计算机图形学_曲线的生成
- 格式:ppt
- 大小:1.11 MB
- 文档页数:27
任课教师:李陶深教授tshli@任课教师:李陶深教授tshli@12 曲线的基本概念Bézier 曲线5曲线与曲面的概述 4 3 6 B 样条曲线NURBS 曲线 常用的曲面Bézier曲线是由法国雷诺汽车公司工程师的Pierre Bézier在1971年发明的一种构造样条曲线和曲面的方法, 用来进行雷诺汽车的车身设计, 现在Bézier曲线曲面广泛应用在计算机图形学中的外形设计, 以及字体表示中.◆Bé◆在折线的各顶点中,只有第一点和最后一点在曲线上且作为曲线的起始处和终止处,其他的点用于控制曲线的形状及阶次。
◆曲线的形状趋向于多边形折线的形状,要修改曲线,只要修改折线的各顶点就可以了。
多边形折线又称的控制多边形,其顶点称为控制点。
6.3 Bézier 曲线—曲线的定义Bézier 曲线是由一组控制顶点和Bernstein 基函数混合(blending)得到的曲线.()[],0(), 0,1n i i n i t B t t ==∈∑C P 其中, P i (i =0,1,…,n)称为控制顶点; 顺序连接控制顶点生成控制多边形.()()[],1,0,1n i i i i n n B t C t t t -=-∈为Bernstein 基函数.Bézier 曲线的次数, 就是Bernstein 基函数的次数; Bézier 曲线的阶数, 就是控制顶点的个数. 阶数为次数加1.6.3 Bézier曲线—定义(2)给定空间n+1个点的位置矢量P i(i=0,1,2,…,n),则n次Bézier曲线上各点坐标的插值公式定义为:B i,n(t)是n次Bernstein基函数P i构成该Bézier曲线的特征多边形6.3 Bézier曲线—曲线的定义(3)Bézier曲线曲线的形状趋于特征多边形的形状①正性②权性由二项式定理可知:③对称性: 若保持原全部顶点的位置不变, 只是把次序颠倒过来, 则新的Bézier曲线形状不变, 但方向相反。
希尔伯特曲线是一种连续的空间填充曲线,由德国数学家David Hilbert在19世纪90年代提出。
它是一种在二维平面上构造的路径,通常被用于计算机图形学、信号处理和数值分析等领域。
希尔伯特曲线具有以下特点:1.连续性:希尔伯特曲线是连续的,这意味着在曲线上的任何一点都可以平滑地过渡到其他点。
2.空间填充性:希尔伯特曲线具有空间填充性,即曲线可以填充整个平面或空间,使得相邻曲线之间没有空隙。
3.自相似性:希尔伯特曲线具有自相似性,即曲线的不同部分以相同的方式重复出现。
这意味着希尔伯特曲线可以通过递归地分割和细化来生成更小的曲线段。
4.计算效率:希尔伯特曲线具有较高的计算效率,因为它可以通过递归算法快速生成。
希尔伯特曲线的生成算法通常采用分治策略,将平面分成若干个小正方形,然后递归地生成填充这些正方形的曲线段。
希尔伯特曲线分为三种类型:1阶、2阶和n阶。
1阶希尔伯特曲线是最简单的,它仅包含一个正方形;2阶希尔伯特曲线包含4个正方形,并以“H”形状连接;n阶希尔伯特曲线包含2^n个正方形,并以更复杂的模式连接。
希尔伯特曲线的生成过程可以通过程序实现。
下面是一个简单的Python代码示例,用于生成2阶希尔伯特曲线:pythonimport matplotlib.pyplot as pltimport numpy as npdef hilbert_curve(level, x, y, direction):if level == 0:returnelse:x1 = x + 0.5y1 = y + 0.5x2 = x1 - 0.5 * directiony2 = y1 + 0.5 * directionx3 = x - 0.5 * directiony3 = y + 0.5 * directionx4 = x + 0.5 * directiony4 = y3 - 0.5 * directionplt.plot([x, x1, x2, x3, x4, x], [y, y1, y2, y3, y4, y], "b") # "b"代表蓝色plt.pause(0.05)hilbert_curve(level - 1, x1, y1, direction)hilbert_curve(level - 1, x2, y2, direction)hilbert_curve(level - 1, x3, y3, direction)hilbert_curve(level - 1, x4, y4, direction)def draw_hilbert(level):plt.figure(figsize=(5, 5))plt.axis("off") # 不显示坐标轴x = 0.5y = 0.5direction = 1 # 正方向或负方向hilbert_curve(level, x, y, direction) plt.show()。
计算机图形学实验报告实验名称 Bezier曲线和样条曲线的生成算法评分实验日期年月日指导教师姓名专业班级学号一、实验目的1、复习Bezier曲线和B样条曲线的参数表示法。
2、编程实现用二次Bezier曲线绘制。
3、编程实现用三次Bezier曲线绘制和分段光滑Bezier曲线图形的绘制。
4、用三次B样条函数绘制曲线。
二、实验要求1、编程实现在屏幕上绘制出两次Bezie曲线的几何图形和特征多边形图形,对于直线和曲线设置不同的线形和颜色。
2、现在屏幕上绘制出三次Bezie曲线的几何图形和特征多边形图形,对于直线和曲线设置不同的线形和颜色。
1、编程实现用分段三次Bezier曲线绘制光滑Bezier曲线图形。
1、编程实现在屏幕上绘制出三次B样条函数绘制曲线。
2、编程实现在屏幕上绘制出光滑连接的三次B样条曲线。
三、关键算法及实现原理1、二次Bezier曲线的计算公式为:P(t)=(P0-2P1+P2)t2+(-2P0+2P1)t+P0X(t)=(X0-2X1+X2)t2+(-2X0+2X1)t+X0Y(t)=(Y0-2Y1+Y2)t2+(-2Y0+2Y1)t+Y0其中P0、P1、P2为三个已知的点,坐标分别为(X0、Y0)、(X1、Y1)、(X1、Y2)。
2、次Bezier曲线的计算公式为:P(t)=(-P0+3P1-3P2+P3)t3+(3P0-6P1+3P2)t2+(-3P0+3P1)t+P0X(t)= (-X0+3X1-3X2+X3)t3+(3X0-6X1+3X2)t2+(-3X0+3X1)t+X0Y(t)= (-Y0+3Y1-3Y2+Y3)t3+(3Y0-6Y1+3Y2)t2+(-3Y0+3Y1)t+Y0其中P0、P1、P2、P3为四个已知的点,坐标分别为(X0、Y0)、(X1、Y1)、(X1、Y2) 、(X3、Y3)。
3、三次B样条函数绘制曲线的计算公式为:P(t)=[(-P0+3P1-3P2+3P3)t3+(3P0-6P1+3P2)t2+(-3P0+3P2)t+(P0+4P1+P2)]/6X(t)=[(-X0+3X1-3X2+3X3)t3+(3X0-6X1+3X2)t2+(-3X0+3X2)t+(X0+4X1+X2)]/6Y(t)=[(-Y0+3Y1-3Y2+3Y3)t3+(3Y0-6Y1+3Y2)t2+(-3Y0+3Y2)t+(Y0+4Y1+Y2)]/6其中P0、P1、P2、P3为四个已知的点,坐标分别为(X0、Y0)、(X1、Y1)、(X1、Y2) 、(X3、Y3)。
贝塞尔曲线(Bezier Curve)和B样条(B-Spline)是计算机图形学中常用的两种曲线生成方法,它们在图形设计、动画制作、CAD软件等领域被广泛应用。
本文将从贝塞尔曲线和B样条的生成原理入手,深入探讨它们的内在机制和应用。
一、贝塞尔曲线的生成原理贝塞尔曲线是一种由法国工程师皮埃尔·贝塞尔(Pierre Bézier)于1962年在汽车工业中首次引入的曲线生成方法。
其生成原理基于一组控制点来描述曲线的形状,这组控制点通过线性插值的方式来确定曲线的路径。
贝塞尔曲线的生成过程可以简要描述如下:1. 定义控制点:从给定的控制点集合中选择若干个点作为曲线的控制点。
2. 插值计算:根据控制点的位置和权重,通过插值计算得到曲线上的点。
3. 曲线绘制:利用插值计算得到的曲线上的点,进行绘制来呈现出贝塞尔曲线的形状。
在具体应用中,贝塞尔曲线的生成可以通过线性插值、二次插值和三次插值等不同插值方式来实现,其中三次插值的贝塞尔曲线应用最为广泛,其生成原理更为复杂,但也更为灵活。
二、B样条的生成原理B样条(B-Spline)是另一种常用的曲线生成方法,在实际应用中具有一定的优势。
B样条的生成原理与贝塞尔曲线不同,它是基于多项式函数的分段插值来描述曲线的形状。
B样条的生成过程可以简要描述如下:1. 定义控制点和节点向量:B样条需要定义一组控制点和一组节点向量(Knot Vector)来描述曲线的形状。
2. 基函数计算:根据节点向量和控制点,计算出关联的基函数(Basis Function)。
3. 曲线计算:利用基函数和控制点的权重,通过计算得到曲线上的点。
相比于贝塞尔曲线,B样条更为灵活,可以更精细地描述曲线的形状,并且能够进行局部编辑,使得曲线的变形更加方便。
三、应用比较与总结贝塞尔曲线和B样条是两种常用的曲线生成方法,它们各自具有一些优势和劣势,在实际应用中需要根据具体情况做出选择。
1. 灵活性比较:B样条相对于贝塞尔曲线更加灵活,能够更精细地描述曲线的形状,并且能够进行局部编辑,使得曲线的变形更加方便。
12 曲线的基本概念Bézier 曲线5曲线与曲面的概述 4 3 6 B 样条曲线NURBS 曲线 常用的曲面在工程上经常遇到的曲线和曲面有两种:◆简单曲线和曲面函数方程或参数方程直接给出;◆自由曲线用二次混合曲线或三次曲线。
曲线曲面描述方法的发展: 1963曲线曲面1971线形状1972条曲线曲面1975方法1991何形状的唯一数学方法☐非参数表示:显式表示,坐标变量之间一一对应隐式表示☐非参数表示存在问题:不具有几何不变性,形状与坐标轴相关斜率无穷大非平面曲线、曲面难以用常系数的非参数化函数表示 不便于计算与编程参数表示:曲线上任一点的坐标均表示成给定参数的函数示,曲线上一点的笛卡尔坐标:曲线上一点坐标的矢量表示:p对参数变量规格化:例子:直线段的参数表示曲面的参数表示空间曲面xyzP☐参数表示法的优点◆曲线的形状与坐标系无关。
◆容易确定曲线的边界。
参数规格化区间或为◆曲线的绘制简单。
当参数序列组成的连线就是方程代表的曲线。
◆易于变换。
对参数方程表示的曲线或曲面进行几何变换或投影变换,只需要对方程的系数变换即可◆易于处理斜率无穷大的情形。
◆易于用矢量和矩阵表示几何分量,简化了计算隐式表示的曲线称为隐式曲线 表示形式空间隐式曲线表示为联立方程组 注意参数表示与隐式表示的比较参数表示易于求值给定一个参数值,代入参数方程对应的参数曲线上的点;得到隐式曲线上的点则非常困难。
参数表示难于判断内外对于隐式曲线f(x线12 曲线的基本概念Bézier 曲线5曲线与曲面的概述 4 3 6 B 样条曲线NURBS 曲线 常用的曲面☐参数曲线的表示参数的、连续的、单值的函数:x=x(t), y=y(t), z=z(t), 0<=t<=1 ☐位置矢量p(t)=[x(t), y(t), z(t)]曲率:数学上表明曲线在某一点的弯曲程度的数值.几何意义是曲线的单位切矢对弧长的转动率。
100椭圆的生成实际上是圆的特殊情况,那么中点Bresenham算法是否能够用于圆弧的生成呢?答案是肯定的而且更为简便,圆弧具有八方对称性,因此只需要画出1/8圆弧就可以了。
大家可以进一步思考如何利用中点Bresenham算法来画出圆弧,以及和前面介绍的逐点比较法和DDA 方法生成圆弧的特征进行比较。
4.3.3 规则曲线的生成所谓规则曲线就是一条曲线可以用标准代数方程来描述。
解析几何已经把几何问题和代数问题紧密地结合了起来,例如,在平面直角坐标系内,如果一条曲线上的点都能满足某种条件,而满足该条件的点又均位于这条曲线上,那么我们就可以把这种对应关系写成一个确定的函数式:y = f (x)这个函数式就称为曲线的方程;同样,该曲线即为这个方程的曲线。
例如,圆的方程可写成x2+y2=R2,椭圆的方程可以写成22221x ya b+=。
同样,还可以写出比如双曲线、抛物线等的方程。
在绘制这些曲线的时候,我们可以借助各种标准工具,比如画圆可以用圆规,画椭圆也可以用椭圆规。
但对于非圆曲线,绘制时的一般方法是借助曲线板。
我们先在平面上确定一些满足条件的、位于曲线上的坐标点,然后借用曲线板把这些点分段光滑地连接成曲线。
绘出的曲线的精确程度,则取决于我们所选择的数据点的精度和数量。
坐标点的精度越高,点的数量取得越多,则连成的曲线越接近于理想曲线。
其实,以上所说的方法就是用计算机来绘制各类曲线的基本原理。
图形输出设备的基本动作是显示像素点或者是画以步长为单位的直线段,因此从图形显示器和绘图仪上输出的图形,一般除了水平线和垂直线以外,其他的各种线条,包括直线和曲线,都是由很多的短直线构成的锯齿形线条组成的。
从理论上讲,绝对光滑的理想曲线是绘不出来的。
这就告诉了我们一个绘制任何曲线的基本原理,就是要把曲线离散化,把它们分割成很多短直线段,用这些短直线段组成的拆线来逼近曲线。
至于这些短直线段取多长,则取决于图形输出设备的精度和我们绘制的曲线所要求的精度,但我们所要求达到的精度不能逾越图形设备实际具有的精度。
de Boor-Cox算法是用于计算B样条曲线的一种算法,B样条曲线是一种插值技术,通常用于计算机辅助设计和计算机图形学等领域。
该算法的基本步骤如下:
1. 定义节点向量:首先定义一个节点向量,它包含了曲线上的所有节点。
节点向量通常由一组有序的点组成,这些点将曲线划分为多个子区间。
2. 计算混合函数:使用Cox-de Boor递归公式来计算混合函数。
混合函数是一种特殊的基函数,用于将控制点的影响权重分配给每个子区间。
3. 计算B样条曲线:将混合函数与控制点相乘,然后将结果相加,得到B样条曲线的表达式。
这个过程被称为“逼近”,因为B样条曲线是通过逼近一组控制点来生成的。
4. 更新节点向量:在计算过程中,如果节点向量发生变化,需要更新节点向量。
更新的方式可以是移动节点、插入节点或删除节点。
5. 重复步骤2-4:重复步骤2-4,直到达到所需的精度或迭代次数。
需要注意的是,de Boor-Cox算法是一种递归算法,因此对于大型数据集可能会导致计算时间较长。
此外,该算法还需要处理一些特殊情况,例如边界条件和节点向量更新等问题。
occ b样条生成曲线
B样条(B-spline)是一种常用的曲线生成方法,它可以用于进行曲线和曲面的建模。
B样条曲线的生成过程涉及控制点、节点向量和基函数的计算。
下面我将从多个角度来解释B样条生成曲线的过程。
首先,B样条曲线的生成需要确定控制点。
控制点是影响曲线形状的关键点,它们的位置决定了曲线的走向。
通常情况下,我们会根据设计需求手动或者通过算法确定这些控制点的位置。
其次,B样条曲线的生成还涉及到节点向量的确定。
节点向量是一个非递减的序列,它决定了曲线上各个控制点的影响范围。
节点向量的确定需要满足一定的规则,比如在曲线端点处重复出现的节点称为多重节点,它会影响曲线的曲率。
最后,B样条曲线的生成还需要计算基函数。
基函数是描述控制点对曲线影响程度的函数,它们通常是局部支撑的,也就是说只在某个区间内起作用。
常见的基函数包括线性、二次和三次样条函数,它们的选择会影响曲线的光滑度和形状。
总的来说,B样条曲线的生成过程是一个综合考虑控制点、节点向量和基函数的计算过程。
通过合理的设置这些参数,我们可以得到符合设计要求的曲线形状。
这种方法在计算机图形学、CAD设计等领域得到了广泛的应用。
希望这个回答能够帮助你更好地理解B样条曲线的生成过程。
计算机形学曲线与曲面的生成与绘制算法计算机形学中的曲线与曲面生成与绘制算法是图形学领域中的关键技术之一。
利用算法可以生成各种各样的曲线与曲面,用于创建、编辑和渲染三维模型。
本文将介绍几种常见的曲线与曲面生成与绘制算法。
一、贝塞尔曲线与贝塞尔曲面算法贝塞尔曲线与贝塞尔曲面是计算机形学中最常用的曲线与曲面表示方法之一。
贝塞尔曲线与曲面基于一组控制点,通过调整这些控制点的位置和权重,可以生成平滑且可控制形状的曲线与曲面。
1. 贝塞尔曲线算法贝塞尔曲线算法通过使用插值多项式来定义曲线。
一阶贝塞尔曲线由两个控制点定义,而二阶贝塞尔曲线则需要三个控制点。
一般而言,n阶贝塞尔曲线需要n+1个控制点。
通过调整控制点的位置和权重,可以生成不同形状的贝塞尔曲线。
2. 贝塞尔曲面算法贝塞尔曲面算法是在二维情况下的推广,可以用于生成三维曲面。
类似于贝塞尔曲线,贝塞尔曲面也是通过在空间中插值来生成的。
通过调整控制点的位置和权重,可以创造出各种形状的曲面。
贝塞尔曲面常用于建模和渲染三维物体。
二、B样条曲线与曲面算法B样条曲线与曲面是另一种重要的曲线与曲面表示方法。
与贝塞尔曲线相比,B样条曲线具有更高的灵活性和平滑性。
B样条曲线通过使用基函数的加权和来定义曲线。
不同的基函数产生不同的曲线形状。
1. B样条曲线算法B样条曲线算法中,每个控制点都有一个与之关联的基函数,通过调整控制点的位置和权重,可以改变曲线的形状。
B样条曲线可以用于在三维空间中创建平滑的曲线,被广泛应用于计算机辅助设计和动画制作等领域。
2. B样条曲面算法B样条曲面算法是在二维情况下的推广,可以用于生成三维曲面。
B样条曲面通过在两个方向上使用基函数的加权和来定义曲面。
通过调整控制点的位置和权重,可以实现曲面的形状调整。
B样条曲面广泛应用于计算机辅助设计、虚拟现实和游戏开发等领域。
三、其他曲线与曲面生成与绘制算法除了贝塞尔曲线和B样条曲线,还存在其他一些曲线和曲面生成与绘制算法,如NURBS曲线与曲面算法、Catmull-Rom曲线与曲面算法等。
计算机图形学实验(全)实验1 直线的绘制实验目的1、通过实验,进一步理解和掌握DDA和Bresenham算法;2、掌握以上算法生成直线段的基本过程;3、通过编程,会在TC环境下完成用DDA或中点算法实现直线段的绘制。
实验环境计算机、Turbo C或其他C语言程序设计环境实验学时2学时,必做实验。
实验内容用DDA算法或Besenham算法实现斜率k在0和1之间的直线段的绘制。
实验步骤1、算法、原理清晰,有详细的设计步骤;2、依据算法、步骤或程序流程图,用C语言编写源程序;3、编辑源程序并进行调试;4、进行运行测试,并结合情况进行调整;5、对运行结果进行保存与分析;6、把源程序以文件的形式提交;7、按格式书写实验报告。
实验代码:DDA:# include abs(dy))epsl=abs(dx);elseepsl=abs(dy);xIncre=(float)dx/(float)epsl;yIncre=(float)dy/(float)epsl;for(k=0;k#includevoid BresenhamLine(int x0,int y0,int x1,int y1,int color) {int x,y,dx,dy,e;dx=x1-x0;dy=y1-y0;e=-dx;x=x0;y=y0;while(x0){y++;e=e-2*dx;}}}main(){int gdriver ,gmode ; gdriver = DETECT;initgraph( BresenhamLine(0, 0 , 120, 200,5 );getch ( );closegraph ( );}实验2 圆和椭圆的绘制实验目的1、通过实验,进一步理解和掌握中点算法;2、掌握以上算法生成椭圆或圆的基本过程;3、通过编程,会在TC环境下完成用中点算法实现椭圆或圆的绘制。
实验环境计算机、Turbo C或其他C语言程序设计环境实验学时2学时,必做实验。