第3章卡诺循环
- 格式:ppt
- 大小:1.95 MB
- 文档页数:27
物理化学第三章课后答案完整版第三章热⼒学第⼆定律3.1 卡诺热机在的⾼温热源和的低温热源间⼯作。
求(1)热机效率;(2)当向环境作功时,系统从⾼温热源吸收的热及向低温热源放出的热。
解:卡诺热机的效率为根据定义3.2 卡诺热机在的⾼温热源和的低温热源间⼯作,求:(1)热机效率;(2)当从⾼温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出(2)3.3 卡诺热机在的⾼温热源和的低温热源间⼯作,求(1)热机效率;(2)当向低温热源放热时,系统从⾼温热源吸热及对环境所作的功。
解:(1)(2)3.4 试说明:在⾼温热源和低温热源间⼯作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功r W 等于不可逆热机作出的功-W 。
假设不可逆热机的热机效率⼤于卡诺热机效率,其结果必然是有热量从低温热源流向⾼温热源,⽽违反势热⼒学第⼆定律的克劳修斯说法。
证:(反证法)设 r ir ηη>不可逆热机从⾼温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向⾼温热源放热则若使逆向卡诺热机向⾼温热源放出的热不可逆热机从⾼温热源吸收的热相等,即总的结果是:得⾃单⼀低温热源的热,变成了环境作功,违背了热⼒学第⼆定律的开尔⽂说法,同样也就违背了克劳修斯说法。
3.5 ⾼温热源温度,低温热源温度,今有120KJ的热直接从⾼温热源传给低温热源,求此过程。
解:将热源看作⽆限⼤,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的⾼温热源及的低温热源之间。
求下列三种情况下,当热机从⾼温热源吸热时,两热源的总熵变。
(1)可逆热机效率。
(2)不可逆热机效率。
(3)不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义因此,上⾯三种过程的总熵变分别为。
3.7 已知⽔的⽐定压热容。
今有1 kg,10℃的⽔经下列三种不同过程加热成100 ℃的⽔,求过程的。
(1)系统与100℃的热源接触。
热力学循环卡诺循环在物理学的广袤领域中,热力学循环如同精巧的舞步,其中卡诺循环更是这华丽舞台上的璀璨明星。
让我们一同揭开卡诺循环神秘的面纱,探寻其背后的科学奥秘。
想象一下,有一个热机,它就像一个不知疲倦的工作者,不断地从高温热源吸收热量,对外做功,然后再向低温热源排放剩余的热量。
卡诺循环就是描述这样一个理想热机工作过程的奇妙模型。
卡诺循环由四个步骤组成,每一步都有着独特的作用和意义。
第一步,等温膨胀。
热机与高温热源接触,从高温热源吸收热量,同时体积膨胀,对外做功。
这个过程就像是一个充满活力的运动员,在充足的能量供给下,尽情地施展自己的力量。
在等温膨胀过程中,温度保持不变,而内能的增加全部转化为对外做的功。
第二步,绝热膨胀。
此时热机与热源隔绝,继续膨胀,由于没有热量的交换,内能的减少全部用来对外做功。
这就好比运动员在没有能量补充的情况下,依靠之前积累的能量继续发挥,但力量逐渐减弱。
第三步,等温压缩。
热机与低温热源接触,被压缩的同时向低温热源放出热量。
这就好像运动员在经历了高强度的运动后,需要休息和调整,释放出多余的能量。
第四步,绝热压缩。
热机再次与外界隔绝,被压缩回到初始状态,外界对其做功,使其内能增加。
这类似于运动员通过刻苦的训练,储备能量,为下一轮的精彩表现做好准备。
卡诺循环之所以如此重要,是因为它为我们揭示了热机效率的极限。
卡诺定理告诉我们,在相同的高温热源和低温热源之间工作的一切可逆热机,其效率都相等,且等于卡诺热机的效率;而在相同的高温热源和低温热源之间工作的一切不可逆热机,其效率都小于可逆热机的效率。
那么,卡诺热机的效率究竟取决于什么呢?答案是高温热源和低温热源的温度。
卡诺热机的效率可以表示为 1 (低温热源温度/高温热源温度)。
这意味着,要提高热机的效率,要么提高高温热源的温度,要么降低低温热源的温度。
卡诺循环的意义不仅仅局限于理论研究,它在实际的工程应用中也具有重要的指导价值。
例如,在发电厂中,提高蒸汽的温度和降低冷凝器的温度,都可以提高热机的效率,从而实现更高效的能源利用。
概述卡诺循环摘要:本文简述了卡诺当时是如何提出这一理想循环过程的,以及卡诺热机理论---热机只能在具有温差的两个热源之间工作;热机的效率于工作介质无关而主要取决于两个热源之间的温差。
卡诺循环的基本原理,P-V图,热机效率。
卡诺循环是理想化的可逆循环,其效率是最高的,但是实际热机的效率都比理想化的可逆卡诺热机效率低得多。
关键词:卡诺循环;绝热过程;卡诺循环原理;P-V图;热机效率一、卡诺循环的提出尼古拉·雷奥纳德·卡诺(Nicolas Leonard Sadi Carnot,1796~1823)生于巴黎,是法国物理学家、军事工程师。
其父L.卡诺是法国有名的数学家、将军和政治活动家,学术上很有造诣,对卡诺的影响很大。
卡诺提出了作为热力学重要理论基础的卡诺循环和卡诺定理,从理论上解决了提高热机效率的根本途径。
1832年8月24日卡诺因染霍乱症在巴黎逝世,年仅36岁。
按照当明的防疫条例,霍乱病者的遗物一律付之一炬。
卡诺生前所写的大量手稿被烧毁,幸得他的弟弟将他的小部分手稿保留了下来,其中有一篇是仅有21页纸的论文----《关于适合于表示水蒸汽的动力的公式的研究》,其余内容是卡诺在1824-1826年间写下的23篇论文。
卡诺当时是如何提出这一理想循环过程的?他研究的方法是什么?具体地说就是,为什么卡诺认为理想热机的循环过程中,从高、低温热源吸、放热过程一定要是等温过程?卡诺为何要选气体(理想)作为理想热机的工质?具体分析如下:随着蒸汽机的发明,第一次工业革命在欧洲逐渐兴旺起来。
蒸汽机在法国和英国等国家创造了极大的价值,使工业化生产极大的代替了手工生产,增加了国力和财力。
作为法国人的卡诺亲自经历了这次巨大的变革,然而,他也切实的看到人们仅仅是能运用热机代替人力,但是对热机效率及工作原理的理论认识还不够深入。
蒸汽机发明以后,它的效率很低。
到18世纪末,只有3%左右,即有约97%的热量得不到利用。
卡诺循环的四个过程公式卡诺循环是热力学中一个重要的理论模型,用于描述热机的工作原理。
它由四个过程组成,分别是等温膨胀、绝热膨胀、等温压缩和绝热压缩,每个过程都有着特定的公式描述。
一、等温膨胀在卡诺循环中,等温膨胀是指系统接收热量并且温度保持不变的过程。
在等温膨胀过程中,系统从高温热源吸收热量,然后通过对外界做功的方式使得系统体积增加。
这个过程符合理想气体状态方程,即PV=常数。
其中,P表示系统的压力,V表示系统的体积。
二、绝热膨胀绝热膨胀是指系统在没有与外界交换热量的情况下体积增加的过程。
在这个过程中,系统对外界做功,从而降低了系统的内能。
绝热膨胀的过程可以使用绝热方程来描述,即PV^γ=常数。
其中,γ表示绝热指数,对于大多数理想气体,其绝热指数约等于1.4。
三、等温压缩等温压缩是指系统释放热量,并且温度保持不变的过程。
在等温压缩中,系统对外界做功,使得系统体积减小。
这个过程同样符合理想气体状态方程,即PV=常数。
四、绝热压缩绝热压缩是指系统在没有与外界交换热量的情况下体积减小的过程。
在这个过程中,系统对外界做功,增加了系统的内能。
绝热压缩的过程可以使用绝热方程来描述,即PV^γ=常数。
以上就是卡诺循环的四个过程公式的简要介绍。
这些公式描述了热机在卡诺循环中的工作原理,帮助我们理解热力学的基本规律。
了解和掌握这些公式,有助于我们分析和优化热力系统的工作效率,提高能源利用率。
要注意的是,在实际应用中,由于各种因素的影响,热机的工作过程往往不能完全符合卡诺循环的理论模型。
因此,我们需要结合实际情况进行专业的工程设计和运行优化,以实现最佳的能量转换效果。
总结:卡诺循环的四个过程分别是等温膨胀、绝热膨胀、等温压缩和绝热压缩。
每个过程都有着特定的公式来描述,其中等温过程符合理想气体状态方程,绝热过程符合绝热方程,这些公式帮助我们理解热机的工作原理和热力学规律。
在实际应用中,需要考虑实际情况进行工程设计和优化来提高能源利用效率。