yz 22--=∂∂,t dt dx cos =,23t dt dy =, 所以dt dz ⋅∂∂=x z +dt dx ⋅∂∂y z =dtdy223c o s t te y x +-)2(2y x e --=)6(c o s 22s i n 3t t e t t -- 5、设)arcsin(y x z -= 34,3t y t x ==,求 dtdz 解:2)(11y x x z --=∂∂ 2)(11y x y z ---=∂∂,t dt dx 3=,212t dt dy =, 所以 dt dz ⋅∂∂=x z +dt dx ⋅∂∂y z =dtdy=---22)(1123y x t 232)43(1123t t t ---6、设)23tan(22y x t z -+= t y tx ==,1,求dtdz 解:2sec 4x x z =∂∂)23(22y x t -+ 2s e c 2y yz -=∂∂)23(22y x t -+, 2sec 3=dt dz )23(22y x t -+;21t dt dx -=,tdt dy 21=, 1=dt dt 所以t dz ∂⋅∂∂=x z +dt dx ⋅∂∂y z =∂∂+t z dt dy 2s e c )23(22y x t -+]3212)1(14[2+--tt t t 2sec =)22(2t t +)42(3t -⋅ 7、设1)(2+-=a z y e u ax xz x a y cos ,sin ==,求 dx du解:=∂∂x u 1)(2+-a z y ae ax ,=∂∂y u12+a ae ax ,-=∂∂z u 12+a ae ax x dx dy cos =;x dxdzsin -=,所以 dx du ⋅∂∂=x u ⋅∂∂+y u =⋅∂∂+dx dzz u dx dy ]s i n c o s )c o s s i n ([12x x a x x a a a e ax ++-+ x e ax sin =8、设222z y xe u ++= x y z sin 2=,求x u ∂∂,yu∂∂ 解:x x u 2=∂∂222z y x e ++⋅ y yu2=∂∂222z y x e ++⋅,z z u 2=∂∂222z y x e ++⋅ x y x z cos 2=∂∂,x y yz sin 2=∂∂; 所以:x u ∂∂=∂∂⋅∂∂+∂∂⋅+∂∂=xzz u y u x u 0]cos 22[2222x zy x e z y x +++ =+=++]cos sin 22[22sin 2422x xy y x e xy y x]2sin 2[4sin 2422x y x e xy y x+=++y u ∂∂=∂∂⋅∂∂+∂∂+⋅∂∂=yz z u y u x u 0]sin 222[222x y z y e z y x ⋅+++ =⋅+=++]sin 2sin 22[2sin 2422x y x y y e xy y x]sin 21[222sin 2422x y ye xy y x+++9、设)cos(22y x y x z +++= v y v u x arcsin ,=+=,求vu zu z ∂∂∂∂∂2, 解:)sin(2y x x x z +-=∂∂,)sin(2y x y yz +-=∂∂ 1=∂∂u x ,1=∂∂v x ,0=∂∂u y211vv y -=∂∂所以)a r c s i n s i n ()(2)s i n (2v v u v u y x x uz++-+=+-=∂∂)111)(arcsin cos(222vv v u v u z -+++-=∂∂∂ 10、设,arctan y xz =v u y v u x -=+=,验证:22vu v u v z u z +-=∂∂+∂∂ 证明:22yx yx z +=∂∂,22y x x y z +-=∂∂,1=∂∂u x ,1=∂∂v x ,11=∂∂u y ,1-=∂∂v y所以)(122x y y x u z -+=∂∂22v u v +-=,)(122x y yx v z ++=∂∂22v u u += 故有 左边=+-=∂∂+∂∂=22vu vu v z u z 右边 11、设f 具有连续的一阶偏导数,求下列函数的一阶偏导数 (1)、)34,23(y x y x f z -+=解:设y x v y x u 34,23-=+=,于是有3=∂∂x u ,2=∂∂y u ,4=∂∂x v ,3-=∂∂yv2143f f x z +=∂∂ =∂∂yz2133f f - (2)、),(22xy e y x f z -= 解:设xy e v y x u =-=,22,于是有x x u 2=∂∂,y y u 2-=∂∂,xy ye x v =∂∂,xu xe yv=∂∂ =∂∂x z 212f ye xf xy + 212f xe yf yzxy +-=∂∂ (3)、)32,ln (y x x y f z +=解:设y x v x y u 32,ln +==,于是有x y x u =∂∂,x y u ln =∂∂,2=∂∂x v ,3=∂∂yv212f f x y x z +=∂∂ 213ln f xf yz+=∂∂ (4)、),(yxx y f z = 解:设y x v x y u ==,,于是有2x y x u -=∂∂,x y u 1=∂∂,y x v 1=∂∂,2yx y v -=∂∂ 2121f y f xy x z +-=∂∂2211f y x f x y z -=∂∂ (5)、),,(y x y x x f z -+=解:设y x v y x u -=+=,,于是有1=∂∂x u ,1=∂∂x v ,1=∂∂y u ,1-=∂∂yv321f f f x z ++=∂∂ 32f f yz -=∂∂ (6)、),,(x y z xy x f u =解:设xyz t xy s ==,,于是有y x s =∂∂,yz x t =∂∂,x y s =∂∂,zx yt=∂∂ 0=∂∂z x ,0=∂∂z s xy zt=∂∂ 321yzf yf f x u ++=∂∂ 32z x f xf yu+=∂∂ 3xyf z u =∂∂ 12、设)(u f 具有连续的导数,)(xyxf xy z += 验证:z xy yz y x z x+=∂∂+∂∂ 验证:)])(()([2xy x y f x x y f y x x z x-'++=∂∂)()(x y f y x y xf xy '-+= ='+=∂∂)])(([xyx y f x x y y z y)(x y f y xy '+左边==+=+=∂∂+∂∂z xy xyxf xy y z y x z x)(2右边 13、设)(22y x f z +=,)(u f 具有二阶连续的导数,求,,222y x z x z ∂∂∂∂∂,22y z∂∂ 解:设22y x u +=有1f u z=∂∂ 1122f u z =∂∂ x x u 2=∂∂ 222=∂∂x u 0=∂∂∂y x u y y u2=∂∂ 222=∂∂yu 12xf x z =∂∂ x xf f x z 22211122+=∂∂112142f x f += 11112422xyf y xf yx z ==∂∂∂ 12yf y z=∂∂ 11212242f y f yz +=∂∂ 14、设f 具有二阶连续的导数,求,,222y x z x z ∂∂∂∂∂,22yz∂∂(1)、),(xy y x f z += 解:设xy v y x u =+=,有1f u z =∂∂ 1122f u z =∂∂ 122f v u z =∂∂∂ 2f v z =∂∂ 2222f v z =∂∂ 1=∂∂x u 022=∂∂x u 02=∂∂∂y x u 1=∂∂y u 022=∂∂y u y x v =∂∂ 022=∂∂x v 12=∂∂∂y x v x y v =∂∂ 022=∂∂yv 于是有:22222)(xv v z x u u z z v y u x z ∂∂∂∂+∂∂∂∂+∂∂+∂∂=∂∂22212112f y yf f ++=y x vv z y x u u z z v x u v y u y x z ∂∂∂∂∂+∂∂∂∂∂+∂∂+∂∂∂∂+∂∂=∂∂∂222))((2221211)(f xyf f y x f ++++= 22222)(y vv z y u u z z v x u yz ∂∂∂∂+∂∂∂∂+∂∂+∂∂=∂∂22212112f x xf f ++= (2)、),(yxxy f z =解:设yx v xy u ==, 有1f u z =∂∂ 1122f u z =∂∂ 122f v u z =∂∂∂ 2f v z=∂∂ 2222f v z =∂∂ y x u =∂∂ 022=∂∂x u 12=∂∂∂y x u x y u =∂∂ 022=∂∂yu y x v 1=∂∂ 022=∂∂x v221yy x v -=∂∂∂ 2y x y v -=∂∂ 3222y x y v =∂∂ 于是有:22222)1(x v v z x u u z z v y u y x z ∂∂∂∂+∂∂∂∂+∂∂+∂∂=∂∂2221211212f y f f y ++=yx vv z y x u u z z v y x u x v y u y y x z ∂∂∂∂∂+∂∂∂∂∂+∂∂-∂∂∂∂+∂∂=∂∂∂2222))(1(221223111f y f f y x xyf -+-+=222222)(y v v z y u u z z v y x u x y z ∂∂∂∂+∂∂∂∂+∂∂-∂∂=∂∂232242122211222f y x f y x f y x f x ++-=。
习 题 8-11.设有一个面薄板(不计其厚度),占有xOy 面上的闭区域D ,薄板上分布有面密度为(,)x y μμ=的电荷,且(,)x y μ在D 上连续,试用二重积分表达该板上的全部电荷Q .解 用一组曲线将D 分成n 个小闭区域i σ∆,其面积也记为(1,2,,)i i n σ∆= .任取一点(,)i i i ξησ∈∆,则i σ∆上分布的电量(,)i i i Q μξησ∆≈∆.通过求和、取极限,便得到该板上的全部电荷为1lim (,)(,)d ,ni i i i DQ x y λμξησμσ→==∆=∑⎰⎰其中1max{i i nλσ≤≤=∆的直径}.2. 设11D I σ=其中1{(,)|1,0,0}D x y x y x y =+≤≥≥;又22D I σ=其中222{(,)1,0,0}D x y x y x y =+≤≥≥.试利用二重积分的几何意义说明1I 与2I 之间的关系.解 由二重积分的几何意义知,1I 表示底为1D 、顶为曲面z =1Ω的体积;2I 表示底为2D 、顶为曲面z =2Ω的体积.由于当0,1x y ≤≤时,12()()S D S D <且12D D ⊂,位于1D 上方的曲面z 始终不低于曲面z =12I I <.3. 利用二重积分定义证明: (1) d ()DD σσσ=⎰⎰其中为的面积;(2) (,)d (,)d ()DDkf x y k f x y k σσ=⎰⎰⎰⎰其中为常数;(3)12(,)d (,)d (,)d ,DD D f x y f x y f x y σσσ=+⎰⎰⎰⎰⎰⎰其中12D D D= ,1D 、2D 为两个无公共内点的闭区域.证 (1) 由于被积函数(,)1f x y ≡,故由二重积分定义得11d lim (,)lim lim .nniiii i i Df λλλσξησσσσ→→→===∆=∆==∑∑⎰⎰(2) 011(,)d lim (,)lim (,)(,)d .nni i i i i i i i DDkf x y kf k f k f x y λλσξησξησσ→→===∆=∆=∑∑⎰⎰⎰⎰(3) 因为函数(,)f x y 在闭区域D 上可积,故不论把D 怎样分割,积分和的极限总是不变的,因此在分割D 时,可以使1D 和2D 的公共边界永远是一条分割线。
高等数学课后习题及参考答案(第八章)习题8-11. 判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所成的点集(称为导集)和边界. (1){(x , y )|x ≠0, y ≠0};解 开集, 无界集, 导集为R 2, 边界为 {(x , y )|x =0或y =0}. (2){(x , y )|1<x 2+y 2≤4};解 既非开集, 又非闭集, 有界集, 导集为 {(x , y )|1≤x 2+y 2≤4}, 边界为 {(x , y )|x 2+y 2=1或x 2+y 2=4}. (3){(x , y )|y >x 2}; 解 开集, 区域, 无界集, 导集为 {(x , y )| y ≥x 2}, 边界为 {(x , y )| y =x 2}.(4){(x , y )|x 2+(y -1)2≥1}⋂{(x , y )|x 2+(y -2)2≤4}. 解 闭集, 有界集, 导集与集合本身相同, 边界为 {(x , y )|x 2+(y -1)2=1}⋃{(x , y )|x 2+(y -2)2=4}.2. 已知函数yx xy y x y x f tan ),(22-+=, 试求f (tx , ty ).解 )(tan )()()()(),(22ty tx ty tx ty tx ty tx f ⋅⋅-+=),()tan (2222y x f t y x xy y x t =-+=.3. 试证函数F (x , y )=ln x ⋅ln y 满足关系式:F (xy , uv )=F (x , u )+F (x , v )+F (y , u )+F (y , v ).证明 F (xy , uv )=ln((x , y )⋅ln(uv )=(ln x +ln y )(ln u +ln v )=ln x ⋅ln u +ln x ⋅ln v +ln y ⋅ln u +ln y ⋅ln v =F (x , u )+F (x , v )+F (y , u )+F (y , v ). 4. 已知函数f (u , v , w )=u w +w u +v , 试求f (x +y , x -y , xy ). 解 f (x +y , x -y , xy )=(x +y )xy +(xy )(x +y )+(x -y )=(x +y )xy +(xy )2x .5. 求下列各函数的定义域: (1)z =ln(y 2-2x +1); 解 要使函数有意义, 必须 y 2-2x +1>0, 故函数的定义域为D ={(x , y )|y 2-2x +1>0}. (2)y x y x z -++=11;解 要使函数有意义, 必须 x +y >0, x -y >0, 故函数的定义域为D ={(x , y )|x +y >0, x -y >0}.(3)y x z -=;解 要使函数有意义, 必须 y ≥0,0≥-y x 即y x ≥, 于是有 x ≥0且x 2≥y , 故函数定义域为D ={(x , y )| x ≥0, y ≥0, x 2≥y }. (4)221)ln(yx x x y z --+-=; 解 要使函数有意义, 必须 y -x >0, x ≥0, 1-x 2-y 2>0, 故函数的定义域为D ={(x , y )| y -x >0, x ≥0, x 2+y 2<1}.(5)222222221r z y x z y x R u -+++---=(R >r >0); 解 要使函数有意义, 必须R 2-x 2-y 2-z 2≥0且x 2+y 2+z 2-r 2>0, 故函数的定义域为D ={(x , y , z )| r 2<x 2+y 2+z 2≤R 2}. (6)22arccos y x z u +=.解 要使函数有意义, 必须 x 2+y 2≠0, 且1||22≤+y x z 即z 2≤x 2+y 2, 故函数定义域为D ={(x , y , z )|z 2≤x 2+y 2, x 2+y 2≠0}.6. 求下列各极限: (1)22)1,0(),(1lim y x xyy x +-→;解110011lim22)1,0(),(=+-=+-→y x xy y x .(2)22)0,1(),()ln(lim yx e x y y x ++→; 解 2ln 01)1ln()ln(lim 22022)0,1(),(=++=++→e y x e x y yx . (3)xyxy y x 42lim )0,0(),(+-→; 解xy xy y x 42lim)0,0(),(+-→)42()42)(42(lim )0,0(),(+++++-=→xy xy xy xy y x 41)42(1lim )0,0(),(-=++-=→xy y x .(4)11lim )0,0(),(-+→xy xyy x ;解11lim)0,0(),(-+→xy xyy x )11)(11()11(lim)0,0(),(-+++++=→xy xy xy xy y x 2)11lim )11(lim )0,0(),()0,0(),(=++=++=→→xy xyxy xy y x y x . (5)yxy y x )sin(lim)0,2(),(→;解 y xy y x )sin(lim )0,2(),(→221sin lim )0,2(),(=⋅=⋅=→x xy xyy x .(6)22)()cos(1lim 2222)0,0(),(yx y x e y x y x ++-→. 解 2222)()(21lim )()cos(1lim 22222)0,0(),(2222)0,0(),(yx y x y x y x e y x y x e y x y x ++=++-→→ 0lim 212222)0,0(),(=+=→y x y x e y x (用等价无穷小代换). 7. 证明下列极限不存在: (1)yx yx y x -+→)0,0(),(lim;证明 如果动点p (x , y )沿y =0趋向(0, 0), 则1lim lim00 )0,0(),(==-+→=→x x y x yx x y y x ;如果动点p (x , y )沿x =0趋向(0, 0), 则1lim lim00 )0,0(),(-=-=-+→=→y yy x y x y x y x .因此, 极限yx yx y x -+→)0,0(),(lim不存在.(2)22222)0,0(),()(lim y x y x y x y x -+→. 证明 如果动点p (x , y )沿y =x 趋于(0, 0), 则1lim )(lim 44022222 )0,0(),(==-+→=→x x y x y x y x x xy y x ;如果动点p (x , y )沿y =2x 趋向(0, 0), 则044lim )(lim 2440222222 )0,0(),(=+=-+→=→x x x y x y x y x x xy y x .因此, 极限22222)0,0(),()(lim y x y x y x y x -+→不存在.8. 函数xy xy z 2222-+=在何处间断?解 因为当y 2-2x =0时, 函数无意义, 所以在y 2 -2x =0处, 函数xy x y z 2222-+=间断.9. 证明0lim 22)0,0(),(=+→yx xyy x . 证明 因为22||||2222222222y x yx y x y x xy y x xy +=++≤+=+,所以 02lim ||lim 022)0,0(),(22)0,0(),(=+≤+≤→→y x y x xyy x y x .因此 0lim22)0,0(),(=+→yx xyy x . 方法二:证明 因为2||22y x xy +≤, 故22||22222222y x y x y x y x xy +=++=+. 对于任意给定的ε>0, 取δ=2ε, 当δ<+<220y x 时恒有εδ=<+≤-+22|0|2222y x y x xy,所以 0lim22)0,0(),(=+→yx xyy x .10. 设F (x , y )=f (x ), f (x )在x 0处连续, 证明: 对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.证明 由题设知, f (x )在x 0处连续, 故对于任意给定的ε>0, 取δ>0, 当|x -x 0|<δ时, 有|f (x )-f (x 0)|<ε.作(x 0, y 0)的邻域U ((x 0, y 0), δ), 显然当(x , y )∈U ((x 0, y 0), δ)时, |x -x 0|<δ, 从而|F (x , y )-F (x 0, y 0)|=|f (x )-f (x 0)|<ε, 所以F (x , y )在点(x 0, y 0)处连续.又因为y 0是任意的, 所以对任意y 0∈R , F (x , y )在(x 0, y 0)处连续.习题8-21. 求下列函数的偏导数: (1) z =x 3y -y 3x ; 解 323y y x xz -=∂∂,233xy x y z -=∂∂.(2)uvvu s 22+=;解 21)(uv v u v v u u u s -=+∂∂=∂∂,21)(vu u u v v u v v s -=+∂∂=∂∂.(3))ln(xy z =;解 x y x y x x x z 1ln ln 121)ln ln (⋅+⋅=+∂∂=∂∂)ln(21xy x =. 同理 )ln(21xy y y z =∂∂.(4) z =sin(xy )+cos 2(xy );解 y xy xy y xy xz ⋅-⋅+⋅=∂∂)]sin([)cos(2)cos()]2sin()[cos(xy xy y -=根据对称性可知)]2sin()[cos(xy xy x yz -=∂∂.(5)yx z tan ln =;解 yx y y y x yx x z 2csc 21sec tan 12=⋅⋅=∂∂,yx y x y x y x yx y z 2csc 2sec tan 1222-=-⋅⋅=∂∂. (6) z =(1+xy )y ;解 121)1()1(--+=⋅+=∂∂y y xy y y xy y xz ,]1)1[ln()1ln()1ln(xyx y xy e e y y z xy y xy y +⋅++=∂∂=∂∂++]1)1[ln()1(xy xyxy xy y ++++=.(7)zy x u =;解 )1(-=∂∂z y x zy x u ,x x zz x x y u z yz y ln 11ln ⋅=⋅=∂∂,x x zy z y x x z u z yz y ln )(ln 22⋅-=-=∂∂.(8) u =arctan(x -y )z ;解 zz y x y x z x u 21)(1)(-+-=∂∂-, zz y x y x z y u 21)(1)(-+--=∂∂-, zz y x y x y x z u 2)(1)ln()(-+--=∂∂. 2. 设g l T π2=, 试证0=∂∂+∂∂g T g l T l .解 因为lg l T ⋅⋅=∂∂1π,gg g l g T 1)21(223⋅-=⋅-⋅=∂∂-ππ, 所以 0=⋅-⋅=∂∂+∂∂g l g l g T g l T l ππ. 3. 设)11(yx ez +-=, 求证z yz y x z x 222=∂∂+∂∂.解 因为2)11(1x ex z yx ⋅=∂∂+-, 2)11(1y e yz y x ⋅=∂∂+-, 所以 z eeyz y x z x yx yx 2)11()11(22=+=∂∂+∂∂+-+-4. 设y x y x y x f arcsin )1(),(-+=, 求)1 ,(x f x .解 因为x x x x f =-+=1arcsin )11()1 ,(,所以 1)1 ,()1 ,(==x f dx d x f x .5. 曲线⎪⎩⎪⎨⎧=+=4422y y x z 在点(2, 4, 5)处的切线与正向x 轴所成的倾角是多少? 解 因为242x x x z ==∂∂,αtan 1)5,4,2(==∂∂xz ,故 4πα=.6. 求下列函数的22x z ∂∂, 22y z ∂∂, yx z ∂∂∂2. (1) z =x 4+y 4-4x 2y 2;解 2384xy x xz -=∂∂, 2222812y x x z -=∂∂; y x y yz 2384-=∂∂, 2222812x y y z -=∂∂;xy y x y yy x z 16)84(232-=-∂∂=∂∂∂. (2)xyz arctan =;解 22222)(11y x y x y xy x z +-=-⋅+=∂∂,22222)(2y x xy x z +=∂∂; 2222)1(11y x x x xy yz +=⋅+=∂∂, 22222)(2y x xy y z +-=∂∂;22222222222222)()(2)()(y x x y y x y y x y x y y y x z +-=+-+-=+-∂∂=∂∂∂. (3) z =y x .解 y y xz xln =∂∂, y y x z x 222ln =∂∂; 1-=∂∂x xy yz , 222)1(--=∂∂x y x x y z ;)1ln (1ln )ln (112+=⋅+=∂∂=∂∂∂--y x y yy y xy y y y y x z x x x x . 7. 设f (x , y , z )=xy 2+yz 2+zx 2, 求f xx (0, 0, 1), f xz (1, 0, 2), f yz (0, -1, 0)及f zzx (2, 0, 1). 解 因为f x =y 2+2xz , f xx =2z , f xz =2x , f y =2xy +z 2, f yz =2z ,f z =2yz +x 2, f zz =2y , f zzx =0, 所以 f xx (0, 0, 1)=2, f xz (1, 0, 2)=2, f yz (0, -1, 0)=0, f zzx (2, 0, 1)=0.8. 设z =x ln(xy ), 求y x z ∂∂∂23及23y x z ∂∂∂. 解 1)ln()ln(+=⋅+=∂∂xy xyyx xy x z ,x xy y x z 122==∂∂, 023=∂∂∂y x z ,y xy x y x z 12==∂∂∂, 2231y y x z -=∂∂∂. 9. 验证:(1)nx e y tkn sin 2-=满足22xy k t y ∂∂=∂∂;证明 因为nx e kn kn nx e t y t kn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx ne x y tkn cos 2-=∂∂, nx e n x y t kn sin 2222--=∂∂, nx e kn xy k t kn sin 2222--=∂∂,所以 22xyk t y ∂∂=∂∂.(2)222z y x r ++=满足rz r y r x r 2222222=∂∂+∂∂+∂∂. 证明 r x z y x x x r =++=∂∂222, 322222r x r r x r x r xr -=∂∂-=∂∂, 由对称性知32222ry r y r -=∂∂, 32222r z r z r -=∂∂,因此 322322322222222rz r r y r r x r z r y r x r -+-+-=∂∂+∂∂+∂∂ rr r r r z y x r 23)(332232222=-=++-=. 习题8-31. 求下列函数的全微分: (1)yx xy z +=;解 dy y z dx x z dz ∂∂+∂∂=dy y x x dx y y )()1(2-++=.(2)xy e z =;解 xdy e x dx e x y dy y z dx x z dz y x y 12+-=∂∂+∂∂=.(3) 22yx y z +=;解 因为2/3222322)()(21y x xy y x y x z +-=+-=∂∂-, 2/3222222222)(y x x y x y x yy y x y z +=++⋅-+=∂∂, 所以 dy y x x dx y x xy dz 2/32222/322)()(+++-=)()(2/322xdy ydx y x x -+-=.(4)u =x yz . 解 因为1-⋅=∂∂yz x yz x u , x zx yu yz ln =∂∂, x yx z u yz ln =∂∂,所以 xdz yx xdy zx dx yzx du yz yz yz ln ln 1++=-.2. 求函数z =ln(1+x 2+y 2)当x =1, y =2时的全微分. 解 因为2212y x x x z ++=∂∂, 2212y x y y z ++=∂∂, 3121=∂∂==y x xz, 3221=∂∂==y x y z , 所以 dy dx dz y x 323121⋅+===.3. 求函数xyz =当x =2, y =1, ∆x =0.1, ∆y =-0.2时的全增量和全微分. 解 因为xy x x y y z -∆+∆+=∆, y x x x ydz ∆+∆-=12,所以, 当x =2, y =1, ∆x =0.1, ∆y =-0.2时,119.0211.02)2.0(1-=-+-+=∆z , 125.0)2.0(211.041-=-⨯+⨯-=dz .4. 求函数z =e xy 当x =1, y =1, ∆x =0.15, ∆y =0.1时的全微分. 解 因为y xe x ye y yz x x z dz xy xy ∆+∆=∆∂∂+∆∂∂=所以, 当x =1, y =1, ∆x =0.15, ∆y =0.1时, e e e dz 25.01.015.0=⋅+⋅=.*5. 计算33)97.1()102(+的近似值. 解 设33y x z +=, 由于y yz x x z y x y y x x ∆∂∂+∆∂∂++≈∆++∆+3333)()(332233233y x y y x x y x +∆+∆++=, 所以取x =1, y =2, ∆x =0.02, ∆y =-0.03可得95.2212)03.0(2302.0321)97.1()02.1(32333=+-⋅⋅+⋅++≈+. *6. 计算(1.97)1.05的近似值(ln2=0.693). 解 设z =x y , 由于y yz x x z x x x y y y ∆∂∂+∆∂∂+≈∆+∆+)(y x x x yx x y y y ∆+∆+=-ln 1,所以取x =2, y =1, ∆x =-0.03, ∆y =0.05可得(1.97)1.05≈2-0.03+2ln2⋅0.05+1.97+0.0693 ≈2.093.*7. 已知边长为x =6m 与y =8m 的矩形, 如果x 边增加5cm 而y 边减少10cm ,问这个矩形的对角线的近似变化怎样?解 矩形的对角线为22y x z +=,)(122y y x x yx y dy dz x dx dz dz z ∆+∆+=∆+∆=≈∆,当x =6, y =8, ∆x =0.05, ∆y =-0.1时,05.0)1.0805.06(86122-=⋅-⋅+≈∆z .这个矩形的对角线大约减少5cm .*8. 设有一无盖圆柱形容器, 容器的壁与底的厚度均为0.1cm , 内高为20cm ,内半径为4厘米, 求容器外壳体积的近似值.解 圆柱体的体积公式为V =πR 2h , ∆V ≈dV =2πRh ∆R +πR 2∆h , 当R =4, h =20, ∆R =∆h =0.1时,∆V ≈2⨯3.14⨯4⨯20⨯0.1+3.14⨯42⨯0.1≈55.3(cm 3), 这个容器外壳的体积大约是55.3cm 3.*9. 设有直角三角形, 测得其两腰的长分别为7±0.1cm 和24±0.1cm , 试求利用上述二值来计算斜边长度时的绝对误差. 解 设两直角边的长度分别为x 和y , 则斜边的长度为22y x z +=.||||||||||||y y z x x z dz z ∆⋅∂∂+∆⋅∂∂≤≈∆|)|||(122y y x x y x ∆+∆+=.令x =7, y =24, |∆x |≤0.1, |∆y |≤0.1, 则得斜边长度z 的绝对误差约为124.0)1.0241.07(247122=⋅+⋅+=z δcm .*10. 测得一块三角形土地的两边长分别为63±0.1m 和78±0.1m ,这两边的夹角为60︒±1︒, 试求三角形面积的近似值, 并求其绝对误差和相对误差.解 设三角形的两边长为x 和y , 它们的夹角z , 为则三角形面积为z xy s sin 21=.zdz xy zdy x zdx y dS cos 21sin 21sin 21++=||cos 21||sin 21||sin 21||||dz z xy dy z x dx z y dS S ++≤≈∆.令x =63, y =78, 3π=z , |dx |=0.1, |dy |=0.1, 180π=dz , 则55.2718021278631.0232631.023278=⨯⨯⨯+⨯⨯+⨯⨯≈πδs ,82.21273sin 786321=⋅⋅⋅=πS ,%29.182.212755.27==S s δ,所以三角形面积的近似值为2127.82m 2, 绝对误差为27.55m 2, 相对误差为1.29%.*11. 利用全微分证明: 两数之和的绝对误差等于它们各自的绝对误差之和.证明 设u =x +y , 则||||||||||||y x y x y yu x x u du u ∆+∆≤∆+∆=∆∂∂+∆∂∂=≈∆.所以两数之和的绝对误差|∆u |等于它们各自的绝对误差|∆x |与|∆y |的和.*12. 利用全微分证明: 乘积的相对误差等于各因子的相对误差之和; 商的相对误差等于被除数及除数的相对误差之和. 证明 设u =xy , y x v =, 则∆u ≈du =ydx +xdy ,2yxdyydx dv v -=≈∆, 由此可得相对误差;||||||||y dy x dx xy xdy ydx u du u u +=+=≈∆||||||||yyx x y dy x dx ∆+∆=+≤;||||||||2y dy x dx yxy xdy ydx v dv v v -=⋅-==∆||||||||y yx x y dy x dx ∆+∆=+≤.习题8-41. 设z =u 2-v 2, 而u =x +y , v =x -y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅1=2(u +v )=4x ,y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂=2u ⋅1+2v ⋅(-1)=2(u -v )=4y .2. 设z =u 2ln v , 而y x u =, v =3x -2y , 求x z ∂∂, y z ∂∂.解 xv v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂31ln 22⋅+⋅=v u y v u 222)23(3)23ln(2y y x x y x y x -+-=, yv v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂)2()(ln 222-+-⋅=v u y x v u 2232)23(2)23ln(2y y x x y x y x ----=. 3. 设z =e x -2y , 而x =sin t , y =t 3, 求dtdz .解 dt dyy z dt dx x z dt dz ⋅∂∂+⋅∂∂=2223)2(cos t e t e y x y x ⋅-⋅+=--)6(cos )6(cos 22sin 223t t e t t e t t y x -=-=--.4. 设z =arcsin(x - y ), 而x +3t , y =4t 3, 求dtdz .解 dt dy y z dt dx x z dt dz ⋅∂∂+⋅∂∂=22212)(113)(11t y x y x ⋅---+⋅--= 232)43(1)41(3t t t ---=. 5. 设z =arctan(xy ), 而y =e x , 求dxdz .解 dx dy y z x z dx dz ⋅∂∂+∂∂=x xxe x x e e y x x y x y 2222221)1(11++=⋅+++=.6. 设1)(2+-=a z y e u ax , 而y =a sin x , z =cos x , 求dxdu .解 dxdz dz u dx dyy u x u dx du ⋅∂+⋅∂∂+∂∂=)sin (1cos 11)(222x a e x a a e a z y ae ax ax ax -⋅+-⋅+++-= )sin cos cos sin (122x x a x a x a a e ax ++-+=x e ax sin =. 7. 设yx z arctan =, 而x =u +v , y =u -v , 验证22v u v uv z u z +-=∂∂+∂∂. 证明)()(vy y z v x x z u y y z u x x z v z u z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂+∂∂)()(111)(11222y x yx y y x -⋅++⋅+=)1()()(111)(11222-⋅-⋅++⋅++y x yx y y x22222v u v u y x y +-=+=. 8. 求下列函数的一阶偏导数(其中f 具有一阶连续偏导数): (1) u =f (x 2-y 2, e xy );解 将两个中间变量按顺序编为1, 2号, 2122212)()(f ye f x xe f x y x f x u xy xy '+'=∂∂⋅'+∂-∂⋅'=∂∂, 212)2212)((f xe f y y e f y y x f y u xy xy '+'-=∂∂⋅'+∂-∂⋅'=∂∂.(2)) ,(zyy x f u =;解1211)()(f yz y x f y x x f x u '=∂∂⋅'+∂∂⋅'=∂∂, )()(21z yy f y x y f y u ∂∂⋅'+∂∂'=∂∂2121f z f y x '+'-=,)()(21z y z f z x z f z u ∂∂⋅'+∂∂'=∂∂22f zy'⋅-=.(3) u =f (x , xy , xyz ).解 yz f y f f x u ⋅'+⋅'+⋅'=∂∂3211321f yz f y f '+'+'=,3232f xz f x xz f x f y u '+'=⋅'+⋅'=∂∂,33f xy xy f zu '=⋅'=∂∂.9. 设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z yz y x z x +=∂∂+∂∂⋅. 证明 y z y x z x ∂∂⋅+∂∂⋅])([])()([y u u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .10. 设)(22y x f yz -=, 其中f (u )为可导函数, 验证211y z y z y x z x =∂∂+∂∂.证明 ()()u f f xy u f x f y x z 2222'-=⋅'⋅-=∂∂, ()()u f f y u f u f y f y u f y z 2222)(1)2()('-+=-⋅'⋅-=∂∂, 所以 )(11221122u f y u f f y u f f y y z y x z x ⋅+'+'-=∂∂⋅+∂∂⋅211yz zy y =⋅. 11. 设z =f (x 2+y 2), 其中f 具有二阶导数, 求22x z ∂∂, y x z ∂∂∂2, 22yz ∂∂. 解 令u =x 2+y 2, 则z =f (u ), f x xu u f x z '=∂∂'=∂∂2)(,f y yu u f y z '=∂∂'=∂∂2)(,f x f x u f x f x z ''+'=∂∂⋅''+'=∂∂2224222,f xy yu f x y x z ''=∂∂⋅''=∂∂∂422, f y f yu f y f y z ''+'=∂∂⋅''+'=∂∂422222. 12. 求下列函数的22x z ∂∂,y x z ∂∂∂2,22y z ∂∂(其中f 具有二阶连续偏导数):(1) z =f (xy , y );解 令u =xy , v =y , 则z =f (u , v ).ufy v f y u f x v v f x u u f x z ∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂0,vfu f x v f x u f y v v f y u u f y z ∂∂+∂∂=⋅∂∂+⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=∂∂1.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和vf ∂∂是以u 和v 为中间变量的x 和y 的函数. )()()(22uf x y u f y x x z x x z ∂∂∂∂=∂∂∂∂=∂∂∂∂=∂∂222222222)0()(u f y v u f y u f y x v v u f x u u f y ∂∂=⋅∂∂∂+⋅∂∂=∂∂⋅∂∂∂+∂∂⋅∂∂=,)(1)()(2uf y y u f u f y y x z y y x z ∂∂∂∂+∂∂⋅=∂∂∂∂=∂∂∂∂=∂∂∂ )(222yvv u f y u u f y u f ∂∂⋅∂∂∂+∂∂⋅∂∂+∂∂=v u fy u f xy u f v u f x u f y u f ∂∂∂+∂∂+∂∂=⋅∂∂∂+⋅∂∂+∂∂=222222)1(,)()()()(22vf y u f y x v f u f x y y z y y z∂∂∂∂+∂∂∂∂=∂∂+∂∂∂∂=∂∂∂∂=∂∂ y vv f y u u v f y v v u f y u u f x ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂=222222)(1)1(222222⋅∂∂+⋅∂∂∂+⋅∂∂∂+⋅∂∂=v fx u v f v u f x u f x 2222222vf v u f x u f x ∂∂+∂∂∂+∂∂=. (2)) ,(yx x f z =;解 令u =x ,yx v =, 则z =f (u , v ).v fy u f x v v f dx du u f x z ∂∂⋅+∂∂=∂∂⋅∂∂+⋅∂∂=∂∂1,vfy x dy dv v f y z ∂∂⋅-=⋅∂∂=∂∂2.因为f (u , v )是u 和v 的函数, 所以u f∂∂和vf ∂∂也是u 和v 的函数, 从而u f∂∂和v f ∂∂是以u 和v 为中间变量的x 和y 的函数. )(1)()1()(22vf x y u f x v f y u f x x z x x z ∂∂∂∂⋅+∂∂∂∂=∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂ )(1)(222222xvv f dx du u v f y x v v u f dx du u f ∂∂⋅∂∂+⋅∂∂∂+∂∂⋅∂∂∂+⋅∂∂=22222212vfy v u f y u f ∂∂⋅+∂∂∂⋅+∂∂=,)1()(2vf y u f y x z y y x z ∂∂⋅+∂∂∂∂=∂∂∂∂=∂∂∂ )(1)1()(vfy y v f y dy d u f y ∂∂∂∂⋅+∂∂⋅+∂∂∂∂=y vv f y v f y y v v u f ∂∂⋅∂∂⋅+∂∂⋅-∂∂⋅∂∂∂=222112232221v f y x v f y v u f y x ∂∂⋅-∂∂⋅-∂∂∂⋅-= )()()(2222vf y y x v f y x y y z y y z ∂∂∂∂⋅-∂∂⋅-∂∂=∂∂∂∂=∂∂ 22423222322v f y x v f y x y v v f y x v f y x ∂∂⋅+∂∂⋅=∂∂⋅∂∂⋅-∂∂⋅=. (3) z =f (xy 2, x 2y );解 z x =f 1'⋅y 2+f 2'⋅2xy =y 2f 1'+2xyf 2',z y=f1'⋅2xy+f2'⋅x2=2xyf1'+x2f2';z xx=y2[f11''⋅y2+f12''⋅2xy]+2yf2''+2xy[f21''⋅y2+f22''⋅2xy]=y4f11''+2xy3f12''+2yf2''+2xy3f21''+4x2y2 f22''=y4f11''+4xy3f12''+2yf2''+4x2y2 f22'',z xy=2y f1'+y2[f11''⋅2xy+f12''⋅x2]+2xf2'+2xy[f21''⋅2xy+f22''⋅x2]=2y f1'+2xy3f11''+x2y2f12''+2xf2'+4x2y2f21''+2x3yf22''=2y f1'+2xy3f11''+5x2y2f12''+2xf2'+2x3yf22'',z yy=2xf1'+2xy[f11''⋅2xy+f12''⋅x2]+x2[f21''⋅2xy+f22''⋅x2]=2xf1'+4x2y2f11''+2x3y f12''+2x3yf21''+x4f22''=2xf1'+4x2y2f11''+4x3y f12''+x4f22''.(4) z=f(sin x, cos y,e x+y).解z x=f1'⋅cos x+ f3'⋅e x+y=cos x f1'+e x+y f3',z y=f2'⋅(-sin y)+ f3'⋅e x+y=-sin y f2'+e x+y f3',z xx=-sin x f1'+cos x⋅(f11''⋅cos x+ f13''⋅e x+y)+e x+y f3'+e x+y(f31''⋅cos x+ f33''⋅e x+y)=-sin x f1'+cos2x f11''+e x+y cos x f13''+e x+y f3'+e x+y cos x f31''+e2(x+y) f33''=-sin x f1'+cos2x f11''+2e x+y cos x f13''+e x+y f3'+e2(x+y) f33'', z xy=cos x[f12''⋅(-sin y)+ f13''⋅e x+y]+e x+y f3'+e x+y [f32''⋅(-sin y)+ f33''⋅e x+y]=-sin y cos x f12''+e x+y cos x f13'+e x+y f3'-e x+y sin y f32'+e2(x+y)f33'=-sin y cos x f12''+e x+y cos x f13''+e x+y f3'-e x+y sin y f32''+e2(x+y)f33'',z yy=-cos y f2'-sin y[f22''⋅(-sin y)+ f23''⋅e x+y]+e x+y f3'+e x+y[f32''⋅(-sin y)+ f33''⋅e x+y]=-cos y f 2'+sin 2y f 22''-e x +y sin y f 23'' +e x +y f 3'-e x +y sin y f 32''+ f 33''⋅e 2(x +y )=-cos y f 2'+sin 2y f 22''-2e x +y sin y f 23''+e x +y f 3'+f 33''⋅e 2(x +y ). 13. 设u =f (x , y )的所有二阶偏导数连续, 而23t s x -=,23ts y +=, 证明2222)()()()(tu s u y u x u ∂∂+∂∂=∂∂+∂∂及22222222t u s u y u x u ∂∂+∂∂=∂∂+∂∂.证明 因为y u x u s yy u s x x u s u ∂∂⋅+∂∂⋅=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2321yu x u t yy u t x x u t u ∂∂⋅+∂∂⋅-=∂∂⋅∂∂+∂∂⋅∂∂=∂∂2123所以2222)2123()2321()()(y u x u y u x u t u s u ∂∂+∂∂-+∂∂+∂∂=∂∂+∂∂22)()(yu x u ∂∂+∂∂=.又因为)2321()(22yu x u s s u s s u∂∂⋅+∂∂⋅∂∂=∂∂∂∂=∂∂ )(23)(21222222s y y u s x x y u s y y x u s x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂= )2321(23)2321(21222222yu x y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂∂⋅+∂∂⋅=22222432341y u y x u x u ∂∂⋅+∂∂∂⋅+∂∂⋅=, )2123()(22yu x u t t u t t u ∂∂⋅+∂∂⋅-∂∂=∂∂∂∂=∂∂ )(21)(23222222t y y u t x x y u t y y x u t x x u ∂∂⋅∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂∂+∂∂⋅∂∂-= )2123(21)2123(23222222y u x y u y x u x u ∂∂⋅+∂∂∂⋅-+∂∂∂⋅+∂∂⋅--= 22222412343yu y x u x u ∂∂⋅+∂∂∂⋅-∂∂⋅=, 所以 22222222yu x u t u s u ∂∂+∂∂=∂∂+∂∂. 习题8-51. 设sin y +e x-xy 2=0, 求dxdy.解 令F (x , y )=sin y +e x -xy 2, 则F x =e x -y 2, F y =cos y -2xy , xy y e y xy y y e F F dx dy xy x 2cos 2cos 222--=---=-=. 2. 设xy y x arctan ln 22=+, 求dx dy.解 令xy y x y x F arctan ln ),(22-+=, 则22222222)()(11221y x y x x y xy y x x y x F x ++=-⋅+-+⋅+=, 22222221)(11221yx x y x xy y x y y x F y +-=⋅+-+⋅+=, y x y x F F dx dyy x -+=-=. 3. 设022=-++xyz z y x , 求x z ∂∂及y z ∂∂.解 令xyz z y x z y x F 22),,(-++=, 则 xyz yz F x -=1, xyzxz F y -=2, xyz xyF z -=1, xy xyz xyz yz F F x z z x --=-=∂∂, xy xyz xyz xz F F y z z y --=-=∂∂2. 4. 设y z z x ln =, 求x z ∂∂及y z ∂∂,解 令yz z x z y x F ln ),,(-=, 则 z F x 1=, y y z y z F y 1)(12=-⋅-=, 2211z z x y yz z x F z +-=⋅--=, 所以 z x z F F x z z x +=-=∂∂, )(2z x y z F F yz z y +=-=∂∂.5. 设2sin(x +2y -3z )=x +2y -3z , 证明1=∂∂+∂∂y z x z证明 设F (x , y , z )=2sin(x +2y -3z )-x -2y +3z , 则F x =2cos(x +2y -3z )-1, F y =2cos(x +2y -3z )⋅2-2=2F x ,F z =2cos(x +2y -3z )⋅(-3)+3=-3F x ,313=--=-=∂∂x x z x F F F F x z ,3232=--=-=∂∂x x z y F F F F y z , 于是 13231=+=--=∂∂+∂∂z z z x F FF F y z x z .6. 设x =x (y , z ), y =y (x , z ), z =z (x , y )都是由方程F (x , y , z )=0所确定的具有连续偏导数的函数, 证明1-=∂∂⋅∂∂⋅∂∂x z z yy x .解 因为x y F F y x -=∂∂, y z F F z y -=∂∂, zx F F x z -=∂∂, 所以 1)()()(-=-⋅-⋅-=∂∂⋅∂∂⋅∂∂zx y z x y F F F F F F x z z y y x . 7. 设ϕ(u , v )具有连续偏导数, 证明由方程ϕ(cx -az , cy -bz )=0 所确定的函数z =f (x , y )满足 c y z b x z a =∂∂+∂∂.证明 因为vu u v u u b a c b a c x z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂,vu vv u v b a c b a c y z ϕϕϕϕϕϕ+=⋅-⋅-⋅-=∂∂,所以 c b a c b b a c a y z b x z a vu v v u u =+++⋅=∂∂+∂∂ϕϕϕϕϕϕ.8. 设e z-xyz =0, 求22x z ∂∂. 解 设F (x , y , z )=e z -xyz , 则F x =-yz , F z =e z-xy , xye yz F F x z zz x -=-=∂∂, 222)()()()(xy e y x z e yz xy e x z y x z x x z z z z --∂∂--∂∂=∂∂∂∂=∂∂ 222)()(xy e xye yzyze xy ye z y zz z z ----+=32232)(22xy e e z y z xy ze y z zz ---=. 9. 设z 3-3xyz =a 3, 求yx z ∂∂∂2. 解 令F (x , y , z )=z 3-3xyz -a 3, 则 xy z yzxy z yz F F x z z x -=---=-=∂∂22333,xyz xz xy z xz F F y z z y -=---=-=∂∂22333, )()(22xyz yz y x z y y x z -∂∂=∂∂∂∂=∂∂∂ 222)()2())((xy z x yz z yz xy z y z y z --∂∂--∂∂+=22222)()2()()(xy z x xyz xz z yz xy z xy z xz yz -----⋅-+=322224)()2(xy z y x xyz z z ---=. 10. 求由下列方程组所确定的函数的导数或偏导数: (1)设⎩⎨⎧=+++=203222222z y x y x z , 求dx dy , dx dz ; 解 视y =y (x ), z =z (x ), 方程两边对x 求导得 ⎪⎩⎪⎨⎧=+++=064222dx dz z dx dy y x dx dy y x dx dz , 即⎪⎩⎪⎨⎧-=+-=-xdx dzz dxdy y x dx dz dx dy y 3222.解方程组得 )13(2)16(++-=∂∂z y z x x y , 13+=z x dx dz.(2)设⎩⎨⎧=++=++10222z y x z y x , 求dz dx ,dz dy ; 解 视x =x (z ), y =y (z ), 方程两边对z 求导得 ⎪⎩⎪⎨⎧=++=++022201z dz dy y dz dx x dz dy dz dx , 即⎪⎩⎪⎨⎧-=+-=+zdz dy y dzdxx dz dy dz dx 2221.解方程组得y x z y z x --=∂∂, yx xz z y --=∂∂.(3)设⎩⎨⎧-=+=),(),(2y v x u g v y v ux f u , 其中f , g 具有一阶连续偏导数, 求x u ∂∂,xv ∂∂; 解 视u =u (x , y ), v =v (x , y ), 方程两边对x 求偏导得⎪⎩⎪⎨⎧∂∂⋅'+-∂∂⋅'=∂∂∂∂⋅'+∂∂+⋅'=∂∂x v yv g x u g xv x vf x u x u f x u 21212)1()( , 即 ⎪⎩⎪⎨⎧'=∂∂⋅⋅-'+∂∂'''-=∂∂⋅'+∂∂-'121121)12()1(g x v g yv xu g f u x v f x u f x . 解之得1221221)12)(1()12(g f g yv f x g f g yv f u x u ''--'-'''--''-=∂∂, 1221111)12)(1()1(g f g yv f x f u f x g x v ''--'-'-'+''=∂∂.(4)设⎩⎨⎧-=+=vu e y v u e x u u cos sin , 求x u ∂∂, y u ∂∂, x v ∂∂, y v ∂∂. 解 视u =u (x , y ), v =v (x , y ), 方程两边微分得⎩⎨⎧+-=++=vdv u vdu du e dy vdv u vdu du e dx u u sin cos cos sin , 即 ⎩⎨⎧=+-=++dy vdv u du v e dx vdv u du v e u u sin )cos (cos )sin (, 从中解出du , dv 得dy v v e v dx v v e v du u u 1)cos (sin cos 1)cos (sin sin +--++-=, dy v v e u e v dx v v e u e v dv u u u u ]1)cos (sin [sin ]1)cos (sin [cos +-+++--=, 从而 1)cos (sin sin +-=∂∂v v e v x u u , 1)cos (sin cos +--=∂∂v v e v y u u , ]1)cos (sin [cos +--=∂∂v v e u e v x v u u , ]1)cos (sin [sin +-+=∂∂v v e u e v y v u u . 11. 设y =f (x , t ), 而t 是由方程F (x , y , t )=0所确定的x , y 的函数, 其中f , F 都具有一阶连续偏导数, 试证明:tFy F t f x F t f t F x f dx dy ∂∂+∂∂⋅∂∂∂∂⋅∂∂-∂∂⋅∂∂=. 证明 由方程组⎩⎨⎧==0),,(),(t y x F t x f y 可确定两个一元隐函数⎩⎨⎧==)()(x t t x y y , 方程两边对x 求导可得 ⎪⎩⎪⎨⎧=⋅∂∂+⋅∂∂+∂∂⋅∂∂+∂∂=0dxdt t F dx dy y F x F dx dt t f x f dx dy , 移项得 ⎪⎩⎪⎨⎧∂∂-=∂∂+⋅∂∂∂∂=⋅∂∂-x F dxdt t F dx dy y F x f dx dt t f dx dy ,在01≠∂∂⋅∂∂+∂∂=∂∂∂∂∂∂-=y F t f t F t F y F t fD 的条件下 yF t f t F x F t f t F x f t F x F t f x f D dx dy ∂∂⋅∂∂+∂∂∂∂⋅∂∂-∂∂⋅∂∂=∂∂∂∂-∂∂-∂∂⋅=1.习题8-61. 求曲线x =t -sin t , y =1-cos t , 2sin 4t z =在点)22 ,1 ,12 (-π处的切线及法平面方程.解 x '(t )=1-cos t , y '(t )=sin t , 2cos 2)(t t z ='. 因为点)22 ,1 ,12 (-π所对应的参数为2π=t , 故在点)22 ,1 ,12(-π处的切向量为)2 ,1 ,1(=T . 因此在点)22 ,1 ,12(-π处, 切线方程为 22211121-=-=-+z y x π, 法平面方程为0)22(2)1(1)12(1=-+-⋅++-⋅z y x π, 即422+=++πz y x .2. 求曲线t t x +=1, tt y +=1, z =t 2在对应于t =1的点处的切线及法平面方程.解 2)1(1)(t t x +=', 21)(t t y -=', z '(t )=2t . 在t =1所对应的点处, 切向量)2 ,1 ,41(-=T , t =1所对应的点为)1 ,2 ,21(, 所以在t =1所对应的点处, 切线方程为 21124121-=--=-z y x , 即8142121-=--=-z y x ; 法平面方程为0)1(2)2()21(41=-+---z y x , 即2x -8y +16z -1=0. 3. 求曲线y 2=2mx , z 2=m -x 在点(x 0, y 0, z 0)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 将方程y 2=2mx 和z 2=m -x 的两边对x 求导, 得m dx dy y 22=, 12-=dxdz z , 所以y m dx dy =, z dxdz 21-=. 曲线在点(x 0, y 0, z 0,)的切向量为)21,,1(00z y m -=T , 所求的切线方程为0000211z z z y m y y x x --=-=-, 法平面方程为0)(21)()(00000=---+-z z z y y y m x x . 4. 求曲线⎩⎨⎧=-+-=-++0453203222z y x x z y x 在点(1, 1, 1)处的切线及法平面方程.解 设曲线的参数方程的参数为x , 对x 求导得,⎪⎩⎪⎨⎧=+-=-++053203222dx dz dx dy dx dz z dx dy y x , 即⎪⎩⎪⎨⎧=-+-=+2533222dxdz dx dy x dx dz z dx dy y . 解此方程组得z y z x dx dy 61015410----=, zy y x dx dz 610946---+=. 因为169)1,1,1(=dx dy , 161)1,1,1(-=dx dz , 所以)161 ,169 ,1(=T . 所求切线方程为1611169111--=-=-z y x , 即1191161--=-=-z y x ; 法平面方程为0)1(161)1(169)1(=---+-z y x , 即16x +9y -z -24=0. 5. 求出曲线x =t , y =t 2, z =t 3上的点, 使在该点的切线平行于平面x +2y +z =4.解 已知平面的法线向量为n =(1, 2, 1).因为x '=1, y '=2t , z '=3t 2, 所以参数t 对应的点处的切向量为T =(1, 2t , 3t 2). 又因为切线与已知平面平行, 所以T ⋅n =0, 即1+4t +3t 2=0,解得t =-1, 31-=t . 于是所求点的坐标为(-1, 1, -1)和)271 ,91 ,31(--. 6. 求曲面e z -z +xy =3在点(2,1,0)处的切平面及法线方程. 解 令F (x , y , z )=e z -z +xy -3, 则n =(F x , F y , F z )|(2, 1, 0)=(y , x , e z -1)|(2, 1, 0)=(1, 2, 0),点(2,1, 0)处的切平面方程为1⋅(x -2)+2(y -1)+0⋅(z -0)=0, 即x +2y -4=0,法线方程为02112-=-=-z y x . 7. 求曲面ax 2+by 2+cz 2=1在点(x 0, y 0, z 0)处的切平面及法线方程.解 令F (x , y , z )=ax 2+by 2+cz 2-1, 则n =(F x , F y , F z )=(2ax , 2by , 2cz )=(ax , by , cz ).在点(x 0, y 0, z 0)处, 法向量为(ax 0, by 0, cz 0), 故切平面方程为 ax 0(x -x 0)+by 0(y -y 0)+cz 0(z -z 0)=0,即 202020000cz by ax z cz y by x ax ++=++,法线方程为00000cz z z by y y ax x x -=-=-.8. 求椭球面x 2+2y 2+z 2=1上平行于平面x -y +2z =0的切平面方程.解 设F (x , y , z )=x 2+2y 2+z 2-1, 则n =(F x , F y , F z )=(2x , 4y , 2z )=2(x , 2y , z ).已知切平面的法向量为(1, -1, 2). 因为已知平面与所求切平面平行, 所以2121z y x =-=, 即z x 21=, z y 41-=, 代入椭球面方程得1)4(2)2(222=+-+z z z ,解得1122±=z , 则1122±=x , 11221 =y . 所以切点坐标为)1122,11221,112(±± . 所求切平面方程为0)1122(2)11221()112(=±+-±z y x , 即 2112±=+-z y x . 9. 求旋转椭球面3x 2+y 2+z 2=16上点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦.解 x O y 面的法向为n 1=(0, 0, 1).令F (x , y , z )=3x 2+y 2 +z 2-16, 则点(-1, -2, 3)处的法向量为 n 2=(F x , F y , F z )|(-1, -2, 3)=(6x , 2y , 2z )|(-1, -2, 3)=(-6, -4, 6). 点(-1, -2, 3)处的切平面与xOy 面的夹角的余弦为22364616||||cos 2222121=++⋅=⋅⋅=n n n n θ.10. 试证曲面a z y x =++(a >0)上任何点处的切平面在各坐标轴上的截距之和等于a .证明 设a z y x z y x F -++=),,(, 则)21,21,21(zy x =n . 在曲面上任取一点M (x 0, y 0, z 0), 则在点M 处的切平面方程为0)(1)(1)(1000000=-+-+-z z z y y y x x x , 即 a z y x z z y y x x =++=++000000. 化为截距式, 得1000=++az z ay y ax x , 所以截距之和为a z y x a az ay ax =++=++)(000000.习题8-71. 求函数z =x 2+y 2在点(1, 2)处沿从点(1, 2)到点)32 ,2(+的方向的方向导数.解 因为从点(1, 2)到点)32 ,2(+的向量为)3 ,1(=l , 故 )cos ,(cos )23 ,21(||βα===l l e l . 又因为22)2,1()2,1(==∂∂x x z , 42)2,1()2,1(==∂∂y y z , 故所求方向导数为321234212cos cos +=⋅+⋅=∂∂+∂∂=∂∂βαy z x z l z . 2. 求函数z =ln(x +y )在抛物线y 2=4x 上点(1, 2)处, 沿这抛物线在该点处偏向x 轴正向的切线方向的方向导数.解 方程y 2=4x 两边对x 求导得2yy '=4, 解得y y 2='.。
⾼等数学典型习题及参考答案第⼋章典型习题⼀、填空题、选择题1、点)3,1,4(M -到y 轴的距离是2、平⾏于向量}1,2,1{a -=?的单位向量为 3、().0431,2,0垂直的直线为且与平⾯过点=--+-z y x4、.xoz y z y x :⾯上的投影柱⾯⽅程是在曲线??==++Γ2102225、()==-=+=+=-δλδλ则平⾏与设直线,z y x :l z y x :l 1111212121()23A ()12B ()32C ()21D6、已知k 2j i 2a +-=,k 5j 4i 3b ?-+=,则与b a 3??-平⾏的单位向量为 ( )(A )}11,7,3{(B )}11,7,3{- (C )}11,7,3{1291-±(D )}11,7,3{1791-± 7、曲线==++2z 9z y x 222在xoy 平⾯上投影曲线的⽅程为()(A )==+2z 5y x 22 (B )==++0z 9z y x 222(C )==+0z 5y x 22 (D )5y x 22=+8、设平⾯的⼀般式⽅程为0A =+++D Cz By x ,当0==D A 时,该平⾯必( ) (A)平⾏于y 轴 (B) 垂直于z 轴 (C) 垂直于y 轴 (D) 通过x 轴 9、设空间三直线的⽅程分别为251214:1+=+=+z y x L ,67313:2+=+=z y x L ,41312:3-=+=z y x L 则必有 ( ) (A) 31//L L (B) 21L L ⊥ (C) 32L L ⊥ (D) 21//L L10、设平⾯的⼀般式⽅程为0=+++D Cz By Ax ,当0==B A 时,该平⾯必 ( ) (A) 垂直于x 轴 (B) 垂直于y 轴 (C) 垂直于xoy ⾯(D) 平⾏于xoy ⾯11、⽅程05z 3y 3x 222=-+所表⽰的曲⾯是()(A )椭圆抛物⾯(B )椭球⾯(C )旋转曲⾯(D )单叶双曲⾯⼆、解答题1、设⼀平⾯垂直于平⾯0=z ,并通过从点)1,1,1(-P 到直线??=+-=010z y x 的垂线,求该平⾯⽅程。
高等数学第八章教材答案[注意:本文适用于自主学习及交流,而非代表课堂考试答案。
在学习过程中,应先自行尝试解答问题,再对比与本文答案的异同,以强化掌握知识的能力。
]第一节:导数与微分1. (1)导数定义为函数在某一点的瞬时变化率,可用以下公式计算:f'(x) = lim(h→0) [f(x+h) - f(x)] / h(2)若函数f(x)在区间[a,b]上连续且在(a,b)内可导,则在(a,b)内,存在一点c使得f'(c) = [f(b) - f(a)] / (b - a)2. 利用导数的四则运算法则、链式法则等,可以求解各种类型的题目,如函数的导数、隐函数求导、参数方程求导等。
3. 微分是导数的几何解释,微分形式为df = f'(x)dx。
微分可用于近似计算函数值的变化,例如:f(x+Δx) ≈ f(x) + f'(x)Δx第二节:不定积分与定积分1. 不定积分用符号∫表示,表示求一个函数的原函数。
常用的不定积分公式有:① ∫1/x dx = ln|x| + C② ∫x^n dx = (x^(n+1))/(n+1) + C (n≠-1)2. 定积分表示曲线与x轴之间的面积,用符号∫[a,b]表示。
计算定积分可采用以下方法:①几何法:根据几何图形的面积计算原则,求出曲线与x轴之间的面积。
②换元法:根据换元积分法则,将被积函数的自变量进行适当的变量代换。
③分部积分法:根据积分的乘积法则,将被积函数进行适当的乘法分解。
3. 牛顿-莱布尼茨公式是计算定积分的重要工具,公式表达为:∫[a,b] f(x) dx = F(b) - F(a)其中,F(x)为f(x)的一个原函数。
第三节:定积分的应用1. 定积分可用于计算曲线与x轴之间的面积、曲线的弧长、旋转体的体积、质量等物理量。
2. 面积计算:利用定积分求得曲线与x轴之间的面积,可以通过以下公式求解:S = ∫[a,b] |f(x)| dx3. 弧长计算:弧长公式为:L = ∫[a,b] √[1 + (dy/dx)^2] dx4. 旋转体体积计算:将曲线绕x轴或y轴旋转一周形成的空间曲面,其体积可通过以下公式求解:V = ∫[a,b] πy^2 dx 或V = ∫[a,b] πx^2 dy第四节:多元函数微积分基础1. 多元函数的偏导数可以理解为函数关于某个自变量的导数。
高数第八章考试题及答案一、选择题(每题5分,共20分)1. 设函数f(x)=x^3-3x+1,求f'(x)。
A. 3x^2-3B. x^3-3C. 3x^2-3xD. 3x^2+3x答案:A2. 求极限lim(x→0) (sin(x)/x)。
A. 0B. 1C. 2D. ∞答案:B3. 设函数f(x)=ln(x),求f''(x)。
A. 1/xB. 1/x^2C. 1/x^3D. 1/x^4答案:B4. 求定积分∫(0到1) x^2 dx。
A. 1/3B. 2/3C. 1/2D. 1答案:B二、填空题(每题5分,共20分)1. 设函数f(x)=x^2-4x+4,求f(2)的值为______。
答案:02. 设函数f(x)=x^3-6x^2+11x-6,求f'(x)的值为______。
答案:3x^2-12x+113. 设函数f(x)=e^x,求f'(x)的值为______。
答案:e^x4. 设函数f(x)=ln(x),求f''(x)的值为______。
答案:1/x^2三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。
答案:首先求导数f'(x)=3x^2-12x+11。
令f'(x)=0,解得x=1或x=11/3。
检查二阶导数f''(x)=6x-12,发现f''(1)<0,f''(11/3)>0,所以x=1是极大值点,x=11/3是极小值点。
2. 求函数f(x)=x^2-4x+4的单调区间。
答案:首先求导数f'(x)=2x-4。
令f'(x)>0,解得x>2;令f'(x)<0,解得x<2。
所以,函数在(-∞, 2)区间内递减,在(2, +∞)区间内递增。
3. 求函数f(x)=e^x的极值点。
习题8—1(A)1.判断下列论述是否正确,并说明理由:(1)一个点集的内点一定属于,其外点一定不属于,其边界点一定不属于,其聚点一定属于;(2)开集的所有点都是其内点,开集也称为开区域;(3)一个有界集一定能包含在以坐标原点为圆心,适当长的线段为半径的圆内;(4)考查二元函数的定义域时,应从两方面去考虑:用解析式表达的函数要考虑使该解析式有意义的所对应的点的集合(自然定义域).对有实际意义的函数还应该从自然定义域中找出使实际问题有意义的点集;(5)当沿某一条曲线趋于时,函数的极限存在,并不能说明极限存在,但如果当沿某一条使函数有定义的曲线趋于时,函数的极限不存在,则一定不存在;(6)为说明极限不存在,通常也采取用当沿两条不同曲线趋于时,函数的极限不相等的方法;(7)如果函数在点连续,点必须是函数定义域的内点;(8)若是二元函数的间断点,那么一定不存在.答:(1)前两者都正确,这是根据内点、外点的定义;后两者都不正确,无论是边界点还是聚点它们都可以是的点,也可以是非的点,如当是闭集是,的边界点是的点当是开集时的边界点就不是的点;又如点是集合的聚点,但是它不是的点.(2)前者正确,这是有开集定义决定的;后者不正确,连通的开集才是开区域,不连通的开集不是开区域,如是开集,但是不是开区域.(3)正确,这就是有界集的定义.(4)正确,求多元函数的自然定义域如同一元函数的定义域,要从以下几个方面考虑:①分式中分母不能为零,②开偶次方底数要大于等于零,③对数中真数要于零,④、中要求,⑤若干个式子的四则运算中,取每个式子有意义的交集,等等.(5)两者都正确,如:不存在,但是沿取极限时值为1;后者是由极限的定义决定.(6)正确,这是证明多元函数极限不存在的基本方法,它源于在中,是以(定义域内的)任意方式实现的.(7)不正确.如:在点连续,但是点不是函数定义域的内点.(8)不正确.如:点是函数的间断点,但是极限.2.判定下列平面点集中哪些是开集、闭集、区域、有界集、无界集?并分别指出它们的聚点所组成的集合(称为导集,用表示)和边界:(1);(2);(3);(4).解:(1)是有界闭区域,其导集,其边界.(2)是非开非闭的有界区域,其导集,其边界.(3)是无界区域,其导集,.(4)是有界开集(不是区域),其导集,其边界.3.设函数,求,.解:,.4.设函数,求.解:.5.设函数,已知时,,求及的表达式.解:由时,,有,即,所以;而.6.设函数,求的表达式.解:(方法1)因为,所以.(方法2)令,则,于是,所以.7.求下列各函数的定义域,并作定义域草图:(1);(2);(3);(4).解:(1)由且,得定义域.(2)由及,有,得定义域.(3)由,有,得定义域.(4)由,有,或,得定义域.8.求下列极限:(1);(2);(3);(4);(5);(6).解:(1).(2).(3).(4)因为有界,而,所以.(5).(6).9.证明下列极限不存在:(1);(2).证明:(1)沿取极限,则,当取不同值时,该极限值不同,所以极限不存在.(2)先沿取极限,则;再沿取极限,则,由于沿两种不同方式取极限其极限值不同,所以极限不存在.10.找出下列函数的间断点的集合:(1);(2);(3).解:三个函数都是初等函数,找间断点只需找函数无定义的点,并且这些点又是定义域的聚点.(1)函数只在点无定义,且是定义域的聚点,所以断点的集合.(2)函数在圆周上无定义,且圆周上的点都是定义域的聚点,所以断点的集合.(3)函数的定义域,函数在及上无定义,这些点中只有,及()是定义域的聚点,所以断点的集合.习题8—1(B)1.某厂家生产的一种产品在甲、乙两个市场销售,销售价格分别为(单位:元),两个市场的销售量各自是销售价格的均匀递减函数,当售价为10元时,销售量分别为2400、850件,当售价为12元时,销售量分别为2000、700件.如果生产该产品的成本函数是,试用表示该厂生产此产品的利润.解:根据已知,设,由时,;时,,有得,于是.由时,;时,,有得,于是.两个市场销售该产品的收入为,该产品的成本.根据利润等于收入减去成本,得.2.设函数求函数值.解:当时,则,于是;当时,则,于是.3.求函数的定义域.解:由,有且,即且,或写作且;或且,即且,或写作且,所以定义域.4.求下列极限:(1);(2);(3);(4).解:(1)令,则当时,,所以.或者:因为时,与是等价无穷小,所以.(2).(3)令,则当时,(其中在区间内任意变化),所以.(4)因为,而,,根据“夹逼准则”得.5.证明极限不存在.证明:先沿取极限,,再取极限,,由于沿两种不同方式取极限其极限值不同,所以极限不存在.6.讨论函数的连续性.解:当时,是连续函数.当时,满足的点是轴上点或轴上点,对轴上点,极限,这些点是函数的连续点.对轴上点(除去),当时,极限不存在(极限不是零,震荡),所以这些点是间断点.综上,函数在点()处不连续,其余点处都连续.习题8—2(A)1.判断下列论述是否正确,并说明理由:(1)极限既是的一元函数在点处的导数,也是二元函数在点处对变量的偏导数;(2)二元函数在某一点处连续是在这点偏导数存在的必要条件;(3)二元函数的两个二阶混合偏导数与只要存在就一定相等.答:(1)正确,这是根据导数与偏导数的定义.(2)不正确,例如函数在点处连续,但是都不存在.事实上:因为不存在,所以不存在;由变量的对称性得,也不存在.(3)不正确.还需要与连续,否则它们不一定相等,如函数在点处,,从而.事实上,,特别,,特别,,.2.求下列函数对各个自变量的一阶偏导数:(1)();(2);(3);(4);(5)();(6);(7);(8);(9);(10).解:(1)将函数改写为,则,.(2),.(3),.(4),.(5),.(6),.(7),.(8),由变量的对称性,得.(9),,.(10),,.3.求下列函数在指定点的偏导数:(1)设,求及;(2)设,求及.解:(1)在时,将函数改写为,则,,.(2)因为,所以,因为,所以.4.求曲线在点处的切线与轴正向的夹角.解:,,用表示曲线在点处的切线与轴正向的夹角,则,所以.5.求下列函数的高阶偏导数:(1)设,求,,和;(2)设,求,和;(3)设,求,和.解:(1),,,,,,.(2),,,,,.(3),,,,.6.设函数,求,和.解:因为,则,因为,则,.7.设函数,证明.证明:因为,所以.8.设函数,证明.证明:因为,所以.9.设函数,证明.证明:因为,,,,,,所以.10.若函数都可导,设,证明.证明:因为,,,所以.习题8—2(B)1.设一种商品的需求量是其价格及某相关商品价格的函数,如果该函数存在偏导数,称为需求对价格的弹性、为需求对价格的交叉弹性.如果某种数码相机的销售量与其价格及彩色喷墨打印机的价格有关,为,当,时,求需求对价格的弹性、需求对价格的交叉弹性.解:由,,有,,当,时,需求对价格的弹性:,需求对价格的交叉弹性:.2.已知满足,证明.证明:由,有,由,有,由,有,得.3.设函数,证明.证明:将函数改写为,则,,由变量的对称性,有,,所以.4.设函数满足,且,,求.解:由,两边同时对求不定积分,有,用代入该式,有,根据条件,得,于是.上式两边同时再对求不定积分,有,由条件,得,所以.5.设函数,求及.解:,(或由变量的对称性求得).6.设函数证明在点处的两个偏导数都不存在.证明:因为极限不存在,极限不存在,所以在点处的两个偏导数都不存在.习题8—3(A)1.判断下列论述是否正确,并说明理由:(1)称函数在可微分,如果在这一点函数的两个偏导数都存在,并且,其中为函数在点的全增量,;(2)函数在一点可微分,它在这点必连续;(3)函数在一点可微分的充分必要条件是,在这点的偏导数都存在;(4)函数在一点的偏导数连续,能保证在这点附近曲面可以用平面来近似替代,其中.答:(1)正确,可微的必要条件是两个偏导数存在,且,再根据,有,即.,这就是函数可微的定义.(2)正确,事实上,由可微,根据定义有,于是,这表明函数在该点连续.(3)不正确,偏导数存在仅仅是可微的必要条件,而不是可微的充分条件,如函数在两个偏导数都存在且等于零(习题8-2(B)5),但是函数在不可微.事实上,若可微,则,但是不存在(分别沿、取极限,其值为0及),这与矛盾,所以函数在不可微.函数可微的充分条件是偏导数在该点连续.(4)正确,若记,则,由此得,这表明在点附近曲面可以用平面来近似替代,这就是所谓的局部线性化.2.求下列函数的全微分:(1);(2);(3);(4);(5);(6).解:(1)因为,,所以.(2)因为,,所以.(3)因为,,所以.(4)因为,,所以(5)因为,,,所以.(6)因为,,,所以.3.当,时,求函数的全微分和局部线性化.解:因为,,,,所以,而,.4.当,,,时,求函数的全增量及全微分.解:,,,,当,,,时:全增量,全微分.习题8—3(B)1.一个圆柱形构件受压后发生形变,它的半径由cm增加到cm,高由cm减少到cm,求此构件体积变化的近似值.解:设构件的高为、底半径为、体积为,则.,,于是,当时,(,即体积大约减少了628 (.2.计算的近似值.解:考虑函数,取,而,,、、,则.3.设函数在点的某个邻域内可微,且,其中,求函数在点处的全微分及局部线性化.解:在中,令,得.在点考虑函数的全增量:,(其中)根据全微分的定义,有,并且得..4.设函数在点处讨论偏导数的存在性、偏导数的连续性以及函数的可微性.解:因为,,所以在点处函数的两个偏导数都存在,且.再讨论可微性,函数在处的全增量用表示,则,记,则不存在(沿取极限,其值为;沿取极限,其值为),所以函数在点处不可微.进而得偏导(函)数在点处不连续(若偏导(函)数在点处连续,根据可微的充分条件,则函数一点可微,与函数不可微矛盾).习题8—4(A)1.判断下列论述是否正确,并说明理由:(1)对多元复合函数来说,欲求其对自变量的偏导数,借助于树形图比较方便.不论中间变量是几元函数,最终求出的偏导数所含的项数等于从因变量到达该自变量的路径数目,某一项有几个因式,取决于与该项相对应的路径中所含有的线段数目;(2)对于可微的复合函数,,对于的偏导数;(3)利用全微分形式的不变性,对一个多元复合函数来说可以先求其全微分,最后再得出该复合函数对各自变量的偏导数.答:(1)正确,这是复合函数的链式求导法则决定的,如若函数由函数复合而成,复合函数的树形图为右图,而在图中我们可以看到从变量到变量有四条路径,由此导数公式中有四项之和,而每一项中(如第一项)偏导数或导数的个数(3个)等于这条路径上从到段数(3段).(2)不正确,左、右式中的含义不同,左式中表示对自变量求导,它涉及图中三个,而右式中的仅表示对中间变量(一)求导,(当某一个变量在复合函数中有双重身份,既是自变量又是中间变量时会出现这种记号混淆情况),为了与左式中区别,此处应当用记号(同时分别用)表示,即写作.(3)正确,即若某个复合函数的全微分是(通常这个全微分是由微分法则与微分形式不变性求得),则、,这是多元复合函数求偏导数的方法之一.2.设函数,而,,求.解:(方法1)函数的复合关系如图,则.(方法2)消去中间变量,有,按一元函数求导,得.(注:具体函数的复合函数都有以上两种方法,并且方法2简单,但是本节的目的在于练习复合函数链式求导方法,所以后面只用方法1求导)3.设函数而是的可微函数,求.解:.4.设函数,而,求.解:.5.设函数,而,,求和.解:,.6.设函数,求和.解:这是幂指函数求导,为方便求导,将它写作复合函数,为此令,则,.(注:可以由变量的对称性直接写出)7.求下列函数的一阶偏导数(其中函数具有一阶连续的偏导数或导数):(1);(2);(3);(4).解:(1),.(2),.(3),.(4),,.8.设函数,其中是可微函数,证明.证明:因为,,所以.9.设函数,其中是可微函数,证明.证明:因为,,所以.10.用微分形式不变性求函数的偏导数和.解:令,则,则根据微分法则与微分形式不变性,得所以,,.习题8—4(B)1.在解偏微分方程(含有未知函数的偏导数的方程,也称为数理方程)时,常常要用变量代换将一个复杂的方程化为一个简单的方程,从而可以求其解.设具有二阶连续偏导数,若用变量代换将偏微分方程化为,求的值.解:,,,,.由,有,即,要化为,必须,且,由,即,得或,但是由,所以只能是.2.设有一阶连续偏导数,且满足,,,求.解:令,等式两边同时对求导,有,(*)由于,,则(*)式化为,所以.3.若函数有二阶导数,且,又函数满足方程,求.解:令,则,于是,,,,由,有,即,这是二阶常系数线性齐次微分方程,特征方程是,特征根为,方程的通解是,,由条件,有,,得,所求所求函数是.4.若函数可微,且对任何正实数有,证明.证明:等式两边同时对导,则,记,则上式为,令,得,将该式中的分别用表示,则,即.5.求下列函数的二阶偏导数(其中函数具有二阶连续偏导数):(1);(2);解:(1),,,,.(2),,,,.6.设,其中函数、有二阶导数,求、及.解:,,,,.7.设,其中函数、有二阶导数,证明.证明:因为,,.所以.习题8—5(A)1.判断下列论述是否正确,并说明理由:(1)要使方程确定一个隐函数,如果将定理5.1中的条件换为而其它不变,则该方程仍能确定一个隐函数;(2)如果函数满足类似于定理5.1的条件,对各个自变量有连续偏导数,且对某个变量的偏导数不为零,则元方程可以确定一个具有连续偏导数的元函数;(3)若按照教材中的说法,一个方程组可以确定一组多元函数.那么函数的个数等于方程组中方程的个数,函数的元数等于方程中所含变量的总个数减去方程的个数;(4)若方程组能确定两个二元隐函数那么通过对该方程组中的各个方程的两边对同一个变量求导,就可以得到含有的方程组,通过解这个方程组,就可以求得.答:(1)不正确,如方程(其中),在点处有,但是它不能确定一个隐函数,因为在这点左侧附近给定一个对应有两个值,在这点右侧附近没有值对应;当且其它条件不变时,可以确定一个一元函数.(2)正确,这是定理5.1的推广.(3)正确,但是要注意两点,一是变量的个数需大于方程的个数(否则方程组可能只确定一点,或者无解);二是要满足隐函数存在的条件(超出教学要求,此处略去).(4)正确,如同例5.4、例5.5等的解法.2.若函数分别由下列方程确定,求.(1);(2);(3);(4).解:(1)(方法1)设,则,所以(方法2)方程两边同时对求导,有,解得.(注:两种方法最大的差别在于:方法1中在求时都看作自变量,而方法2在求导过程中要看作的函数.尽管方法1简单一些,但是它有局限性,只适用于求一个方程确定的隐函数的一阶导数或偏导数,而方法2适用于各类隐函数的各阶导数或偏导数的求法,后面一般都按方法2作)(2)方程两边同时对求导,有,解得.(3)方程两边同时对求导,有,得.(4)方程两边取对数,有,该式两边同时对求导,有,即,解得.3.设函数分别由下列方程确定,求.(1);(2).解:(1)方程两边同时对求导,有,得,.(2)方程两边同时对求导,有,解得,.4.若函数分别由下列方程确定,求及.(1);(2);(3);(4).解:(1)(方法1)设,则,所以.(方法2)方程两边对求导,有,得,方程两边对求导,有,得.(以下都按方法2作)(2)方程两边同时对求导,有,得,方程两边同时对求导,有,得(或由变量的对称性,得).(3)方程两边对求导,有,即,而,所以,得,由变量对称性有.(4)方程改写为,方程两边对求导,有,得,方程两边对求导,有,得.5.若函数,,都是由方程确定的隐函数,其中有一阶连续非零的偏导数,证明.证明:因为,所以.6.设函数,而函数由方程确定,求全导数.解:方程两边同时对求导,有,得,.7.设函数,而函数、分别由方程及确定,求全导数.解:方程两边同时对求导,有,得,方程两边同时对求导,有,得,所以.8.设函数,而由方程确定,求.解:方程两边同时对求导,有,用、代入,有,得.于是,所以.习题8—5(B)1.某工件的外表面是一个椭球面,方程由给出,现在点处要将其局部线性化(即做一个切平面),求局部线性化表达式.解:设方程在点确定的隐函数为,方程两边对求导,有,用、代入,有,得,由变量对称性,得.所以.2.若函数由方程确定,求.解:方程两边对求导,有,得,由变量的对称性,得.等式两边同时对求导,有,即所以.或.3.若函数由方程确定,其中是可微函数,求、.解:方程两边同时对求导,有,解得,方程两边同时对求导,有,解得.4.若函数由方程确定,其中是可微函数,证明.证明:方程两边同时对求导,有,得,方程两边同时对求导,有,得,所以.5.设函数,而由方程确定,其中函数连续,、可微,且,求.解:方程两边对求导,有,得,方程两边对求导,有,得.,所以.6.求由下列方程组所确定函数的导数或偏导数:(1)求和.(2)求及.解:(1)方程组两边同时对求导,有消去,有,得,而.(2)方程组两边同时对求导,有(1)(2),有,得,再代入到(2)之中得.方程组两边同时对求导,有与前面解法类似,得,.习题8—6(A)1.判断下列论述是否正确,并说明理由:(1)如果曲线的参数方程为(),那么它就对应一个向量值方程若存在并且不同时为零,那么,曲线在相应点处的切向量为,由此利用直线的点向式方程就可写出该点处的切线方程;(2)求曲线的切线方程与法平面方程的关键是求切向量,而其中又以参数方程为基础,其它形式的曲线方程都划归为参数方程,找出相应的切向量,然后写出要求的方程;(3)曲面的切平面方程是以曲面的一般方程为基础进行讨论的,如果曲面方程为的形式,那么必须把它化为的形式,其中,因而它在点处的法向量一定为,切平面方程为:;(4)如果曲线为一般方程那么,曲线在点的切向量可取为.答:(1)正确,这就是曲线为参数方程时,切线方向向量的求法.此时切线方程为;法平面方程为.(2)正确,对参数方程,在处的切向量;对形如的取向方程,将变量看作参数,在处的切向量对一般方程按隐函数它可以确定两个一元函数,如,按隐函数求导方法得到,从而得在处的切向量.(3)不确切,曲面的法向量可以直接由给出,也可以由给出.(4)正确,设曲面在点处的法向量为,曲面在点处的法向量为,根据法平面的定义有,于是可取.2.空间一质点在时刻时的位置为,求质点在时刻的速度.解:.3.求曲线在点处的切线及法平面方程.解:点对应参数为,切向量,切线方程为,法平面方程为,即.4.求曲线,在对应于的点处的切线及法平面方程.解:切点为,切向量,切线方程为,法平面方程为,即.5.求曲线在点处的切线及法平面方程.解:,切向量,切线方程为,法平面方程为,即.6.求曲线在点处的切线及法平面方程.解:设,则切向量,切线方程为,法平面方程为,即.7.求曲面在点处的切平面及法线方程.解:设,则法向量,切平面方程是,即,法线方程是.8.求曲面在点处的切平面及法线方程.解:法向量切平面方程是,即,法线方程是.习题8—6(B)1.求曲线()上平行于平面的切线方程,并写出该点处的法平面方程.解:设切点坐标为,该点对应参数,曲线在该点的切向量为,由切线与平面平行,有,得,即,由于,所以.切点坐标为,切向量,切线方程为,法平面方程为,即.2.在椭球面上求平行于平面的切平面方程.解:设切点坐标为,,则法向量,由切平面平行于平面,有,即,代入到曲面方程之中,有,得,切点为或,在点,切平面为,即;在点,切平面为,即.3.问旋转抛物面上哪一点处的切平面过曲线,,在点处的切线.解:设切点坐标为,则法向量,切平面方程为,即.曲线,,在点对应参数,曲线在点处的切向量.由在曲面上,有.①由切平面过,有.②曲线,,在点处的切线在切平面上,有所以,即.③由方程①、②、③式解得或,于是所求点为或.4.证明二次曲面在点处的切平面方程为:.证明:设,则曲面在的法向量。
(2) (3)10 兰(x + y)sin —siny x222x y 2sin -原式二 lim 2 -------y :0 (x 2y 2)e xyy ,所以,原式=02 22(/2 lim xyx:0(x 2 y 2)e xy第一节多元函数的概念11.( 1)( x, y )- <e2.( 1)原式二 1叫(\ x 2 y 2 1 1) = 2y >0(2) { ( x, y)2k w x 寸二 2k 1,k= 0,1,2,|||(3)(( x, y )1 £ x 2+y 2 z 2 乞 9(4) 原式二limXT2 y >0xsin(xy)cos(xy) o2xy3.( 1)当沿 y 二kx ,(2)当沿 x = ky 2, 1 - k 20时,原式二 2,极限不存在。
1十k 210时,原式二1,极限不存在。
kx + y 1 < —1 1 —+ — x2 + y 22 y x 1p 0,原式=0 x 4.( 1)考虑当沿y二0时, lim —4 2 = lim — x 0 x y x >0 x y r 0 y —;0k4*x 4 1下极限不存在’不连续。
kx 4(2)不连续,当不沿坐标轴趋近(0,0)时,极限值不等于函数值。
x >(3) 0 乞 kx 2,1 ,lim.(- y y )第二节偏导数1. (1) —-y2(1 xy)y1;二=(1 xy)y[ln(1 xy)1 + xy(2)ycUyzcos(xyz) 2xy; xzcos(xyz)■zxycos(xyz) 6z(3)z(x-y)z1 u_________________ ■ ___ -2z ;1 (x - y) y(x- y)z ln(x- y)z(x- y)z,________________ ■2 z;1 (x- y)2z1 (x- y)2z::z 2.—y (1,1, 3)= y1 x2y2zx x2 3.- 2:z(1,1, 3)_2 2 2x z x - y ■ ____ —_2;一 2 2y x (x2xy 3z_____ ■ ___—2 2 2,2x y (x y ) x y2、2、y )2x(x4 - 2x2y2 - 3y4)2 2(x y )4. f (x,1) = x, f x(x,1p 1 5•由上节知,不连续。
习题8.11. 设有一平面薄板(不计其厚度),占有Oxy 平面上的闭区域D ,薄板上分布着面密度为(,)x y μμ=的电荷,且(,)x y μ在D 上连续,试用二重积分表达该板上的全部电荷Q 。
解:据题意,薄板区域D 是Oxy 平面上的有界闭域,(,)x y μ是定义在D 上的面密度函数,那么用任意曲线把D 分成n 个可求面积的小区域12,,n σσσ ,以i σ∆表示小区域的面积,这些小区域构成了D 的一个分割T ,在每个i σ上任取一点(,)i i εη,那么电荷Q 即为D 上的一个积分和1(,)ni i i i Q u εησ==∆∑。
当d 足够小时,1(,)(,)ni i i i DQ u u x y d εησσ==∆=∑⎰⎰2. 下列二重积分表达怎样的空间立体的体积?试画出下列空间立体的图形:(1)()221Dx y d σ++⎰⎰,其中区域D 是圆域221x y +≤;解:(1)在圆域221x y +≤上以抛物面2221z x y =++为顶的曲顶柱体的体积。
(2)Dyd σ⎰⎰,其中区域D 是三角形域0,0,1x y x y ≥≥+≤;解: 在三角形域D 上以平面z y =为顶的柱体的体积。
z 轴x 轴y 轴(1) (2) 3. 设12231()D I x y d σ=+⎰⎰, 其中D 1={(x , y )|-1≤x ≤1, -2≤y ≤2 ;又22232()D I x y d σ=+⎰⎰, 其中D 2={(x , y )|0≤x ≤1, 0≤y ≤2}.试利用二重积分的几何意义说明I 1与I 2的关系.解 I 1表示由曲面z =(x 2+y 2)3与平面x =±1, y =±2以及z =0围成的立体V 的体积.I 2表示由曲面z =(x 2+y 2)3与平面x =0, x =1, y =0, y =2以及z =0围成的立体V 1的体积.显然立体V 关于yOz 面、xOz 面对称, 因此V 1是V 位于第一卦限中的部分, 故 V =4V 1, 即I 1=4I 2. 3. 利用二重积分的定义证明: (1)Dd σσ=⎰⎰ (其中σ为D 的面积;证明 由二重积分的定义可知,1(,)lim (,)ni i i i Df x y d f λσξησ→==∆∑⎰⎰其中∆σi 表示第i 个小闭区域的面积. 此处f (x , y )=1, 因而f (ξ, η)=1, 所以 01lim lim ni i Dd λλσσσσ→→==∆==∑⎰⎰.(2)(,)(,)DDkf x y d k f x y d σσ=⎰⎰⎰⎰ (其中k 为常数);证明 011(,)lim (,)lim (,)n ni i i i i i i i Dkf x y d kf k f λλσξησξησ→→===∆=∆∑∑⎰⎰1lim (,)(,)ni i i i Dk f k f x y d λξησσ→==∆=∑⎰⎰.(3)12(,)(,)(,)DD D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰,其中D =D 1⋃D 2, D 1、D 2为两个无公共内点的闭区域.证明 将D 1和D 2分别任意分为n 1和n 2个小闭区域1i σ∆和2i σ∆,n 1+n 2=n , 作和1211122212111(,)(,)(,)n n ni i i i i i i i i i i i f f f ξησξησξησ===∆=∆+∆∑∑∑.令各1i σ∆和2i σ∆的直径中最大值分别为λ1和λ2, 又λ=ma x (λ1,λ2), 则有1lim (,)n i i i i f λξησ→=∆∑121112221212011lim (,)lim (,)n n i i i i i i i i f f λλξησξησ→→===∆+∆∑∑,即 12(,)(,)(,)DD D f x y d f x y d f x y d σσσ=+⎰⎰⎰⎰⎰⎰.4. 根据二重积分的性质, 比较下列积分大小:(1)2()Dx y d σ+⎰⎰与, 3()Dx y d σ+⎰⎰ 其中积分区域D 是由x 轴, y 轴与直线x +y =1所围成;解 区域D 为: D ={(x , y )|0≤x , 0≤y , x +y ≤1}, 因此当(x , y )∈D 时, 有(x +y )3≤(x +y )2, 从而3()Dx y d σ+⎰⎰≤2()Dx y d σ+⎰⎰.(2)2()Dx y d σ+⎰⎰与3()Dx y d σ+⎰⎰其中积分区域D 是由圆周(x -2)2+(y -1)2=2所围成;解 区域D 如图所示, 由于直线x +y =1与圆(x -2)2+(y -1)2=2相切,故D 位于直线x +y =1的上方, 所以当(x , y )∈D 时, x +y ≥1, 从而(x +y )3≥(x +y )2, 因而 23()()DDx y d x y d σσ+≤+⎰⎰⎰⎰.(3)ln()Dx y d σ+⎰⎰与3()Dx y d σ+⎰⎰其中D 是三角形闭区域, 三角顶点分别为(1,0), (1, 1), (2, 0);解 区域D 如图所示, 显然当(x , y )∈D 时, 1≤x +y ≤2, 从而0≤ln(x +y )≤1, 故有 [ln(x +y )]2≤ ln(x +y ),因而 2[ln()]ln()+≤+⎰⎰⎰⎰DDx y d x y d σσ.(4)ln()Dx y d σ+⎰⎰与3()Dx y d σ+⎰⎰其中D ={(x , y )|3≤x ≤5. 0≤y ≤1}.解 区域D 如图所示, 显然D 位于直线x +y =e 的上方, 故当(x , y )∈D 时, x +y ≥e , 从而ln(x +y )≥1,因而 [ln(x +y )]2≥ln(x +y ),故 2ln()[ln()]DDx y d x y d σσ+≤+⎰⎰⎰⎰.5. 利用二重积分的性质估计下列积分的值:(1)()DI xy x y d σ=+⎰⎰, 其中D ={(x , y )| 0≤x ≤1, 0≤y ≤1};解 因为在区域D 上0≤x ≤1, 0≤y ≤1, 所以 0≤xy ≤1, 0≤x +y ≤2, 进一步可得0≤xy (x +y )≤2,于是 0()2DDDd xy x y d d σσσ≤+≤⎰⎰⎰⎰⎰⎰,即 0()2Dxy x y d σ≤+≤⎰⎰.(2)22sin sin DI x yd σ=⎰⎰, 其中D ={(x , y )| 0≤x ≤π, 0≤y ≤π};解 因为0≤sin 2x ≤1, 0≤sin 2y ≤1, 所以0≤sin 2x sin 2y ≤1. 于是可得 220sin sin 1DDDd x yd d σσσ≤≤⎰⎰⎰⎰⎰⎰,即 2220sin sin Dx yd σπ≤≤⎰⎰.(3)(1)DI x y d σ=++⎰⎰, 其中D ={(x , y )| 0≤x ≤1, 0≤y ≤2};解 因为在区域D 上, 0≤x ≤1, 0≤y ≤2, 所以1≤x +y +1≤4, 于是可得 (1)4DDDd x y d d σσσ≤++≤⎰⎰⎰⎰⎰⎰,即 2(1)8Dx y d σ≤++≤⎰⎰.22(49)DI x y d σ=++⎰⎰, 其中D ={(x , y )| x 2+y 2 ≤4}.解 在D 上, 因为0≤x 2+y 2≤4, 所以 9≤x 2+4y 2+9≤4(x 2+y 2)+9≤25.于是 229(49)25DDDd x y d d σσσ≤++≤⎰⎰⎰⎰⎰⎰,222292(49)252Dx y d πσπ≤++≤⋅⋅⎰⎰,即 2236(49)100Dx y d πσπ≤++≤⎰⎰.习题8.21. 化二重积分(,)Df x y dxdy ⎰⎰为二次积分(写出两种积分次序).(1)D ={(x , y )| |x |≤1, |y |≤1}; 解 D 为矩形区域, 所以1111(,)(,)Df x y dxdy dx f x y dy --=⎰⎰⎰⎰,1111(,)(,)Df x y dxdy dy f x y dx --=⎰⎰⎰⎰.(2)D 是由y 轴, y =1及y =x 围成的区域; 解 若将D 表示为0≤x ≤1, x ≤y ≤1, 则 11(,)(,)xDf x y dxdy dx f x y dy =⎰⎰⎰⎰.若将D 表示为0≤y ≤1, 0≤x ≤y , 则 1(,)(,)yDf x y dxdy dy f x y dx =⎰⎰⎰⎰.(3)D 是由x 轴, y =ln x 及x =e 围成的区域; 解 若将D 表示为1≤x ≤e , 0≤y ≤ln x , 则 ln 10(,)(,)ex Df x y dxdy dx f x y dy =⎰⎰⎰⎰.若将D 表示为0≤y ≤1, e y ≤x ≤e , 则 1(,)(,)y eeDf x y dxdy dy f x y dx =⎰⎰⎰⎰.(4)D 是由x 轴, 圆x 2+y 2-2x =0在第一象限的部分及直线x +y =2围成的区域; 解 若将D 表示为0≤x ≤1,0y ≤≤1≤x ≤2, 0≤y ≤2-x , 则12201(,)(,)(,)xDf x y dxdy dx f x y dy dx f x y dy -=+⎰⎰⎰⎰⎰.若将D 表示为0≤y ≤1; 12x y ≤≤-, 则 1201(,)(,)yDf x y dxdy dy f x y dx -=⎰⎰⎰⎰(5)D 是由x 轴与抛物线y =4-x 2在第二象限的部分及圆x 2+y 2-4y =0第一象限部分围成的区域. 解 若将D 表示为-2≤x ≤0, 0≤y ≤4-x 2及0≤x ≤2,22y ≤≤ 则242222(,)(,)(,x Df x y dxdy dx f x y dy dx f x y --=+⎰⎰⎰⎰⎰⎰,若将D 表示为0≤y ≤4, x ≤ 则 40(,)(,)Df x y dxdy dy f x y dx =⎰⎰⎰.2. 交换二次积分的次序:(提示: 交换二次积分的次序, 要先根据原积分写出积分区域不等式, 再根据不等式画出积分区域, 然后根据图形写出另一种形式的积分区域不等式, 最后由不等写出二次积分)(1)228812(,)(,)x xxdx f x y dy dx f x y dy +⎰⎰⎰⎰.解 积分区域为D ={(x , y )|1≤x ≤2, x ≤y ≤x 2}⋃{(x , y )|2≤x ≤8, x ≤y ≤8}. 积分区域还可以表示为D ={(x , y )|1≤y ≤4,x ≤y }⋃{(x , y )|4≤y ≤8, 2≤x ≤y }, 于是 原式=48142(,)(,)y ydy f x y dx dy f x y dx +⎰⎰⎰.(2)12201(,)(,)yydy f x y dx dy f x y dx -+⎰⎰⎰⎰.解 积分区域为D ={(x , y )|0≤y ≤1, 0≤x ≤y }⋃{(x , y )|1≤y ≤2, 0≤x ≤2-y }.积分区域还可以表示为xO y281D ={(x , y )|0≤x ≤1, x ≤y ≤2-x }, 于是 原式=120(,)x xdx f x y dy -⎰⎰. (3) 14(4)(,)y dy f x y dx -⎰⎰;解:积分区域{}2442,20|),(x y x x y x D -≤≤+≤≤=,214(4)040224(,)(,)(,);y x Dx f x y d dy f x y dx dx f x y dy σ---+∴==⎰⎰⎰⎰⎰⎰(4) 11(,)dx f x y dy ⎰;解:积分区域{}{212(,)|01,0(,)|12,0D x y y x y D x y y x =≤≤≤≤⋃=≤≤≤≤21212001(,)(,)(,)(,)y D D f x y d f x y d dy f x y dx dy f x y dxσσ=+=+⎰⎰⎰⎰⎰⎰⎰原式(5)224(,)x x f x y dy -⎰⎰。
i.判断下列平面点集哪些是开集、闭集、区域、冇界集、无界集?并分别指出它们的聚点集和边界:⑴{g)|20};⑵{(心)| 1<X2+/<4};⑷{(x,y) I (x - I)2 + b G} U {(w) I(X + I)2 + 尸5 1}.解:(1)开集、无界集,聚点集:R2,边界:{(x,y)|尸0}.(2)既非开集乂非闭集,有界集,聚点集:{(x』)|l Wx\y2w4},边界:{(x,叨F+b=l} U {(x』)| xV=4}.(3)开集、区域、无界集,聚点集:{(x』)[yWF}, 边界:{(¥』)|尸<}.(4)闭集、有界集,聚点集即是其木身,边界:{(X^)|(X-1)24-/=1 } U {(x,y)|(x4-l)2+y=l}.2.己知f (x,y)= x2+y~-xy tan —,试求f(tx,ty).y解:f(tx,ty) = (tx)2 + (ty)2-tx-tytan— = t2f(x,y).3•已知/(u,v,w)= w u + 卜严' ,试求f(x + y,x-y,xy).解:Xx+y, x-y, xy)=(巧严+(砂严’心'=(x+)泸'+(初)4•求下列各函数的定义域:(l)z= ln(y2-2x+l);(4) w = —j= 4- —j= + —j=;yjx y]y yjzz - \n(y一x) +u = arccos解:(l)n = {(x,y)|/-2x + l>0}.(2)Z) = {(x,jO|x + y〉0,x-y >0}.(3)D = {(x,y)\4x-y2>0,\-x2-y2>0,x2+y2 ^0}.(4) D = {(x』,z) | x > 0,y > 0,z > 0}.(5) D = {(x,y)ix>0,y> 0, x2 > y}.(6)Z) = {(x』)| y-x > 0,x > 0,x2+y2 < 1}.⑺D = {(x,y,z)|/ + 尸工0,兀? + 尹2 _么2 J。
第八章习题解答(3)节8.5部分习题解答1、下列方程确定了)(x f y =,求dxdy,(1)、0sin 2=−+xy e y x 解:设=),(y x F 0sin 2=−+xy e y x ,2y e x F x −=∂∂;xy y yF2cos −=∂∂(2)、xyy x arctanln 22=+解:设=),(y x F xy y x arctanln 22−+,=−+−+=∂∂)()(112222x y x y y x x x F 22y x yx ++;=∂∂y F =+−+)1((11222x xy y x y 22y x xy +−;yx y x F F dx dy y x −+=−=(3)、xy y x =解:设x y y x y x F −=),(,)ln (1ln 1y x y x x y y yx x F y x y −=−=∂∂−)ln (1ln 1x x y x yxy x x y F y x y −=−=∂∂−;y x F F dx dy −=)ln ()ln (x x y x y y x y −−=(4)、1=+y e xy 解:设1),(−+=y e xy y x F ,y x F =∂∂y e x yF+=∂∂;y x F F dx dy −=ye x y +−=2、下列方程确定了),(y x f z =,求x z ∂∂yz ∂∂(1)、0=−xyz e z 解:设=),,(z y x F xyz e z −,yz F x −=zx F y −=xy e F z z −=;x z ∂∂z x F F −=xye yzz −=y z ∂∂z y F F −=xye zxz −=(2)、333a xyz z =−解:设=),,(z y x F 333a xyz z −−,yz F x 3−=zx F y 3−=xy z F z 332−=;x z ∂∂z x F F −=xyz yz−=2y z ∂∂z y F F −=xye zx−=2(3)、122=+−z e yz y x 解:设=),,(z y x F 122−+−z e yz y x ,xy F x 2=z x F y 22−=z z e y F +−=2;x z ∂∂z x F F −=ze y xy−=22y z∂∂z y F F −=ze y z x −−=222(4)、xyzz =sin 解:设=),,(z y x F xyz z −sin ,yz F x 2−=xz F y −=xy z F z −=cos ;x z ∂∂z x F F −=xyz yz −=cos 2y z ∂∂z y F F −=xyz xz−=cos 3、设z y x z y x 32)32sin(2−+=−+确定了),(y x f z =,验证:+∂∂x z 1=∂∂yz证明:设=),,(z y x F )32()32sin(2z y x z y x −+−−+,1)32cos(2−−+=z y x F x 2)32cos(4−−+=z y x F y 3)32cos(6+−+−=z y x F z ;x z ∂∂z x F F −=32=y z∂∂z y F F −=31=所以+∂∂x z 13132=+=∂∂y z 4、设),(),,(),,(y x z z x z y y z y x x ===都是由方程0),,(=z y x F 确定的函数,证明1−=∂∂⋅∂∂⋅∂∂xz z y y x 证明:1)1((3−=−=−−−=∂∂⋅∂∂⋅∂∂zx y z x y F F F F F F x zz y y x 5、函数),(v u ϕ具有连续的偏导数,验证方程0),(=−−bz cy az cx ϕ所确定的函数),(y x z z =满足+∂∂x z ac yzb =∂∂证明:设bz cy v az cx u −=−=,,则有c x u =∂∂,0=∂∂y u ,a z u −=∂∂,0=∂∂x v ,c yv =∂∂,b z v−=∂∂1ϕϕc x =2ϕϕc y =21ϕϕϕb a z −−=211ϕϕϕϕϕb a ca a x za z x +=−=∂∂212ϕϕϕϕϕb a cb b y zb z y +=−=∂∂于是+∂∂x z a=∂∂y zb ++211ϕϕϕb a ca =+212ϕϕϕb a cbc b a b a c =++2121)(ϕϕϕϕ6、设f 具有连续偏导数,方程),(y z xz f z −=确定了),(y x f z =,求,x z ∂∂yz∂∂解:设=),,(z y x F ),(y z xz f z −−,又设y z v xz u −==,,则有z x u =∂∂,0=∂∂y u ,x z u =∂∂,0=∂∂x v ,1−=∂∂yv ,1=∂∂z v1zf F x −=2f F y =211f xf F z −−=x z∂∂z x F F −=2111f xf zf −−=y z∂∂2121f xf f −−−=7、设f 具有连续偏导数,方程0),,(=+++z y x y x x f 确定了),(y x f z =,求,x z ∂∂yz∂∂解:设=),,(z y x F ),,(z y x y x x f +++,321f f f F x ++=32f f F y +=3f F z =x z∂∂z x F F −=3321f f f f ++−=y z∂∂321f f f +−=8、求由方程组所确定的函数的导数或偏导数(1)、⎩⎨⎧=+++=203222222z y x y x z 求,x y ∂∂,xz∂∂解:对等式两边同时求关于x 的偏导数得⎪⎩⎪⎨⎧=∂∂+∂∂+∂∂+=∂∂064222x zz x y y x x y y x x z就是⎪⎩⎪⎨⎧−=∂∂+∂∂=∂∂−∂∂xx y y x z z x x y y x z2322解得13)13(222321222+=+=−−−=∂∂z xz y xy y z y y x y x x z )13(2)16(2321321++−=−−=∂∂z y z x y z y x z x x y (2)、⎪⎩⎪⎨⎧=++=+221222z y x z y x 求,dz dx ,dz dy解:对等式两边同时求关于z 的偏导数得⎪⎩⎪⎨⎧−=+=+122dzdy dz dx z dz dy y dz dxx解得)(221122112y x y z y x y z dz dx −+=−=)(221122112y x x z y x zx dz dy −+−=−=(3)、⎩⎨⎧=−+=−+0033x yu v y xv u 求,x u ∂∂,x v ∂∂解:对等式两边同时求关于x 的偏导数得⎪⎩⎪⎨⎧=−∂∂+∂∂=+∂∂+∂∂0130322xu y x v v v x vx x u u 就是⎪⎩⎪⎨⎧=∂∂+∂∂−=∂∂+∂∂13322x v v x u y v x v x x uu 解得xy v u x v v yxu v xv x u−+−=−=∂∂223222933331xy v u yv u v yx u yv u x v −+=−=∂∂222222933313(4)、⎩⎨⎧=+=+u y v x v u y x sin sin 求,y u ∂∂,yv∂∂解:对等式两边同时求关于y 的偏导数得⎪⎪⎩⎪⎪⎨⎧∂∂+=∂∂∂∂+∂∂=y u uy u y v v x yv y u cos sin cos 1即⎪⎪⎩⎪⎪⎨⎧−=∂∂−∂∂=∂∂+∂∂u y v v x y u u y y vy u sin cos cos 1解得:u y v x u v x v x u y v x u y u cos cos sin cos cos cos 11cos sin 11+−=−−−=∂∂u y v x u y u vx u y u u y y v cos cos cos sin cos cos 11sin cos 11++=−−=∂∂习题8.6解答1、求下列曲线在指定点的切线和法平面(1)、曲线t t z t y t x +===1,,2在点21,1,1(解:2)1(1)(,2)(,1)(t t z t t y t x +=′=′=′,从而得在点21,1,1(的切线的方向向量为⎭⎬⎫⎩⎨⎧=→41,2,1s ,于是得切线方程为:1218141−=−=−z y x ;法平面方程为021()1(8)1(4=−+−+−z y x ,即0252168=−++z y x (2)、曲线2sin 4,cos 1,sin t z t y t t x =−=−=在2π=t 的对应点解:2cos 2)(,sin )(,cos 1)(tt z t t y t t x =′=′−=′,2π=t 的对应点是点)22,1,12(−π,该的切线的方向向量为{2,1,1=→s ,于是得切线方程为:22211121−=−=−+z y x π;法平面方程为0)22(2)1()2(=−+−+−+z y x π,即02422=−−++πz y x (3)、曲线t z t t y t x 22cos ,cos sin 3,sin 2===在4π=t 的对应点解:t t z t t y t t t t x 2sin )(,2cos 3)(,2sin 2cos sin 4)(−=′=′==′,4π=t 的对应点是点)21,23,1(,该的切线的方向向量为{}1,0,2−=→s ,于是得切线方程为:12102321−−=−=−z y x ;法平面方程为021()1(2=−−−z x ,即0232=−−z x (4)、曲线t z tty t t t x =−=+=,1,12在)01,1(解:tt z t t y t t t t t x 21)(,1)(,)1(2)1(2)1(2)(222=′−=′+=+−+=′,1=t 对应着)01,1(,该的切线的方向向量为{}1,2,22121,1,1−=⎭⎬⎫⎩⎨⎧−=→s ,于是得切线方程为:11221−=−=−z y x ;法平面方程为0)1(2)1(2=−+−−z y x ,即0322=−+−z y x (5)、曲线⎩⎨⎧=−+−=−++0453203222z y x x z y x 在点)1,1,1(解:设x z y x z y x F 3),,(222−++=,4532),,(−+−=z y x z y x G 32−=x F x ,y F y 2=z F z 2=于是{}2211−=→n 2=x G ,3−=y G 5=z G 于是{}5322−=→n 所以切线的方向向量{}191653222121−=−−=×=→→→→→→kj i n n s 于是得切线方程为:1191161−−=−=−z y x ;法平面方程为0)1()1(9)1(16=−−−+−z y x ,即024916=−−+z y x (6)、曲线⎩⎨⎧=+=+222222z x y x 在点)1,1,1(解:设2),,(22−+=y x z y x F ,2),,(22−+=z x z y x G x F x 2=,y F y 2=0=z F 于是{}01121=→n x G x 2=,0=y G z G z 2=于是{}10122=→n 所以切线的方向向量{}11110101121−−==×=→→→→→→k j i n n s 0是得切线方程为:111111−−=−−=−z y x ;法平面方程为0)1()1()1(=−−−−−z y x ,即01=+−−z y x 2、在曲线32,,t z y t x ===上求一点,使在该点的切线与平面102=++z y x 平行解:已知平面的法向为{}121=→n ,曲线的切线的方向{}2321t ts =→,由题设可知•→n 0=→s 即03412=++t t 解得31,121−=−=t t ,所求的点是)1,1,1(−−或者)271,91,31(−−3、求下列曲面在指定点的切平面和法线(1)、zxy z ln+=在点)1,1,1(解:zzxy z y x F −+=ln ),,(,1x F x =,1=y F ,11−−=zF z 切平面的法向为{}211−=→n ,切平面为0)1(2)1()1(=−−−+−z y x 即02=−+z y x 法线为211111−−=−=−z y x (2)、22y x z +=在点)5,1,2(解:zy x z y x F −+=22),,(,2x F x =,2y F y =,1−=z F 切平面的法向为{}124−=→n ,切平面为0)5()1(2)2(4=−−−+−z y x 即0524=−+y x 法线为152142−−=−=−z y x (3)、3=+−xy z e z 在点)0,1,2(解:=),.(z y x F 3−+−xy z e z ,y F x =,x F y =,1−=zz e F 切平面的法向为{}021=→n ,切平面为0)1(2)2(=−+−y x 即042=−+y x 法线为2112zy x =−=−5、在曲面xy z =上求一点,使在该点的法线垂直于平面093=+++z y x 平行解:所求法线的方向为{}131=→n 设=),.(z y x F zxy −,y F x =,x F y =,1−=z F 切平面的法向为{}1−=→x yn ,于是有向量{}131=→n {}1−=x y λ所以1131−==x y 得3,1,3=−=−=z y x ,所求的点是()313−−。
1、党在过渡时期的总路线提出的主要任务是解决所有制问题
参考答案:错误。
党在这个过渡时期的总路线和总任务,是要在一个相当长的时期内,逐步实现国家的社会主义工业化,并逐步现实国家对农业、手工业和资本主义工商业的社会主义改造。
过渡时期总路线构想出了一条经济文化落后国家发展社会主义的新思路,这就是建设与改造并举、发展与变革同行,把国家工业化和社会主义改造紧密结合起来,在变革生产关系中促进社会生产力发展的新思路。
其中,社会主义工业化是目的,社会主义改造是不可或缺的条件和手段。
2、中国的民族资产阶级在社会主义革命阶段仍然具有两面性
参考答案:正确。
中国的民族资产阶级,不仅在民主革命阶段具有两面性,曾经是中国共产党的同盟者。
在社会主义革命阶段仍然具有两面性,它有剥削工人阶级取得利润的一面,又有拥护宪法、愿意接受社会主义改造的一面。
中国共产党正是根据中国民族资产阶级这一基本特点,制定了利用、限制、改造的政策,用和平赎买的方式完成了对资本主义工商业的社会主义改造。
3、对资本主义工商业的社会主义改造就是指的对生产资料所有制的改造
参考答案:错误。
国家对资本主义工商业的社会主义改造是把对所有制的改造和对人的改造结合起来进行的,在把生产资料私有制改造成为社会主义公有制的同时,把资本家由剥削者改造成为自食其力的劳动者。
对资本主义工商业的和平改造在内容上包括两个方面:一方面是企业的、制度的改造,包括企业所有制和企业管理制度等,最终把资本主义私营工商企业改造为由工人当家作主,实行社会主义企业管理的全民所有制企业;另一方面是对人即对资本家的改造。
对资本主义工商业的社会主义改造,是一场深刻的社会变革。
如何在改造过程中,实施团结教育的功能,化解他们的消极甚至抵抗的情绪,使他们成为自食其力的劳动者,这同样十分重要。
4、社会主义改造的完成,标志着中国完全建成了社会主义社会
参考答案:错误。
社会主义改造完成后,中国进入社会主义社会初级阶段,不经过生产力的巨大发展,中国无法超越初级阶段这个现实。
只有生产力高度发展了,物质精神成果丰富,我们才能完成建成社会主义社会。
1、为什么说中华人民共和的成立,开辟了中国历史的新纪元?
答:中华人民共和国的成立,标志着中国的新民主主义革命取得了基本的胜利,标志着半殖民地半封建社会的结束和新民主主义社会在全国范围内的建立。
(1)(反帝任务完成,民族独立实现)帝国主义列强压迫中国、奴役中国人民的历史从此结束。
占人类总数四分之一的中国人从此站立起来了。
(2)(反封任务完成,人民解放实现)本国封建主义、官僚资本主义统治的历史从此结束,广大中国人民在历史上第一次成为国家的主人。
(3)(国家统一完成,和平局面实现)军阀割据混战的历史从此结束,国家基本统一,民族团结,社会政治局面趋向稳定,从事经济文化等方面建设的时期开始到来了。
(4)(社会主义方向确定)从根本上改变了中国社会的发展方向,为实现由新民主主义向社会主义的过渡,创造了前提条件。
(5)(中国共产党从夺权到执政)中国共产党成为全国范围内的执政党。
它可以运用国家政权凝聚和调集全国力量,解放并发展社会生产力,造福于整个中华民族。
2、新中国成立之初三年内,为向社会主义过渡,中国共产党采取了什么实际步骤?
答:1949年至1952年期间,在着重完成民主革命遗留任务的同时,社会主义革命的任务实际上也开始实行了。
(1)没收官僚资本,确立社会主义性质的国营经济的领导地位。
(2)开始将资本主义纳入国家资本主义轨道。
引导资本主义工商业的大部分走上了初级形式的(加工、订货、统购、包销)国家资本主义的道路。
(3)引导个体农民在土地改革后逐步走上互助合作的道路。
到1952年,全国已有40%的农户参加了互助组,少数农户还参加了半社会主义或社会主义性质的农业生产合作社。
3、新中国成立初期,中国共产党面临的主要问题和考验?
答:(1)能不能保卫住人民胜利的成果,巩固新生的人民政权。
(2)能不能战胜严重的经济困难,迅速恢复和发展国民经济。
(3)能不能巩固民族独立,维护国家主权和安全。
(4)能不能经受住执政的考验,继续保持谦虚、谨慎、不骄不躁的作风和艰苦奋斗的作风。
4、新中国成立初期国民经济恢复的主要原因是什么?
答:(1)中共中央和人民政府紧紧抓住恢复和发展生产作为一切工作的中心,正确处理恢复国民经济同其他各项工作的关系。
(2)从当时的国情出发,制定了“不要四面出击”等正确方针政策,妥善处理公私关系、劳资关系等各种社会关系。
(3)刚刚执政的中国共产党加强自身的建设,保持和发扬党的优良传统和作用,及时有力地抵制了资产阶级的腐蚀。
论述:
1、试述新中国成立后,中国共产党如何领导各族人民彻底完成新民主主义革命任务?
答:(1)发动军事战役,消灭国民党匪特残余:采取大迂回、大包围的作战方案,相继发动战役,于1951年10月,人民解放军进驻拉萨,西藏和平解放,中国大陆实现了各民族的统一。
(2)建立各级人民政权:执政的中国共产党在各地通过召集人民代表会议,选举产生各人民地方政权;少数民族聚居地区实行民族区域自治。
(3)开展土地改革:1950年颁布《中华人民共和国土地改革法》,从1950年冬到1953年春土地改革基本完成。
(4)镇压反革命:为巩固新生政权,历时了三年的镇压反革命运动。
(5)进行多方面民主改革:a.在已没收的官僚资本企业中,建立职工代表会议制度,工人阶级成为企业的主人。
b.按照“公私兼顾、劳资两利”原则,对私营工商业进行调整。
c.颁布《中华人民共和国婚姻法》,解放妇女。
d.制定了新中国文化教育的方针,在全国开展了一场知识分子思想改造运动。
2、试述为什么说完成社会主义改造是中国历史上最伟大最深刻的社会变革?
答:(1)1949年到1956年,中国共产党领导全国人民,经过对农业、手工业和资本主义工商业的社会主义改造,在中国建立了社会主义制度,这是中国历史上最伟大最深刻的社会变革。
(2)社会主义改造的基本完成,中国社会经济结构发生了根本性变化,社会主义的基本经济制度在中国全面地建立起来了。
这是中国进入社会主义社会的最主要的标志。
1952年,各种经济成份在国民收入中所占的比重分别是:国营经济19%,合作社经济1.5%,公私合营经济0.7%,个体经济72%,资本主义经济7%。
就是说,个体经济和资本主义经济合计为79%,占到国民收入的绝大部分。
到1957年,各种经济成份占国民收入的比重分别是:国营经济33%。
合作社经济56%,公私合营经济8%,个体经济3%,资本主义经济0.1%。
这就是说,社会主义性质的国营经济、合作社经济和基本上属于社会主义性质的公私合营经济合计为97%,占到了国民收入的绝大多数。
这是社会主义改造的主要成果。
这表明,中国已经胜利地完成了从新民主主义到社会主义的过渡。
(3)社会主义改造是在生产关系方面由私有制到公有制的一场伟大的变革,这就使社会生产力从旧的生产关系的束缚中解放出来,它不但没有造成通常难以避免的大的社会动荡和社会生产力的破坏,而且对生产力的发展直接起到了促进作用。
在全面进行社会主义改造期间,即从1953年到1956年,全国工业总产值平均每年递增19.6%,农业总产值每年递增4.8%。
经济发展比较快,经济效益比较好,重要经济部门之间的比例关系比较协调。
市场繁荣,物价稳定。
人民生活显著改善。
这是了不起的事情。
(4)创造一系列从低级到高级的改造形式,走出了一条有中国特色的社会主义改造道路,丰富和发展了马克思主义关于社会主义改造的理论。
特别是对资本主义工商业的社会主义改造利用各种形式的国家资本主义,把对企业的改造和人的改造结合起来,成功地实现了马克思列宁曾设想过的对资产阶级的和平赎买,并把资本家改造成为自食其力的劳动者,这是一个伟大的创举。
(5)总之,在一个几亿人口的大国中比较顺利地实现了如此复杂、困难和深刻的社会变革,促进了工农业和整个国民经济的发展,这的确是伟大的历史性胜利。
通过社会主义改造,中国共产党创造性地完成了由新民主主义到社会主义的过渡,实现中国历史上最伟大最深刻的社会变革,开始了在社会主义道路上实现中华民族伟大复兴的历史征程。