列方程解应用题及相遇问题
- 格式:docx
- 大小:22.29 KB
- 文档页数:6
一、行程问题(一)追击和相遇问题1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,甲地到乙地的距离是多少千米?2、某人从家里骑自行车到学校。
若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?3、在800米跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米,•两人同时同地同向起跑,多少分钟后俩人相遇?4、一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?(二)行船问题1、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?2、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离?二、工程问题1、一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,则乙共需要几天完成?2、某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?3、已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?4、整理一批图书,由一个人做要40小时完成。
现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。
假设这些人的工作效率相同,具体先安排多少人工作?三、比赛积分问题1、某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分。
列方程解应用题——相遇问题1、小李和小刚家距离900米,两人同时从家出发相向行,小李每分走60米,小刚每分走90米,几分钟后两人相遇?2、小明和小刚家距离900米,两人同时从家出发相向行,5分钟后两人相遇,小刚每分走80米,小明每分走多少米?3、王强和赵文从相距2280米的两地出发相向而行,王强每分行60米,赵文每分行80米,王强出发3分钟后赵文出发,几分钟后两人相遇?4、两辆车从相距360千米的两地出发相向而行,甲车先出发,每小时行60千米,1小时后乙车出发,每小时行40千米,乙车出发几小时两车相遇?两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间?6、甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相遇,求两人的速度。
7、甲乙二人从相距100千米的两地出发相向而行,甲先出发1小时,他们在乙出发4小时后相遇,已知甲比乙每小时多行2千米,求两人的速度。
8、AB两地相距900米。
甲乙二人同时从A点出发,同向而行,甲每分行70米,乙每分行50米,甲到达A点后马上返回与乙在途中相遇,两人从出发到相遇一共用了多少时间?9、甲乙两地相距640千米。
一辆客车和一辆货车同时从甲地出发,同向而行,客车每小时行46千米,货车每小时34千米,客车到达乙地后马上返回与货车在途中相遇,问从出发到相遇一共用了多少时间?*10、甲每分钟走70米,乙每分钟走60米,丙每分钟走50米,甲从A地,乙丙从B地同时出发,相向而行,甲在遇到乙2分钟后又遇见丙,求AB两地距离。
*11、AB两地相距1120千米,甲乙两列火车同时从两地出发,相向而行。
甲列火车速度是60千米每小时,乙列火车的速度是48千米每小时,乙列火车出发时,从火车里飞出一只鸽子,以每小时80千米的速度向甲列火车飞去,当鸽子和甲列火车相遇时,乙列火车距离A 地还有多远?*12、甲乙二人沿400米的圆形跑道跑步,他们从同一地点同时出发,背向而行。
列方程解应用题相遇问题题型四1、两地铁路线长840千米,甲、乙两列火车同时从两地相对开出,甲车每时行驶120千米,乙车每时行驶90千米,经过几小时两车相遇2、一列快车和一列慢车同时从相距600千米的两地相向而行,经过5小时相遇,已知快车每小时行千米,慢车每小时行多少千米;3、两辆汽车从相距400千米的两地同时相对开出,3小时后还相距10千米,已知一辆汽车每小时行驶55千米,求另一辆汽车的速度。
4、AB两地相距400千米。
一列客车与一列货车同时从AB两地出发,相向而行,小时后两车还距50千米,客车每小时走80千米,货车每小时走多少千米%5、小明和小东同时从相距270米的两地出发,相对而行,小明每分钟行50米,小东每分钟行40米,两人几分钟相遇6、两地相距5600米,两车同时出发相向而行,摩托车每分钟行600米,自行车每分钟行驶200米。
几分钟相遇7、甲乙两地相距600千米,两车从两地同时出发相向而行,快车每分钟行6千米,6分钟相遇,慢车每分钟行多少米|8、甲乙两城相距千米。
两车同时出发相向而行,快车每小时行81千米,慢车每小时66千米,几小时相遇9、甲乙两车从相距270千米的两城同时出发相向而行,4小时相遇,快车是慢车的速度的倍,求快车慢车的速度|10、两地相距988千米,两车从两地同时出发相向而行,小时相遇,甲车每小时行93千米,乙车每小时行多少千米11、AB两地相距300千米,两车封鳖从两地同时出发,相向而行。
各自到达目的地后,又立即返回,即过8小时后他们第二次相遇,已知甲车每小时行45千米,乙车行多少千米12、甲乙两地相距700千米,甲乙两车分别从两地同时出发,相向而行,甲车每小时行85千米,乙车每小时行65千米,两车几小时相遇。
工程应用题知识点睛1.相遇问题:应加上括号例题精讲【例1】一件工作,甲做9天可以完成,乙做6天可以完成.现在甲先做了3天,余下的工作由乙继续完成.乙需要做几天可以完成全部工作?【例2】某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?【例3】一件工程,甲队单独做10天完成,乙队单独做30天完成.现在两队合作,其间甲队休息了2天,乙队休息了8天(不存在两队同一天休息).问开始到完工共用了多少天时间?【例4】一项工程,甲队单独做20天完成,乙队单独做30天完成.现在他们两队一起做,其间甲队休息了3天,乙队休息了若干天.从开始到完成共用了16天.问乙队休息了多少天?【例5】一件工作,甲独做要12天,乙独做要18天,丙独做要24天.这件工作由甲先做了若干天,然后由乙接着做,乙做的天数是甲做的天数的3倍,再由丙接着做,丙做的天数是乙做的天数的2倍,终于做完了这件工作.问总共用了多少天?【例6】已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完,对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?【例7】有一个水池用两个水管注水。
如果单开甲管,2小时30分注满水池,如果单开乙管,5小时注满水池。
(1)如果甲、乙两管先同时注水20分钟,然后由乙单独注水。
问还需要多少时间才能把水池注满?(2)假设在水池下面安装了排水管丙管,单开丙管3小时可以把一满池水放完。
如果三管同时开放,多少小时才能把一空池注满水?灵机一动某车间加工30个零件,甲工人单独做,能按计划完成任务,乙工人单独做能提前一天半完成任务,已知乙工人每天比甲工人多做1个零件,问甲工人每天能做几个零件?原计划几天完成?家庭作业1.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?2.单独干某项工程,甲队需100天完成,乙队需150天完成。
小学五年级数学上册列方程解决典型应用题大全,考考孩子!列方程解决典型应用题❖相遇问题1、A、B两地相距840千米,甲、乙两车分别从A、B 两地同时相对开出,甲车每小时行90千米,乙车每小时行120千米。
经过几小时两车相遇?2、甲、乙两辆汽车同时从相距225千米的两地相对开出,经过2.5小时相遇,甲车每小时行48千米,乙车每小时行多少千米?3、甲乙两列火车从相距595千米的两地相对开出。
甲火车每小时行62.5千米,乙火车每小时行55千米,甲火车先出发,2小时后乙火车开出,再经过几小时两车相遇?4、甲、乙两城相距546千米,一列快车从甲城出发,同时一列慢车从乙城开出,两车相向而行。
快车每小时行80千米,是慢车速度的1.6倍,经过多少时间两车相遇?5、甲、乙两辆汽车同时从相距225千米的两地相对开出,经过2.5小时相遇,甲车的速度比乙车的速度多6千米,甲、乙车每小时行多少千米?6、甲、乙两地相距270千米,一辆客车与一辆货车同时从两地相向开出,2小时后相遇。
已知客车的速度是货车的2倍,客车与货车的速度分别是多少?7、甲、乙两城相距315千米,一辆汽车由甲城开往乙城,一辆摩托车同时由乙城开往甲城。
汽车每小时行驶60千米,3小时后两车相距15千米。
摩托车每小时行驶多少千米?❖追及问题1、甲、乙两艘货轮同时从天津开往上海港,经过4小时,甲船落后乙船24.8千米。
甲船每小时行45千米,乙船每小时行多少千米?2、小王和小张同时从A地步行到B地,经过1.5小时后,小王落后小张0.9千米。
已知小王的步行速度是每小时4.8千米,求小张的步行速度是多少?3、甲、乙两人同时从同一地点同向而行,甲每小时行3.9千米,乙每小时行5千米,经过几小时后两人相距1.32千米?4、甲乙两艘轮船同时从上海开往武汉,甲船每小时行24千米,经过8.5小时甲船超过乙船51千米。
乙船每小时行多少千米?❖工程问题1、两个工程队共同修一条200千米的公路,各从一端相向施工,50天就完成了任务。
相遇问题应用题及答案相遇问题应用题及答案相遇问题是指两个运动的物体同时由两地出发相向而行,在途中相遇的问题。
下面我们收集了一些相遇问题的应用题及答案,供大家参考。
计算相遇时间和总路程计算相遇时间的公式是:相遇时间=总路程÷(甲速+乙速);计算总路程的公式是:总路程=(甲速+乙速)×相遇时间。
对于简单的题目,可以直接利用公式进行计算,而对于复杂的题目,则需要进行变通后再利用公式进行计算。
例如:例1:南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解:相遇时间=392÷(28+21)=8(小时)答:经过8小时两船相遇。
例2:XXX和XXX在周长为400米的环形跑道上跑步,XXX每秒钟跑5米,XXX每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解:二人从出发到第二次相遇可以理解为二人跑了两圈。
因此总路程为400×2.相遇时间=(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间。
例3:甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
解:两人在距中点3千米处相遇是正确理解本题题意的关键。
从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此。
相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米。
记住关系式在解决相遇问题时,需要记住以下关系式:1)速度和×相遇时间=相遇路程2)相遇路程÷速度和=相遇时间3)相遇路程÷相遇时间=速度和其中,速度和指的是两人或两车速度的和;相遇时间指的是两人或两车同时开出到相遇所用的时间。
五年级上册数学教案4.4 简易方程(列方程解应用题相遇问题)▏沪教版一、教学内容今天我们要学习的是五年级上册数学的第四章第四节,主要内容是相遇问题。
我们将通过列方程的方式来解决实际问题,让学生掌握用数学方法解决生活中的问题。
二、教学目标1. 学生能够理解相遇问题的实际意义,并会用方程来解决相遇问题。
2. 学生能够通过合作交流,提高解决问题的能力。
3. 培养学生的逻辑思维能力和创新意识。
三、教学难点与重点1. 教学难点:学生如何能够准确地列出方程,求解未知数。
2. 教学重点:学生能够理解相遇问题的本质,并运用方程解决实际问题。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备2. 学具:练习本、笔、量角器五、教学过程1. 实践情景引入:假设甲、乙两地相距100公里,甲车从甲地出发,乙车从乙地出发,两车相向而行,甲车的速度是每小时50公里,乙车的速度是每小时60公里。
问两车几小时后相遇?2. 讲解相遇问题的本质:相遇问题实际上是两个物体在同一时间出发,相向而行,最终在某一点相遇的问题。
3. 列方程解应用题:以实践情景为例,引导学生列出方程。
设两车x小时后相遇,则甲车行驶的距离为50x公里,乙车行驶的距离为60x公里。
因为两车相向而行,所以两车行驶的总距离为100公里。
据此,我们可以列出方程:50x + 60x = 100。
4. 求解未知数:引导学生通过合并同类项、化简等步骤求解方程,得到x的值。
5. 随堂练习:让学生独立解决类似的相遇问题,检验学生对知识的掌握程度。
六、板书设计1. 相遇问题的本质2. 列方程的过程3. 求解未知数的步骤七、作业设计1. 题目:甲、乙两地相距80公里,甲车从甲地出发,乙车从乙地出发,两车相向而行,甲车的速度是每小时40公里,乙车的速度是每小时50公里。
问两车几小时后相遇?2. 答案:两车x小时后相遇,方程为:40x + 50x = 80,求解得:x = 0.8。
列方程解应用题(相遇问题)专项练习班级姓名学号一、基本练习(1) 甲、乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时后两列火车相遇?(2) 两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过2.5小时两车相遇。
两个车站之间的铁路长多少千米?(3) 甲、乙两列火车同时从相距988千米的两地相向而行,经过5.2小时两车相遇。
甲列车每小时行93千米,乙列车每小时行多少千米?二、综合练习(1)一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇。
已知汽车每小时比自行车多行31.5千米,求汽车、自行车的速度各是多少?(2)两地相距270千米,甲、乙两列火车同时从两地相对开出,经过4小时相遇。
已知甲车的速度是乙车的1.5倍,求甲、乙两列火车每小时各行多少千米?(3) 甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖75米;乙队从西往东挖,每天比甲队少挖5米,两队合作8天挖好,这条水渠一共长多少米?(4)甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米。
已知乙船每小时行42千米,甲船每小时行多少千米?(5)师徒两人合作加工520个零件,师傅每小时加工30个,徒弟每小时加工20个,几小时以后还有70个零件没有加工?(6)甲、乙两城相距680千米,从甲城开往乙城的普通客车每小时行驶60千米,2小时后,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?(7)A、B两地相距3300米,甲、乙两人同时从两地相对而行,甲每分钟走82米,乙每分钟走83米,已经行了15分钟,还要行多少分钟才可以相遇?(8)两辆轿车同时从相距535.5千米的甲乙两个城市相向而行。
出租车每小时行48千米。
轿车每小时行78千米。
几小时后两车相遇又相距252千米?(9)甲、乙两列汽车同时从两地出发,相向而行。
七年级数学列方程解应用题基本量之间的关系:路程=速度×时间时间=路程÷速度速度=路程÷时间(1)相遇问题快行距+慢行距=原距速度和×相遇时间=相遇路程注意始发时间和地点(相向)(2)追及问题快行距-慢行距=原距速度差*追及时间=原距 (同向)(3)航行问题顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系.1。
甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里.(1)慢车先开出1小时,快车再开.两车相向而行.问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行多少小时后两车相距600公里?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。
故可结合图形分析。
2。
甲乙两人在同一道路上从相距5千米的A、B两地同向而行,甲的速度为5千米/小时,乙的速度为3千米/小时,甲带着一只狗,当甲追乙时,狗先追上乙,再返回遇上甲,再返回追上乙,依次反复,直至甲追上乙为止,已知狗的速度为15千米/小时,求此过程中,狗跑的总路程是多少?3。
某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时。
A、C两地之间的路程为10千米,求A、B两地之间的路程。
4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.5.已知甲、乙两地相距120千米,乙的速度比甲每小时快1千米,甲先从A地出发2小时后,乙从B地出发,与甲相向而行经过10小时后相遇,求甲乙的速度?6.一队学生去军事训练,走到半路,队长有事要从队头通知到队尾,通讯员以18米/分的速度从队头至队尾又返回,已知队伍的行进速度为14米/分。
列方程解应用题中常用的基本等量关系1.行程问题:(1)追及问题:追及问题是行程问题中很重要的一种,它的特点是同向而行。
这类问题比较直观,画线段图便于理解、分析。
其等量关系式是:两者的行程差=开始时两者相距的路程;路程=速度×时间;速度=;时间=。
(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。
这类问题的等量关系是:双方所走的路程之和=总路程。
(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速。
顺风速度=无风速度+风速度逆风速度=无风速度-风速度2.工程问题:工作效率×工作时间=工作量.3.浓度问题:溶液质量×浓度=溶质质量.4.教育储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金。
②利息:银行付给顾客的酬金叫做利息。
③本息和:本金与利息的和叫做本息和。
④期数:存入银行的时间叫做期数。
⑤利率:每个期数内的利息与本金的比叫做利率。
⑥利息税:利息的税款叫做利息税。
(2)基本关系式①利息=本金×利率×期数②本息和=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)③利息税=利息×利息税率=本金×利率×期数×利息税率。
④税后利息=利息×(1-利息税率)⑤年利率=月利率×12⑥月利率=年利率×。
注意:免税利息=利息5.销售中的盈亏问题:(1)利润=售价-成本(进价);(2);(3)利润=成本×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。
打几折就是按标价的十分之几或百分之几十销售。
6.优化方案问题:在解决问题时,常常需合理安排。