平面向量的坐标运算2
- 格式:doc
- 大小:42.50 KB
- 文档页数:5
平面向量的坐标运算[学习目标] 1。
了解平面向量的正交分解,掌握向量的坐标表示.2.掌握两个向量和、差及数乘向量的坐标运算法则.3.正确理解向量坐标的概念,要把点的坐标与向量的坐标区分开来.知识点一 平面向量的坐标表示(1)向量的正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. (2)向量的坐标表示:在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,对于平面内的一个向量a ,有且只有一对实数x ,y 使得a =x i +y j ,则有序数对(x ,y )叫做向量a 的坐标,a =(x ,y )叫做向量的坐标表示.(3)向量坐标的求法:在平面直角坐标系中,若A (x ,y ),则错误!=(x ,y ),若A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1).思考 根据下图写出向量a ,b ,c ,d 的坐标,其中每个小正方形的边长是1。
答案 a =(2,3),b =(-2,3),c =(-3,-2),d =(3,-3).知识点二 平面向量的坐标运算(1)若a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),即两个向量和的坐标等于这两个向量相应坐标的和.(2)若a=(x1,y1),b=(x2,y2),则a-b=(x1-x2,y1-y2),即两个向量差的坐标等于这两个向量相应坐标的差.(3)若a=(x,y),λ∈R,则λa=(λx,λy),即实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.(4)已知向量错误!的起点A(x1,y1),终点B(x2,y2),则错误!=(x2-x1,y2-y1).思考已知a=错误!,b=错误!,c=错误!,如下图所示,写出a,b,c的坐标,并在直角坐标系内作出向量a+b,a-b以及a-3c,然后写出它们的坐标.答案易知:a=(4,1),b=(-5,3),c=(1,1),错误!=a+b=(-1,4),错误!=a-b=(9,-2),错误!=a-3c=(1,-2).题型一平面向量的坐标表示例1已知边长为2的正三角形ABC,顶点A在坐标原点,AB边在x轴上,C在第一象限,D 为AC的中点,分别求向量错误!,错误!,错误!,错误!的坐标.解 如图,正三角形ABC 的边长为2,则顶点A (0,0),B (2,0),C (2cos60°,2sin 60°),∴C (1,错误!),D (错误!,错误!),∴错误!=(2,0),错误!=(1,错误!),错误!=(1-2,错误!-0)=(-1,错误!),错误!=(错误!-2,错误!-0)=(-错误!,错误!).跟踪训练1 在例1的基础上,若E 为AB 的中点,G 为三角形的重心时,如何求向量错误!,错误!,错误!,错误!的坐标?解 由于B (2,0),E (1,0),C (1,错误!),D (错误!,错误!),G (1,错误!),所以CE →=(1-1,0-错误!)=(0,-错误!),错误!=(1,错误!),错误!=(1-2,错误!-0)=(-1,错误!),错误!=(错误!-1,错误!-错误!)=(-错误!,错误!).题型二 平面向量的坐标运算例2 已知平面上三点A (2,-4),B (0,6),C (-8,10),求(1)错误!-错误!;(2)错误!+2错误!;(3)错误!-错误!错误!。
平面向量数量积的坐标运算公式在咱们的数学世界里,平面向量数量积的坐标运算公式可是个相当重要的家伙!咱先来说说啥是平面向量。
想象一下,在一个平面上,有两个箭头,它们有自己的长度和方向,这就是平面向量啦。
那平面向量数量积又是个啥呢?简单说,就是两个向量之间的一种“亲密程度”的度量。
而平面向量数量积的坐标运算公式,就像是一把神奇的钥匙,能帮咱们轻松算出这种“亲密程度”。
假设两个向量 a = (x₁, y₁),b = (x₂, y₂),那它们的数量积 a·b 就等于 x₁x₂ + y₁y₂。
我给您举个例子哈。
比如说有个向量 a = (3, 4),另一个向量 b = (1, 2),那它们的数量积 a·b 就是 3×1 + 4×2 = 3 + 8 = 11 。
是不是一下子就清楚多啦?前几天我在给学生们讲这部分内容的时候,有个学生一脸懵地问我:“老师,这公式到底有啥用啊?”我就跟他们说:“同学们,你们想想,如果要计算两个力在某个方向上做的功,是不是就可以用这个公式?还有在物理学中,计算电场力做功,也能派上大用场呢!”这公式在解决实际问题的时候可厉害啦!比如说,在一个平面直角坐标系中,有两个物体沿着不同的方向运动,要计算它们相互作用的力的大小,用这个公式就能轻松搞定。
而且啊,这公式在解析几何里也经常出现。
比如判断两条直线是垂直还是平行,都可能用到它。
再想想,如果要设计一个机器人的运动轨迹,或者规划无人机的飞行路线,也得靠它来帮忙算出相关的数据。
总之,平面向量数量积的坐标运算公式虽然看起来可能有点复杂,但只要咱们好好理解,多做几道题练练手,就能发现它的妙处,用它解决好多难题,就像拥有了一件超级厉害的武器!希望大家都能把这个公式掌握得牢牢的,在数学的海洋里畅游无阻!。
平面向量的坐标表示与运算一、平面向量的坐标表示平面向量是有大小和方向的量,可以用坐标来表示。
在平面直角坐标系中,以原点为起点,终点为点(x,y)的向量可以表示为:AB = xi + yj其中,i和j分别为x轴和y轴的单位向量。
x和y分别为该向量在x轴和y轴的投影长度。
二、平面向量的运算1. 向量的加法设有两个向量AB = a1i + a2j,CD = b1i + b2j,则两个向量的和为:AB + CD = (a1 + b1)i + (a2 + b2)j即将两个向量的x轴分量和y轴分量分别相加得到新向量的x轴分量和y轴分量。
2. 向量的减法设有两个向量AB = a1i + a2j,CD = b1i + b2j,则两个向量的差为:AB - CD = (a1 - b1)i + (a2 - b2)j即将两个向量的x轴分量和y轴分量分别相减得到新向量的x轴分量和y轴分量。
3. 向量的数量乘法设有一个向量AB = ai + bj,k为实数,则数量乘法的结果为:k * AB = (k * a)i + (k * b)j即将向量的x轴分量和y轴分量都乘以数k得到新向量的x轴分量和y轴分量。
4. 向量的点积设有两个向量AB = a1i + a2j,CD = b1i + b2j,则两个向量的点积为:AB · CD = a1b1 + a2b2即将两个向量的x轴分量和y轴分量分别相乘,然后再相加得到一个数。
5. 向量的叉积设有两个向量AB = a1i + a2j,CD = b1i + b2j,则两个向量的叉积为:AB × CD = (a1b2 - a2b1)k其中,k为垂直于平面的单位向量。
三、平面向量的应用平面向量的坐标表示与运算在几何学、力学、电磁学等领域中有着广泛的应用。
1. 几何学中,平面向量的坐标表示可以简化向量的计算,方便求解几何问题,如求解两条直线之间的夹角、判断两个向量是否垂直等。
2. 在力学中,平面向量的坐标表示与运算常用于描述物体的受力情况。