结构力学中的位移法
- 格式:ppt
- 大小:2.65 MB
- 文档页数:54
结构力学第8章位移法位移法是结构力学中一种常用的分析方法。
它基于结构物由刚性构件组成的假设,通过计算结构在外力作用下产生的位移和变形,进而推导出结构的反力和应力分布。
位移法的基本思想是将结构的局部位移组合成整体位移,通过建立位移和反力之间的关系,解决结构的力学问题。
位移法的分析步骤通常包括以下几个方面:1.建立结构的整体位移函数。
位移函数是位移法分析的基础,通过解结构的运动方程建立结构的位移与自由度之间的关系。
2.应用边界条件。
根据边界条件,确定结构的支座的位移和转角值。
支座的位移和转角值可以由结构的约束条件和外力产生的位移计算得出。
3.构建位移方程组。
将结构的整体位移函数带入到结构的平衡方程中,得到位移方程组。
位移方程组是未知反力系数的线性方程组。
4.解位移方程组。
通过解位移方程组,求解未知反力系数。
可以使用高斯消元法、克拉默法则或矩阵方法等解方程的方法求解。
5.求解反力和应力分布。
通过已知的位移和未知的反力系数,可以计算出结构的反力和应力分布。
这些反力和应力分布可以进一步用于结构的设计和评估。
位移法的优点是适用范围广泛,适合复杂结构的分析。
它可以处理线性和非线性的结构,包括静力学和动力学的分析。
同时,位移法具有较高的精度和准确度,在结构的分析和设计中得到广泛应用。
然而,位移法也存在一些限制。
首先,位移法假设结构是刚性的,忽略了结构的变形和位移过程中的非线性效应。
其次,位移法需要建立适当的位移函数,对于复杂结构来说,这是一个复杂和困难的任务。
此外,位移法在处理大变形和非线性结构时可能会遭遇困难。
综上所述,位移法是结构力学中一种重要的分析方法。
它通过计算结构的位移和变形,推导出结构的反力和应力分布,为结构的设计和评估提供基础。
然而,位移法也存在一些限制,需要在具体的分析问题中谨慎应用。
结构力学——位移法结构力学,位移法结构力学是研究物体受到外力作用时的变形和应力分布规律的学科。
在结构力学中,位移法是一种常用的分析方法,用于解决结构受力变形问题。
位移法是建立在位移场的基础上,通过求解物体的位移场,再根据位移场得到应力场、应变场以及应力分布等信息,从而获得结构的受力变形情况。
位移法的基本原理是微分方程的解析方法。
在位移法中,首先需要确定结构的几何形状、边界条件和外力情况,然后通过应变能原理或变分原理等方法建立物体的弯曲方程或应变能方程。
接下来,在确定了适当的位移函数形式后,将其代入方程中,通过求解微分方程来得到物体的位移场。
在位移法中,常用的位移函数形式包括简单弯曲、直角坐标、梯形分段等。
根据结构问题的具体条件,选择合适的位移函数形式,是位移法分析的一个重要步骤。
在求解位移函数时,通常要满足边界条件和界面连续条件。
边界条件是指结构边界上位移和应力的已知条件,界面连续条件是指相邻物体的位移和应力在界面上连续的条件。
求解位移场后,可以根据位移场求出应变场。
应变场是位移场的导数,反映了物体各点的拉伸和压缩程度。
通过求解应变场,可以进一步求解应力场。
应力场是应变场的导数,反映了物体各点的强度和应力分布情况。
由于应力是物体受力的重要指标,因此通过求解应力场,可以分析出物体受力分布情况,评估结构的强度和稳定性。
位移法在结构力学中具有重要的应用价值。
通过求解位移场,可以全面了解结构受力变形情况,为结构的设计和施工提供依据。
位移法不仅能够分析简单的结构问题,还可以扩展应用到更复杂的结构问题中,如悬索桥、拱桥和空间柱等。
位移法不仅适用于线性问题,还可以应用于非线性问题,如大变形、大位移和材料非线性等。
总之,位移法是结构力学中一种常用的分析方法,通过求解物体的位移场,可以获得结构的应力和变形情况。
位移法不仅能够分析简单的结构问题,还可以应用于复杂的结构问题。
通过位移法的研究,可以更全面地了解结构的受力变形情况,为结构的设计和施工提供依据。
结构力学中的位移法
位移法是基于以下假设的:结构单元之间的约束全部通过边界条件来
体现,结构中的材料是线弹性材料,结构中的每个单元之间是相互独立和
互不干扰的。
位移法的基本思想是首先假设结构的位移场,然后利用位移场的表达
式和边界条件,推导出结构的应力、应变和位移等信息。
具体步骤如下:
1.确定结构的约束条件:根据结构的平衡条件,确定结构各部分之间
的约束关系。
一般包括边界条件和连接条件等。
2.建立位移场:通过将结构的变形分解为一系列位移函数的线性组合,建立位移场。
常用的位移函数包括常数、线性函数、二次函数等。
3.推导位移场的表达式:利用结构的几何关系和材料的力学性质,根
据平衡条件和应力-应变关系,推导出位移场的表达式。
4.边界条件和连接条件:利用结构的边界条件和连接条件,确定位移
场中的待定系数。
5.应力和应变的计算:利用位移场的表达式和应力-应变关系,计算
结构中各点的应力和应变。
6.变形和位移的计算:利用位移场的表达式,计算结构中各点的变形
和位移。
7.校核:通过校核位移场的可行性和合理性,验证所得结果的准确性。
位移法的优点是可以处理各种复杂的边界条件和载荷情况,适用于各
种不规则结构。
但是位移法也存在一些局限性,如要求解一些复杂结构时,可能需要大量的计算和繁琐的推导过程。
总之,位移法是结构力学中一种重要的解决结构问题的方法,通过确定结构的位移场来分析结构的力学性能,具有广泛的应用前景。
在实际工程中,位移法被广泛运用于结构设计和分析中,是一种非常有效的结构分析方法。
结构力学第七章位移法1.引言结构力学是研究结构受力、变形和稳定性的力学分支。
在结构力学中,位移法是一种重要的分析方法,用于求解结构的变形和应力分布。
2.位移法的基本原理位移法是基于以下两个基本原理:(1)弹性体的受力状态可通过满足平衡条件来确定;(2)位移场的连续性条件,即位移场在结构内部要处处连续,边界上要满足给定的边界条件。
3.位移法的基本步骤位移法的基本步骤如下:(1)建立结构的受力模型,包括结构的材料性质、几何形状和边界条件等;(2)选取适当的位移函数形式,以确定位移场;(3)利用平衡方程和满足位移场连续性条件的边界条件,求解未知的位移和受力分布;(4)利用位移和受力分布计算结构的变形和应力分布。
4.位移法的应用位移法广泛应用于各种结构的力学分析,特别是对于复杂的非线性和不规则结构,位移法是一种常用的分析方法。
以下是一些常见的应用:(1)梁的挠曲分析:位移法可以用来求解梁的挠曲问题,通过选取合适的位移函数形式,可以得到梁的弯曲形状和弯矩分布。
(2)柱的稳定性分析:位移法可以用来求解柱的稳定性问题,通过选取合适的位移函数形式,可以得到柱的稳定性临界载荷和稳定形状。
(3)桁架结构的分析:位移法可以用来求解桁架结构的强度和刚度,通过选取合适的位移函数形式,可以得到桁架结构的内力和变形。
(4)地基基础的分析:位移法可以用来求解地基基础的变形和应力分布,通过选取合适的位移函数形式,可以得到地基基础的沉降和周边土体的应力分布。
5.位移法的优缺点位移法作为一种结构力学的分析方法,具有以下优点:(1)位移法适用于各种结构的力学分析,可以求解复杂的非线性和不规则结构问题;(2)位移法具有较强的适用性和灵活性,可以根据实际情况选取不同的位移函数形式;(3)位移法的计算步骤相对简单,易于实现。
然而,位移法也存在一些缺点:(1)位移法需要选取适当的位移函数形式,这对分析结果的准确性有较大影响;(2)位移法的计算过程较为繁琐,需要手动推导和求解方程组,耗费时间和精力。
第十七章位移法求解超静定结构的两种最基本的方法力法适用性广泛,解题灵活性较大。
(可选用各种各样的基本结构)。
位移法在解题上比较规范,具有通用性,因而计算机易于实现。
位移法可分为:手算——位移法电算——矩阵位移法力法位移法力法与位移法最基本的区别:基本未知量不同力法:以多余未知力基本未知量位移法:以某些结点位移基本未知量F PϕBϕB在忽略杆轴向变形和剪切变形的条件下,结点B 只发生角位移ϕB 。
由于结点B 是一刚结点,故汇交于结点B 的两杆的杆端在变形后将发生与结点相同的角位移。
位移法计算时就是以这样的结点角位移作为基本未知量的。
第一节位移法的基本概念BAClhEI 1EI 2首先,附加一个约束使结点B 不能转动,此时结构变为两个单跨超静定梁。
称为位移法的基本结构。
在荷载作用下,可用力法求得两根杆的弯矩图。
由于附加约束阻止结点B 的转动,故在附加约束上会产生一个约束力矩1631l F F P P -=C BAF P316Fl 532FlCAB然后,为了使变形符合原来的实际情况,必须转动附加约束以恢复ϕB 。
两个单跨超静梁在B 端有角位移时的弯矩图,同样可由力法求得。
此时在附加约束上产生约束力矩Bh EI lEI F ϕ⎪⎭⎫ ⎝⎛+=211143ϕB ϕBBA CB lEI ϕ13B h EI ϕ24B hEI ϕ22F PBAC求基本未知量,可分两步完成:1)在可动结点上附加约束,限制其位移,在荷载作用下,附加约束上产生附加约束力;2)转动附加约束使结点产生角位移ϕB ,使结构发生与原结构一致的结点位移。
ϕBϕB附加刚臂经过上述两个步骤,附加约束上产生约束力矩应为F 11和F 1P 之和。
由于结构无论是变形,还是受力都应与原结构保持一致,而原结构在B 处无附加约束,亦无约束力矩,故有F 11+F 1P =001634321=-⎪⎭⎫⎝⎛+Fl h EI lEI B ϕ解方程可得出ϕB 。
位移法典型方程将求出后ϕB ,代回图22-1c ,将所得的结果再与图22-1b 叠加,即得原结构(图22-1a )的解。