【2020精品中考数学提分卷】北京市中考数学试卷押题卷C-试卷分析+答案
- 格式:docx
- 大小:517.67 KB
- 文档页数:28
押题卷2020中考数学押题卷(北京卷)一、选择题(本大题共有8个小题,每小题2分,共16分.在每小题给出的四个选项中,只有一个选项符合题目要求,请将选择项前面的字母代号填涂到相应位置上) 1.下列各数中,没有平方根的是( )A .﹣32B .|﹣3|C .()23- D .﹣(﹣3)2.下列运算正确的是( )A .()23-=﹣3 B .642a a a =⋅ C .()63222a a = D .()4222+=+a a3.某种计算机完成一次基本运算的时间约为0.000 000 001s .把0.000 000 001s 用科学记数法可表示为( )A .8-101.0⨯s B .9-101.0⨯s C .8-101⨯s D .9-101⨯s 4.由6个大小相同的正方体搭成的几何体如图所示,关于它的视图,说法正确的是( )A .主视图的面积最大B .左视图的面积最大C .俯视图的面积最大D .三个视图的面积一样大5.如图,将一块含有30°角的直角三角板的两个顶点放在矩形直尺的一组对边上.如果∠2=60°,那么∠1的度数为( )A .60°B .50°C .40°D .30°6.若整数k 满足190+k k <<,则k 的值是( )A .6B .7C .8D .97.已知关于x 的方程0322=+-k x x 有两个不相等的实数根,则k 的取值范围是( )A .k <31 B .k >31- C .k <31且k ≠0 D .k >31-且k ≠0 8.如果关于x 的不等式组()⎩⎨⎧--m x x x <>2413的解集为x <7,则m 的取值范围为( )A .m =7B .m >7C .m <7D .m ≥7二、填空题(本大题共有8个小题,每小题2分,共16分)9.已知2是关于x 的方程()0552=++-m x m x 的一个根,并且这个方程的两个根恰好是等腰△ABC的两条边长,则△ABC 的周长为10.如图,四边形ABCD 是平行四边形,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF =6,AB =5,则∠AEB 的正切值为11. 如图,⊙O 的半径为2,A B.CD 是互相垂直的两条直径,点P 是⊙O 上任意一点,过点P 作PM ⊥AB 于点M ,PN ⊥CD 于点N ,点Q 是MN 的中点,当点P 从点A 运动到点D 时,点Q 所经过的路径长为12.如图,菱形ABCD 边长为4,∠A =60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到MN A 1∆,连接C A 1,则C A 1的最小值是 .13.分解因式(a ﹣b )(a ﹣4b )+ab 的结果是 .14.如图,双曲线y =x k 于直线y =x 21-交于A.B 两点,且A (﹣2,m ),则点B 的坐标是 .15.当x =m 或x =n (m ≠n )时,代数式422+-x x 的值相等,则当x =m +n 时,代数式422+-x x 的值为 .16.在矩形ABCD 中,M ,N ,P ,Q 分别为边AB ,BC ,CD ,DA 上的点(不与端点重合).对于任意矩形ABCD ,下面四个结论中, ①存在无数个四边形MNPQ 是平行四边形;②存在无数个四边形MNPQ是矩形;③存在无数个四边形MNPQ是菱形;④至少存在一个四边形MNPQ是正方形.所有正确结论的序号是.5三、简答题(本大题共有12个小题,共68分:第17-22题每题5分,第23-26题每题6分,第27-28题每题7分。
北京市2020中考数学模拟试卷一.选择题(每题2分,满分16分)1.﹣3的倒数是()A.﹣B.C.±3 D.32.电影《流浪地球》深受人们喜欢,截止到2019年2月17日,票房达到3650000000,则数据3650000000科学记数法表示为()A.0.365×1010B.36.5×108C.3.65×108D.3.65×1093.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.4.若一个圆锥的底面半径为3cm,母线长为5cm,则这个圆锥的全面积为()A.15πcm2B.24πcm2C.39πcm2D.48πcm25.在一个有 10 万人的小镇,随机调查了 1000 人,其中有 120 人周六早上观看中央电视台的“朝闻天下”节目,那么在该镇随便问一个人,他在周六早上观看中央电视台的“朝闻天下”节目的概率大约是()A.B.C.D.6.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A.=B.=+100C.=D.=﹣1007.某车间20名工人每天加工零件数如表所示:这些工人每天加工零件数的众数、中位数分别是() A .5,5B .5,6C .6,6D .6,58.已知:如图,点P 是正方形ABCD 的对角线AC 上的一个动点(A 、C 除外),作PE ⊥AB 于点E ,作PF ⊥BC于点F ,设正方形ABCD 的边长为x ,矩形PEBF 的周长为y ,在下列图象中,大致表示y 与x 之间的函数关系的是( )A .B .C .D .二.填空题(共8小题,满分16分,每小题2分) 9.如果在实数范围内有意义,则x 的取值范围是 .10.分解因式:a 3﹣a 2+a = . 11.化简÷= .12.如图,△ABC 中,点D 、E 分別在AB 、AC 上,DE ∥BC ,AD :DB =1:2,则△ADE 与△ABC 的面积的比为 .13.不等式组的解集为 .14.(2分)如图,OC 是⊙O 的半径,AB 是弦,OC ⊥AB ,点P 在⊙O 上,∠APC =23°,则∠AOB = .15.如图,已知抛物线y=x2﹣1与x轴正半轴交于C点,顶点为D点过O点任作直线交抛物线于A、B,过点B作BE⊥x轴于E,则OB﹣BE的值为.16.不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、4,随机抽取一张卡片,则抽取的卡片上数字是偶数的概率是.三.解答题(共12小题,满分68分)17.(5分)计算:()﹣2﹣+(﹣4)0﹣cos45°.18.(5分)解方程:2x(x﹣y)+2xy=8.19.(5分)如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD =DE.(1)若∠BAE=40°,求∠C的度数;(2)若△ABC周长13cm,AC=6cm,求DC长.20.(5分)如图,在平行四边形ABCD中,AM⊥BC,AN⊥CD,垂足分别为M.M,求证:△AMN ∽△DCA.21.(5分)已知关于x的二次方程x2+mx+n2+1=0.(1)若n=1,且此方程有一个根为﹣1,求m的值;(2)若m=2,判断此方程根的情况.22.(5分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.23.(6分)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,AD=5,求OC的值.24.(6分)某工厂甲、乙两个部门各有员工400人,为了解这两个部门员工的生产技能情况,进行了抽样调查,过程如下,请补充完整.收集数据:从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制如下:甲:78 86 74 81 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77乙:93 73 88 81 72 81 94 83 77 83 80 81 70 81 73 78 82 80 70 40 整理、描述数据按如下(表格)分数段整理、描述这两组样本数据:(说明:成绩80分及以上为生产技能优秀,70﹣79分为生产技能良好,60﹣69分为生产技能合格,60分以下为生产技能不合格)分析数据两组样本数据的平均数、中位数、众数如下(表格)表所示:得出结论:(1)请补充表格1:a = ,b = . (2)估计乙部门生产技能优秀的员工人数为 ;(3)可以推断出 部门员工的生产技能水平较高,理由为:① ;② .(从两个不同的角度说明你推断的合理性)25.(6分)如图,AB 为⊙O 的直径,P 是BA 延长线上一点,CG 是⊙O 的弦∠PCA =∠ABC ,CG ⊥AB ,垂足为D(1)求证:PC 是⊙O 的切线; (2)求证:=;(3)过点A 作AE ∥PC 交⊙O 于点E ,交CD 于点F ,连接BE ,若sin ∠P =,CF =5,求BE 的长.26.(6分)已知抛物线y =﹣x 2+bx +c 经过点A (3,0),B (﹣1,0).(1)求抛物线的解析式;(2)求抛物线的顶点坐标.27.(7分)如图,已知△ABC,以A为圆心AB为半径作圆交AC于E,延长BA交圆A于D 连DE并延长交BC于F,CE2=CF•CB.(1)判断△ABC的形状,并证明你的结论;(2)如图1,若BE=CE=2,求⊙A的面积;(3)如图2,若tan∠CEF=,求cos∠C的值.28.(7分)如图,直线y=x+a与x轴交于点A(4,0),与y轴交于点B,抛物线y=x2+bx+c 经过点A,B.点M(m,0)为x轴上一动点,过点M且垂直于x轴的直线分别交直线AB 及抛物线于点P,N.(1)填空:点B的坐标为,抛物线的解析式为;(2)当点M在线段OA上运动时(不与点O,A重合),①当m为何值时,线段PN最大值,并求出PN的最大值;②求出使△BPN为直角三角形时m的值;(3)若抛物线上有且只有三个点N到直线AB的距离是h,请直接写出此时由点O,B,N,P构成的四边形的面积.参考答案一.选择题1.解:﹣3的倒数是﹣,故选:A.2.解:将3650000000用科学记数法表示为:3.65×109.故选:D.3.解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:A.4.解:这个圆锥的全面积=•2π•3•5+π•32=24π(cm2).故选:B.5.解:由题意知:1000人中有120人看中央电视台的早间新闻,∴在该镇随便问一人,他看早间新闻的概率大约是=.故选:C.6.解:设学校购买文学类图书平均每本书的价格是x元,可得:,故选:B.7.解:由表知数据5出现次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:B.8.解:由题意可得:△APE和△PCF都是等腰直角三角形.∴AE=PE,PF=CF,那么矩形PEBF的周长等于2个正方形的边长.则y=2x,为正比例函数.故选:A.二.填空题(共8小题,满分16分,每小题2分)9.解:∵在实数范围内有意义,∴x+8≥0,∴x的取值范围是x≥﹣8,故答案为:x≥﹣8.10.解:原式=a(a2﹣a+1),故答案为:a(a2﹣a+1)11.解:原式=÷=•(x+1)(x﹣1)=x+1,故答案为:x+1.12.解:∵DE∥BC,∴△ADE∽△ABC,∵AD:DB=1:2,∴AD:AB=1:3,∴S△ADE :S△ABC=1:9.故答案为:1:9.13.解:解不等式8x>48,得:x>6,解不等式2(x+8)<34,得:x<9,则不等式组的解集为6<x<9,故答案为:6<x<9.14.解:∵OC是⊙O的半径,AB是弦,OC⊥AB,∴=,∴∠AOC=∠BOC,∵∠APC=23°,∴∠AOC=2∠APC=46°,∴∠BOC=46°,∴∠AOB=46°+46°=92°,故答案为:92°.15.解:设B(m, m2﹣1),则OB==+1.∵BE⊥x轴,∴BE=m2﹣1.∴OB﹣BE=2.故答案为2.16.解:∵有四张完全相同的卡片,把它们分别标上数字1、2、3、4,其中卡片上数字是偶数的有2张,∴抽取的卡片上数字是偶数的概率是=;故答案为:.三.解答题(共12小题,满分68分)17.解:原式=4﹣3+1﹣×=2﹣1=1.18.解:2x2﹣2xy+2xy=8,x2=8,x=±2,19.解:(1)∵AD垂直平分BE,EF垂直平分AC,∴AB=AE=EC,∴∠C=∠CAE,∵∠BAE=40°,∴∠AED=70°,∴∠C=∠AED=35°;(2)∵△ABC周长13cm,AC=6cm,∴AB+BE+EC=7cm,即2DE+2EC=7cm,∴DE+EC=DC=3.5cm.20.解:∵AM⊥BC,AN⊥CD,∴∠AMC=∠ANC=90°,∴A ,M ,N ,C 四点共圆, ∴∠ACM =∠ANM ,∠MAN =∠MCN , ∵在平行四边形ABCD 中,AD ∥BC ,∴∠D =∠MCN ,∠DAC =∠ACM , ∴∠DAC =∠ANM ,∠D =∠MAN , ∴△AMN ∽△DCA .21.【解答】解:(1)将x =﹣1,n =1代入原方程,得:(﹣1)2﹣m +12+1=0, 解得:m =3.(2)当m =2时,原方程为x 2+2x +n 2+1=0, ∴△=22﹣4×1×(n 2+1)=﹣4n 2.当n =0时,△=﹣4n 2=0,此时原方程有两个相等的实数根; 当n ≠0时,△=﹣4n 2<0,此时原方程无解.22.解:(1)把A 点(1,4)分别代入反比例函数y =,一次函数y =x +b , 得k =1×4,1+b =4, 解得k =4,b =3,∵点B (﹣4,n )也在反比例函数y =的图象上, ∴n ==﹣1;(2)如图,设直线y =x +3与y 轴的交点为C , ∵当x =0时,y =3, ∴C (0,3),∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.23.(1)证明:连结DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中,,∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线;(2)解:∵△COD≌△COB.∴CD=CB.∵DE=2BC,∴ED=2CD.∵AD∥OC,∴△EDA∽△ECO.∴,∵AD=5,∴OC=.24.解:(1)由题意知a=7、b=10,故答案为:7、10;(2)故估计乙部门生产技能优秀的员工人数为×400=240(人).故答案为:240;(3)可以推断出甲部门员工的生产技能水平较高,理由为:①甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;②甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高.25.解:(1)如图所示,连接OC,∵AB为⊙O的直径,∴∠ACB=90°,即∠ACO+∠OCB=90°,∵OB=OC,∴∠OCB=∠ABC,∴∠ACO+∠ABC=90°,∵∠PCA=∠ABC,∴∠PCA+∠ACO=90°,∴PC是⊙O的切线;(2)∵∠P=∠P,∠PCA=∠PBC,∴△PCA∽△PBC,∴=,∵CG⊥AB,∴∠ADC=∠ACB=90°,∵∠CAD=∠BAC,∴△ACD∽△ABC,∴=,∴=;(3)∵AE∥PC,∴∠PCA=∠CAF,∵AB⊥CG,∴=,∴∠ACF=∠ABC,∵∠PCA=∠ABC,∴∠ACF=∠CAF,∴FA=FC,∵CF=5,∴AF=5,∵AE∥PC,∴∠FAD=∠P,∵sin∠P=,∴sin∠FAD=,∴FD=3,AD=4,CD=8,在Rt△COD中,设CO=r,则有r2=(r﹣4)2+82∴r=10,∴AB=2r=20,∵AB是直径,∴∠AEB=90°,∴sin∠EAB=,∴=,∴=,∴EB=12.26.解:(1)∵抛物线y=﹣x2+bx+c经过点A(3,0),B(﹣1,0).∴抛物线的解析式为:y=﹣(x﹣3)(x+1),即y=﹣x2+2x+3,(2)∵抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的顶点坐标为:(1,4).27.解:(1)∵CE2=CF•CB,∴,∴△CEF∽△CBE,∴∠CBE=∠CEF,∵AE=AD,∴∠ADE=∠AED=∠FEC=∠CBE,∵BD为直径,∴∠ADE+∠ABE=90°,∴∠CBE+∠ABE=90°,∴∠DBC=90°∴△ABC为直角三角形.(2)∵BE=CE∴设∠EBC=∠ECB=x,∴∠BDE=∠EBC=x,∵AE=AD∴∠AED=∠ADE=x,∴∠CEF=∠AED=x∴∠BFE=2x在△BDF中由△内角和可知:3x=90°,∴x=30°,∴∠ABE=60°∴,∴⊙A的面积为(3)由(1)知:∠BDF=∠CEF=∠CBE,∵tan∠CBE=,设EF=a,BE=2a,∴,∴AD=AB=,∴DE=2BE=4a,过F作FK∥BD交CE于K,∴∵∴,∴∴∴28.解:(1)把点A坐标代入直线表达式y=x+a,解得:a=﹣3,则:直线表达式为:y═x﹣3,令x=0,则:y=﹣3,则点B坐标为(0,﹣3),将点B的坐标代入二次函数表达式得:c=﹣3,把点A的坐标代入二次函数表达式得:×16+4b﹣3=0,解得:b=﹣,故:抛物线的解析式为:y=x2﹣x﹣3,故:答案为:(0,﹣3),y=x2﹣x﹣3;(2)①∵M(m,0)在线段OA上,且MN⊥x轴,∴点P(m, m﹣3),N(m, m2﹣m﹣3),∴PN=m﹣3﹣(m2﹣m﹣3)=﹣(m﹣2)2+3,∵a=﹣<0,∴抛物线开口向下,∴当m=2时,PN有最大值是3,②当∠BNP=90°时,点N的纵坐标为﹣3,把y=﹣3代入抛物线的表达式得:﹣3=m2﹣m﹣3,解得:m=3或0(舍去m=0),∴m=3;当∠NBP=90°时,∵BN⊥AB,两直线垂直,其k值相乘为﹣1,设:直线BN的表达式为:y=﹣x+n,把点B的坐标代入上式,解得:n=﹣3,则:直线BN的表达式为:y=﹣x﹣3,将上式与抛物线的表达式联立并解得:m=或0(舍去m=0),当∠BPN=90°时,不合题意舍去,故:使△BPN为直角三角形时m的值为3或;(3)∵OA=4,OB=3,在Rt△AOB中,tanα=,则:cosα=,sinα=,∵PM∥y轴,∴∠BPN=∠ABO=α,若抛物线上有且只有三个点N到直线AB的距离是h,则只能出现:在AB直线下方抛物线与过点N的直线与抛物线有一个交点N,在直线AB 上方的交点有两个.当过点N的直线与抛物线有一个交点N,点M的坐标为(m,0),设:点N坐标为:(m,n),则:n=m2﹣m﹣3,过点N作AB的平行线,则点N所在的直线表达式为:y=x+b,将点N坐标代入,解得:过N点直线表达式为:y=x+(n﹣m),将抛物线的表达式与上式联立并整理得:3x2﹣12x﹣12+3m﹣4n=0,△=144﹣3×4×(0=﹣12+3m﹣4n)=0,将n=m2﹣m﹣3代入上式并整理得:m2﹣4m+4=0,解得:m=2,则点N的坐标为(2,﹣),则:点P坐标为(2,﹣),则:PN=3,∵OB=3,PN∥OB,∴四边形OBNP为平行四边形,则点O到直线AB的距离等于点N到直线AB的距离,即:过点O与AB平行的直线与抛物线的交点为另外两个N点,即:N′、N″,直线ON的表达式为:y=x,将该表达式与二次函数表达式联立并整理得:x2﹣4x﹣4=0,解得:x=2±2,则点N′、N″的横坐标分别为2,2﹣2,作NH ⊥AB 交直线AB 于点H ,则h =NH =NP sin α=,作N ′P ′⊥x 轴,交x 轴于点P ′,则:∠ON ′P ′=α,ON ′==(2+2),S 四边形OBPN =BP •h =×=6,则:S 四边形OBP ′N ′=S △OP ′N ′+S △OBP ′=6+6,同理:S 四边形OBN ″P ″=6﹣6,故:点O ,B ,N ,P 构成的四边形的面积为:6或6+6或6﹣6.。
三角形和四边形一、选择题1.(2020·门头沟二模)将284231︒′″保留到“′”为( ) A .2842︒′ B .2843︒′C .2842︒′30″D .2900︒′ 2.(2020·平谷二模)用直角三角板,作△ABC 的高,下列作法正确的是( )3. (2020·朝阳二模)如图所示,用量角器度量∠AOB ,可以读出∠AOB 的度数为( ) A .45° B .55° C .135° D .145°4.(2020·海淀二模)如图,用圆规比较两条线段A B ''和AB 的长短,其中正确的是( ) A .A B AB ''> B .A B AB ''= C .A B AB ''<D . 不确定5.(2020·顺义二模)能与60︒的角互余的角是( )A B CDA B()6.(2020·海淀二模)如图,在正方体的一角截去一个小正方体,所得立体图形的主视图是( )A B C D7.(2020·平谷二模)下面所给几何体的俯视图是()8. (2020·门头沟二模)如图所示的立方体,如果把它展开,可以是下列图形中的()A.B.C.D.9.(2020·房山二模)下面的四个展开图中,是右图所示的三棱柱纸盒的展开图的是()10. (2020·东城二模)图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能..围成正方体的位置是()A.①B.②C.③D.④11.(2020·通州二模)下列图形中,正方体展开后得到的图形不可能...是()12.(2020·怀柔二模)如图所示的几何体为圆台,其俯视图正确的是()正面看13.(2020·昌平二模)在下面的四个几何体中,主视图是三角形的是A B C D 14.(2020·顺义二模)图1是一个几何体的三视图,则该几何体的展开图是15.(2020·丰台二模)如图是几何体的三视图,该几何体是A.圆锥B.圆柱C.正三棱锥D.正三棱柱16.(2020·昌平二模)钟鼎文是我国古代的一种文字,是铸刻在殷周青铜器上的铭文,下列钟鼎文中,不是轴对称图形的是A B C D 17.(2020·通州二模)剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为DCBA图1A.B.C.D.18.(2020·丰台二模)在下列图形中,既是轴对称图形又是中心对称图形的是A. B. C. D. 19.(2020·石景山二模)在下列图案中,既是轴对称图形,又是中心对称图形的是()20. (2020·房山二模)在我国传统的房屋建筑中,窗棂是重要的组成部分,它不仅具有功能性作用,而且具有高度的艺术价值. 下列窗棂的图案中,不是..中心对称图形的是()21.(2020·朝阳二模)下列图标中,是轴对称的是A B C D 22.(2020·通州二模)如图,直线l1,l2,l3交于一点,直线l4// l1,若∠1=∠2=36°,则∠3的度数为A.60°B.90°C.108°D.150°23.(2020·石景山二模)如图,直线a△b,直线l与a,b分别交于点A,B,过点A作AC△b于点C,若1=50∠°,则2∠的度数为()l2l3l1l4123A .130°B .50°C .40°D .25°24.(2020·丰台二模)如图,AB △CD ,△B =56°,△E =22°,则△D 的度数为 A .22° B .34° C .56°D .78°25.(2020·门头沟二模)如图,在△ABC 中,点D 是BC 边上一点且CD CA =,过点A 作MN BC ∥,48CAN ∠=︒, 41B ∠=︒,BAD ∠=A .23°B .24°C .25°D .26°26.(2020·昌平二模)如图,△ABC 中,∠ACB =90°,∠B =55°,点D 是斜边AB 的中点,那么∠ACD 的度数为 A .15°B . 25°C . 35°D .45°27.(2020·顺义二模)如图,△ABC 中,∠A =60︒,BD ,CD 分别是∠ABC ,∠ACB 的 平分线,则∠BDC 的度数是A .100︒B .110︒C .120︒D .130︒aDC BAECDBA28.(2020·东城二模)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板一条直角边在同一条直线上,则△1的度数为( )A .75°B .65°C .45°D .30° 29.(2020·门头沟二模)以下是关于正多边形的描述①正多边形的每条边都相等; ②正多边形都是轴对称图形; ③正多边形的外角和是360°;④正多边形都是中心对称图形. 其中正确的描述是A .①②③B .①②④C .②③④D .①②③④ 30.(2020·房山二模) 在四边形ABCD 中,如果∠A +∠B +∠C=260°,那么∠D 的度数为( )A. 120°B. 110°C. 100°D. 90° 31.(2020·朝阳二模)内角和与外角和相等的多边形是A B C D32.(2020·怀柔二模)如图,在五边形ABCDE 中,△A+△B+△E=300°,DP ,CP 分别平分△EDC 、△BCD ,则△P 的度数是( )(A)60° (B)65° (C)55° (D)50° 33.(2020·通州二模)右图多边形ABCDE 的内角和是A .360°B .540°A BCDEC .720°D .900°34.(2020·丰台二模)五边形的内角和是 A .180°B .360°C .540°D .600°35.(2020·顺义二模)内角和为540︒的多边形是A .四边形B .五边形C .六边形D .七边形36.(2020•西城区二模)如图是由射线AB ,BC ,CD ,DE ,EA 组成的平面图形,若∠1+∠2+∠3+∠4=225°,ED ∥AB ,则∠1的度数为( )A .55°B .45°C .35°D .25°37.(2020·平谷二模)如图,某校数学兴趣小组利用标杆BE 测量学校旗杆CD 的高度,标杆BE 高1.5m ,测得AB=2m ,BC=14m ,则旗杆CD 高度是( )A . 9mB .10.5mC .12mD .16m 38.(2020·石景山二模)如图,某河的同侧有A ,B 两个工厂,它们垂直于河边的小路的长度分别为2km AC =,3km BD =,这两条小路相距5km .现要在河边建立一个抽水站,把水送到A ,B 两个工厂去,若使供水管最短,抽水站应建立的位置为( )A .距C 点1km 处B .距C 点2km 处 C .距C 点3km 处D .CD 的中点处 39.(2020·海淀二模)如图,ABCD 中,AD =5,AB =3,∠BAD 的平分线AE 交BC 于E 点,则EC 的长为 A .4B .3B E CA DC .2D .1二、填空题1.(2020•西城区二模)如图,长方体中所有与棱AB 平行的棱是 .2.(2020•西城区二模)如图,正方形ABCD 中,点E 为对角线AC 上一点,且AE=AB ,则∠BED 的度数是 度.3.(2020·丰台二模)三国时期吴国赵爽创制了“勾股圆方图”(如图)证明了勾股定理.在这幅“勾股圆方图”中,大正方形ABCD 是由4个全等的直角三角形再加上中间的一个小正方形EFGH 组成的.已知小正方形的边长是2,每个直角三角形的短直角边长是6,则大正方形ABCD 的面积是 .4.(2020·昌平二模)如图,阳光通过窗口AB 照射到室内,在地面上留下4米宽的亮区DE ,已知亮区DE 到窗口下的墙角距离CE =5米,窗口高AB =2米,那么窗口底边离地面的高BC =_________ 米.G ABC DEFH5.(2020·丰台二模)某中学初三年级的学生开展测量物体高度的实践活动,他们要测量一幢建筑物AB 的高度.如图,他们先在点C 处测得建筑物AB 的顶点A 的仰角为30°,然后向建筑物AB 前进10m 到达点D 处,又测得点A 的仰角为60°,那么建筑物AB 的高度是( ) m .6.(2020·通州二模)如图,Rt △ABC ≌Rt △DCB ,两斜边交于点O ,如果AC =3,那么OD 的长为____________.7.(2020·海淀二模)下图是测量玻璃管内径的示意图,点D 正对“10mm ”刻度线,点A 正对“30mm ”刻度线,DE ∥AB .若量得AB 的长为6mm ,则内径DE 的长为 mm .8.(2020·朝阳二模)在某一时刻,测得一根高为1.2m 的竹竿的影长为3m ,同时测得一栋楼的影长为45m ,那么这栋楼的高度为 m .9.(2020·顺义二模)小明的爸爸承包了一个鱼塘,小明想知道鱼塘的长(即A ,B 间的距离).他通过下面的方法测量A ,B 间的距离:先在AB 外选一点C ,然后测出AC ,BC 的中点M ,N ,并测得MN 的长为20m ,由此他就知道了A ,B 间的距离.请你回答A ,B 间的距离是60°30°CDBABCD10. (2020·怀柔二模)如图,在△ABC 中,D 为AB 边上一点,DE ∥BC 交AC 于点E ,如果12AE EC ,DE =7,那么BC 的长为 .11.(2020·顺义二模)如图,在正方形ABCD 和正方形AEFG 中,顶点E 在边AD 上,连接DG 交EF 于点H ,若FH =1,EH =2,则DG 的长为NMCAA B EDH G F EDCBA12.(2020·昌平二模)如图,已知钝角△ABC ,老师按照如下步骤尺规作图:步骤1:以C 为圆心,CA 为半径画弧①;步骤2:以B 为圆心,BA 为半径画弧②,交弧①于点D ; 步骤3:连接AD ,交BC 延长线于点H . 小明说:图中的BH ⊥AD 且平分AD . 小丽说:图中AC 平分∠BAD . 小强说:图中点C 为BH 的中点.他们的说法中正确的是__________.他的依据是_ __. 13.(2020·通州二模)阅读下面材料: 在数学课上,老师提出如下问题:小亮的作法如下:ABCDH老师说:“小亮的作法正确”,请回答:小亮的作图依据是__ 14.(2020·朝阳二模)阅读下面材料:数学课上,老师提出如下问题:小强的作法如下:老师表扬了小强的作法是对的.请回答:小强这样作图的主要依据是 .如图:(1) 作射线CE ;(2) 以C 为圆心,AB 长为半径作弧交CE 于D .则线段CD 就是所求作的线段.D ABC E尺规作图:经过直线外一点作这条直线的平行线.已知:直线l 和直线l 外一点A . 求作:直线l 的平行线,使它经过点A .如图,(1)过点A 作直线m 交直线l 于点B ;(2)以点A 为圆心,AB 长为半径作弧,交直线m 于点C ; (3)在直线l 上取点D (不与点B 重合),连接CD ; (4)作线段CD 的垂直平分线n ,交线段CD 于点E ; (5)作直线AE . 所以直线AE 即为所求.15.(2020·石景山二模)下面是“已知底边及底边上的高线作等腰三角形”的尺规作图过程.16.(2020·顺义二模)阅读下面材料:在数学课上,老师提出如下问题:小丽的作法如下:三、解答题1.(2020·海淀二模)如图,在四边形ABCD 中,AB =AD ,CB =CD .请你添加一条线把它分成两个全等三角形,并给出证明.2.(2020·通州二模)如图,在四边形ABCD 中,∠A =∠B ,CB =CE . 求证:CE //AD .3.(2020·房山二模) 已知:如图,△ABC 中,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,连接EF . 求证:AE=AF4.(2020·丰台二模)如图,在△ABC 中,AB =AC ,过点 A 作 AD ⊥BC 于点D ,过点 D 作AB 的平行线交AC 于点E .求证: DE =EC =AE .BA ABCE F ABCE DC5.(2020·平谷二模)如图,在△ABC 中,BD 平分∠ABC 交AC 于点D ,DE ∥BC 交AB 于点E ,EF ⊥BD 于点F .求证:∠BEF=∠DEF .6.(2020•西城区二模)如图,在Rt △ABC 中,∠ABC=90°,CD 平分∠ACB 交AB 于点D ,DE ⊥AC 于点E ,BF ∥DE 交CD 于点F . 求证:DE=BF .7.(2020·朝阳二模)如图,在△ABC 中,AB =AC ,AD 是BC 边上的高, 过点C 作CE ∥AB 交AD 的延长线于点E. 求证:CE =ABB8.(2020·怀柔二模)如图,在△ABC 中,D 是AB 边上一点,且DC =DB .点E 在CD 的延长线上,且AD =DE . 求证:∠EBC =∠ACB .9. (2020·昌平二模)如图,在等边△ABC 中,点D 为边BC 的中点,以AD 为边作等边△ADE ,连接BE .求证:BE=BD10.(2020·石景山二模)如图,在ABC △中,CDCA =,CE AD ⊥于点E ,BF AD ⊥于点F .求证:ACE DBF ∠=∠BCAEDDB E CA F11.(2020·顺义二模)如图,△ABC 中,点D 在AB 的延长线上,BE 平分∠CBD ,BE ∥AC .求证:AB=BC .12.(2020·丰台二模)如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边三角形ACD 及等边三角形ABE .已知∠BAC = 30º,EF ⊥AB 于点 F ,连接 DF .(1)求证:AC =EF ;(2)求证:四边形 ADFE 是平行四边形.13.(2020·海淀二模)如图,在△ABC 中,∠BAC =90°,线段AC 的垂直平分线交AC 于D 点,交BC 于E 点,过点A 作BC 的平行线交直线ED 于F 点,连接AE ,CF . (1)求证:四边形AECF 是菱形;(2)若AB =10,∠ACB =30°,求菱形AECF 的面积.ABCDEF ABDCE14.(2020•西城区二模)如图,在四边形ABCD 中,AD ∥BC ,∠ABC=∠ADC=90°,对角线AC ,BD 交于点O ,DE 平分∠ADC 交BC 于点E ,连接OE . (1)求证:四边形ABCD 是矩形; (2)若AB=2,求△OEC 的面积.15.(2020·东城二模)如图,在Rt △ABC 中,∠C =90°. 以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于21MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D . 若CD =4,AB =15,求△ABD 的面积.16.(2020·东城二模)如图,BD 是△ABC 的角平分线,它的垂直平分线分别交AB ,BD ,BC于点E ,F ,G ,连接ED ,DG .(1)请判断四边形EBGD 的形状,并说明理由; (2)若∠ABC =30°,∠C =45°,ED =2,求GC 的长.17. (2020·朝阳二模)如图,在ABCD 中,BC =2AB ,E ,F 分别是BC ,AD 的中点, AE ,BF 交于点O ,连接EF ,OC .(1)求证:四边形ABEF 是菱形; (2)若BC =8, 60ABC ∠=︒,求OC 的长.18.(2020·房山二模) 如图,河的两岸l 1与l 2互相平行,A 、B 是1l 上的两点,C 、D 是2l 上的两点.某同学在A 处测得∠CAB=90°,∠DAB=30°,再沿AB 方向走20米到达点E (即AE =20),测得∠DEB=60°. 求:C ,D 两点间的距离.119.(2020·平谷二模)如图,在矩形ABCD 中,点E ,F 分别是AD ,BC 边上的点,且AE=CF . (1)求证:四边形BFDE 是平行四边形; (2)若AB =12,AE =5,3cos 5BFE ∠=,求矩形ABCD 的周长.20.(2020·顺义二模)已知:如图,四边形ABCD 中,∠ABC =∠ADC =90︒,AB =AD .(1)求证:BC=CD ;(2)若∠A =60︒,将线段BC 绕着点B 逆时针旋转60︒,得到线段BE ,连接DE ,在图中补全图形,并证明四边形BCDE 是菱形.DCBA21.(2020·石景山二模)如图,四边形ABCD 是矩形,点E 在AD 边上,点F 在AD 的延长线上,且BE CF =.(1)求证:四边形EBCF 是平行四边形.(2)若90BEC ∠=°,30ABE ∠=°,AB =ED 的长.22.(2020·通州二模)如图,在菱形ABCD 中,CE 垂直对角线AC 于点C ,AB 的延长线交CE 于点E .(1)求证:CD =BE ; (2)如果∠E =60°,CE=m ,请写出求菱形ABCD 面积的思路.23. (2020·昌平二模)如图,在平行四边形ABCD 中,点E 为BC 的中点,AE 与对角线BD 交于点F .(1)求证:DF =2BF ; (2)当∠AFB =90°且tan ∠ABD =21时, 若CD =5,求AD 长.FEDCBAEA24. (2020·怀柔二模)已知:如图,在四边形ABCD 中,AB ⊥BD ,AD ∥BC ,∠ADB=45°,∠C=60°,AB=6.求四边形ABCD 的周长.25.(2020·门头沟二模)如图,已知AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿直线AD翻折,使得点C 落在点E 的位置,BC =6; 求线段BE 的长.26.(2020·门头沟二模)如图,在菱形ABCD 中,延长BD 到E 使得BD =DE ,连接AE ,延长CD 交AE 于点F .(1)求证:AD =2DF(2)如果FD =2,∠C =60°,求菱形ABCD 的面积.DCBA27. (2020·房山二模) 数学课上,老师提出如下问题:已知点A ,B ,C 是不在同一直线上三点,求作一条过点C 的直线l ,使得点A ,B 到直线l 的距离相等. 小明的作法如下:①连结线段AB ;②分别以A ,B 为圆心,以大于21AB 为半径画弧,两弧交于M 、N 两点; ③作直线MN ,交线段AB 于点O ; ④作直线CO ,则CO 就是所求作的直线l. 根据小明的作法回答下列问题:(1)小明利用尺规作图作出的直线MN 是线段AB 的 ;点O 是线段AB 的 ;(2)要证明点A ,点B 到直线l 的距离相等,需要在图中画出必要的线段,请在图中作出辅助线,说明作法,并说明线段的长是点A 到直线l 的距离,线段的长是点B 到直线l 的距离;(3)证明点A ,B 到直线l 的距离相等.AB三角形和四边形四、选择题1-5BDCAA6-10DBDDA11-15DCCBD16-20ADAAB21-15DCCBC26-30CCAAC31-35CABCB36-39BCBC五、填空题1.DC,EF,HM .2.1353. 100 .4.5 25.3 5 6.1.5 7.2 8.18 9.40 10.2111.ABCE F12.正确的是______小明_____.他的依据是_到线段两个端点距离相等的点在线段的垂直平分线上;两点确定一条直线__. 13.等圆的半径相等.14.同圆半径相等;线段垂直平分线的定义;三角形的中位线平行于第三边. 15.①线段垂直平分线上的点到线段两个端点的距离相等;②有两条边相等的三角形是等腰三角形.16.到线段两个端点距离相等的点在线段的垂直平分线上_. 六、解答题1.(2020·海淀二模)证明:连接AC ,则△ABC ≌ △ADC .证明如下:在△ABC 与△ADC 中,AB AD AC AC CB CD ===⎧⎪⎨⎪⎩,,, ∴△ABC ≌ △ADC .2.(2020·通州二模)①∠B =∠CEB ②∠A =∠CEB ③CE //AD 3.(2020·房山二模)证明:方法一:∵AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F∴DE= DF ,∠AED =∠AFD=90° ∴∠DEF =∠DFE ∴∠AEF =∠AFE ∴AE=AF方法二:∵AD 平分∠BAC∴∠DAE =∠DAF∵DE ⊥AB 于E ,DF ⊥AC 于FDCBAABCEF∴∠AED =∠AFD=90°又∵AD=AD∴△AED ≌△AFD ∴AE=AF4.(2020·丰台二模)证明:∵AB =AC ,AD ⊥BC 于点D ,∴∠B =∠C ,∠BAD =∠CAD . 又∵DE ∥AB ,∴∠EDC =∠B ,∠ADE =∠BAD . ∴∠EDC =∠C ,∠ADE =∠CAD . ∴DE =EC ,AE =DE . ∴DE =EC =AE .5.(2020·平谷二模)证明:∵BD 平分∠ABC ,∴∠ABD =∠CBD . ∵DE ∥BC , ∴∠EDB =∠CBD . ∴∠EDB =∠ABD . ∴EB=ED . ∵EF ⊥BD 于点F , ∴∠BEF =∠DEF .6.(2020•西城区二模)ABCDE FBABCEB证明:∵CD 平分∠ACB , ∴∠1=∠2,∵DE ⊥AC ,∠ABC=90° ∴DE=BD ,∠3=∠4, ∵BF ∥DE , ∴∠4=∠5, ∴∠3=∠5, ∴BD=BF , ∴DE=BF .7.(2020·朝阳二模)证明:∵,AB AC AD BC =是边上的高, ∴∠BAE =∠CAE . ∵CE ∥AB , ∴∠E =∠BAE . ∴∠E =∠CAE .∴CE =AC .∵AB =AC , ∴CE =AB . 8.(2020·怀柔二模) 证明:∵DC =DB , ∴∠DCB =∠DBC . 在△ACD 和△EBD 中, ,,,AD DE ADC EDB DC DB =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△EBD .∴∠ACD=∠EBD . ∴∠EBC =∠ACB . 9. (2020·昌平二模)证明:∵在等边△ABC 中,点D 为边BC 的中点∴∠CAD =∠DAB=12∠CAB= 30° ∵△ADE 为等边三角形, ∴AD=AE ,∠DAE = 60°∵∠DAB = 30° ∴∠DAB =∠EAB = 30° 在△ADB 与△AEB 中,AD AE DAB EAB AB AB =⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△AEB ∴ BE=BD10.(2020·石景山二模)证法一:如图1.∵CE AD ⊥,BF AD ⊥, ∴90CED BFD ∠=∠=°.∴CE ∥BF . ∴12∠=∠. ∵CD CA =,CE AD ⊥, ∴32∠=∠. ∴32∠=∠. 证法二:如图2. ∵CD CA =,∴12∠=∠. 又∵32∠=∠,∴13∠=∠. ∵CE AD ⊥,BF AD ⊥,图1A F21AB CDE∴90CEA BFD ∠=∠=°. ∴CEA △∽BFD △. ∴45∠=∠. 11.(2020·顺义二模) 证明:∵BE 平分∠CBD , ∴∠1=∠2.∵BE ∥AC ,∴∠1=∠A ,∠2=∠C . ∴∠A=∠C . ∴ AB=BC . 12.(2020·丰台二模)证明:(1)∵△ABE 是等边三角形,EF ⊥AB ,∴∠AEF =21∠AEB = 30º,AE =AB ,∠EFA = 90º. ∵∠ACB = 90º,∠BAC = 30º, ∴∠EFA =∠ACB ,∠AEF =∠BAC . ∴△AEF ≌△BAC . ∴AC = EF .(2)∵△ACD 是等边三角形,∴AC = AD ,∠DAC = 60º. 由(1)的结论得AC = EF , ∴AD= EF . ∵∠BAC = 30º,∴∠FAD=∠BAC+∠DAC = 90º. ∵∠EFA = 90º, ∴EF ∥AD . ∵EF =AD ,∴四边形ADFE 是平行四边形.13.(2020·海淀二模)图2(1)证明:∵ EF 垂直平分AC , ∴ FA =FC ,EA =EC , ∵ AF ∥BC , ∴ ∠1=∠2. ∵ AE =CE ,∴ ∠2=∠3. ∴ ∠1=∠3. ∵ EF ⊥AC ,∴ ∠ADF =∠ADE =90°. ∵ ∠1+∠4=90°,∠3+∠5=90°. ∴ ∠4=∠5.∴ AF =AE . ∴ AF =FC =CE =EA .∴ 四边形AECF 是菱形. (2)解:∵∠BAC =∠ADF =90°, ∴AB ∥FE . ∵AF ∥BE , ∴四边形ABEF 为平行四边形. ∵AB =10, ∴FE =AB =10. ∵∠ACB =30°,∴tan ABAC ACB==∠∴12AECF S AC FE ⋅==菱形14.(2020•西城区二模) (1)证明:∵AD ∥BC , ∴∠ABC+∠BAD=180°, ∵∠ABC=90°, ∴∠BAD=90°,54321F E DCB A∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=•EC•OF=1.15.(2020·东城二模)解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E.又∵∠C=90°,∴DE=CD.∴△ABD的面积=AB•DE=×15×4=30.16.(2020·东城二模)解:(1)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD.∴∠EBD=∠EDB.∵∠EBD=∠DBC,∴∠EDF=∠GBF.又∵DF=BF,∠EFD=∠GFB,∴△EFD ≌△GFB , ∴ED =BG , ∴BE =ED =DG =GB ,∴四边形EBGD 是菱形. (2)过点D 作DH ⊥BC 于点H . ∵DG ∥AB ,∴∠DGC =∠ABC =30°. 在Rt △DGH 中,可求3, 1.DG GH ==在Rt △DGH 中,可求 3.CH = ∴1 3.GC =+17. (2020·朝阳二模)(1) 证明:∵四边形ABCD 是平行四边形,∴BC ∥AD ,BC =AD . ∵E ,F 分别是BC ,AD 的中点, ∴11,22BE BC AF AD ==.∴BE =AF .∴四边形ABEF 是平行四边形. ∵BC =2AB , ∴AB =BE .∴ABEF 是菱形.(2)解:过点O 作OG ⊥BC 于点G . ∵E 是BC 的中点,BC =8,∴BE =CE =4.∵四边形ABEF 是菱形,∠ABC =60°, ∴∠OBE =30,∠BOE =90°. ∴OE =2,∠OEB =60°.1∴GE =1,. ∴GC =5. ∴OC=18.(2020·房山二模)解:过点D 作DF ⊥l 1于点F∵ l 1∥l 2 ,∠CAB=90° ∴ 四边形CAFD 是矩形,CD=AF ∵ ∠DAB=30°,∠DEB=60°∴ ∠ADE=∠DEB-∠DAB=30°,即∠ADE =∠DAE ∴ AE=DE =20在Rt △DEF 中,已知∠DFE=90°,∠DEF=60°,DE =20 ∴ EF=10 ∴CD=AF=AE+ EF =30 答: C ,D 两点间的距离是30米.19.(2020·平谷二模)(1)证明:∵四边形ABCD 是矩形∴AD ∥BC ,AD=BC . ∵AE=CF , ∴DE=BF .∴四边形BFDE 是平行四边形. (2)解:∵矩形ABCD , ∴∠A =∠ABC =90°.在Rt △ABE 中,AB =12,AE =5, ∴BE =13.过点E 作EG ⊥BC 于G .∵∠A =∠ABC =∠BGE =90°, ∴四边形ABGE 是矩形.E ABCD∴AE=BG =5,AB=EG=12. ∵在Rt △EFG 中,3cos 5BFE ∠=, ∴35FG FE =.设FG =3x , EF =5x ,∴EG =4x =12. ∴x =3. ∴FG =3x =9.∴BC=BG+GF+FC =19.∴矩形ABCD 的周长=19×2+12×2=62.20.(2020·顺义二模) (1)证明:连接AC ,∵∠ABC =∠ADC =90︒,∴△ABC 和△ADC 均为直角三角形. ∵AB =AD ,AC=AC ,∴Rt △ABC ≌Rt △ADC . ∴BC=CD(2)解:补全图如图所示.由旋转得BE =BC ,∠CBE =60︒. ∴BE =CD .∵∠BAD=60︒,∠ABC =∠ADC =90︒, ∴∠BCD =120︒. ∴∠CBE +∠BCD =180︒. ∴BE ∥CD .∴四边形BCDE 是平行四边形. 又∵BE =CD , ∴□BCDE 是菱形.21.(2020·石景山二模) (1)证明:∵四边形ABCD 是矩形,∴=90A CDF ABC ∠∠=∠=°, AB DC =,AD BC =.DCBA在BAE Rt △和CDF Rt △中, ,,AB DC BE CF ==⎧⎨⎩∴BAE Rt △≌CDF Rt △. ∴1F ∠=∠.∴BE ∥CF . 又∵BE CF =,∴四边形EBCF 是平行四边形. (2)解:∵BAE Rt △中,2=30∠°,AB =, ∴tan 21AE AB =⋅∠=, 2cos 2AB BE ==∠,360∠=°. BEC Rt △中,24cos 3cos 60BE BC ===∠°.∴4AD BC ==.∴413ED AD AE =-=-=. 22.(2020·通州二模)(1)①连接BD ,BD ⊥AC ………………………………..(1分)②CE //BD ………………………………..(2分)③四边形BECE 为平行四边形;CD =BE ………………………………..(3分) (2)思路通顺 ………………………………..(5分) 23. (2020·昌平二模)(1)证明:∵四边形ABCD 为平行四边形 ∴AD //BC ,AD=BC ,AB =CD ∵点E 为BC 的中点 ∴BE=12BC=12A D ∵AD //BC ∴△BEF ∽△DAF ∴12BE BF DA DF == FEDCBA∴DF =2BF(2)解:∵CD =5 ∴AB =CD =5∵在Rt △ABF 中,∠AFB=90°1tan 2AF ABD BF ∠== ∴设AF =x ,则BF =2x ∴AB5 x =5∴x=1,AF =1,BF =2 ∵DF =2BF ∴DF=4 ∴ AD24. (2020·怀柔二模) 解: ∵ AB ⊥BD ,∴∠ABD=90°.在Rt △ABD 中,∠ABD=90°,∠ADB=45°,.∴∠DAB=45°. ∴∠DAB=∠ADB.∴∴由勾股定理解得:∵ AD ∥BC , ∴∠ADB=∠DBC=45°. 过点D 作DE ⊥BC 交BC 于点E. ∴ ∠DEB=∠DEC=90°.在Rt △DEB 中,∠DEB=90°,∠DBC =45°,AC=2. ∴∠BDE=45°, sin ∠DBC =. ∴∠DBC=∠BDE , .∴. 在Rt △DEC 中,∠DEC=90°,∠C=60°. ∵ . ∴CD=2,CE=1.=DEBDsin ,tan DE DEC C CD CE==EABCD∴+1 .∴四边形ABCD 的周长+25.(2020·门头沟二模)由题意可知∠EDA 是由∠CDA 翻折得到∴∠EDA =∠CDA =45°.ED =CD . ∴ ∠EDB =90° ∵ AD 是△ABC 的中线,BC =6∴ BD =CD =3.∴ ED =BD =3. 在Rt BDE ∆中,根据勾股定理可得∴BE = 26.(2020·门头沟二模)(1) ∵ 四边形ABCD 是菱形, ∴ AD =AB , CD ∥AB .∵BD =DE∴EF =FA∴FD 是△EAB 的中位线 ∴AB =2FD∴AD =2FD (2)过点D 作DM ⊥AB∵FD =2∴AB =4 ∵∠C =60°∴ ∠ADB =∠60°. △DAB 为等边三角形∴∠ADM =30°,AM =2 ∴ DM=tan 60AM︒,可得DM =123++=A∴ 4ABCD S AB DM =⋅=⨯=菱形27. (2020·房山二模)(1)直线MN 是线段AB 的 垂直平分线 ;点O 是线段AB 的 中点 ; (2)过点A 作AE ⊥l 于点E ,过点B 作BF ⊥l 于点F线段 AE 的长是点A 到直线l 的距离, 线段 BF 的长是点B 到直线l 的距离;(3)∵ AE ⊥l ,BF ⊥l∴ ∠AEO =∠BFO =90° 又∵OA =OB ,∠AOE =∠BOF ∴ △AEO ≌△BFO∴AE =BF ,即点A ,B 到直线l 的距离相等。
【2020·海淀一模】1.下面是“过圆上一点作圆的切线”的尺 规作图过程.已知:⊙O 和⊙O 上一点P .求作:⊙O 的切线MN ,使MN 经过点P .作法:如图,(1)作射线OP ;(2)以点P 为圆心,小于OP 的长为半径作弧交射线 OP 于A ,B 两点; (3)分别以点A ,B 为圆心,以大于12AB 长为 半径作弧,两弧交于M ,N 两点;(4)作直线MN .则MN 就是所求作的⊙O 的切线.请回答:该尺规作图的依据是【答案】与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;经过半径的外端并且垂直于这条半径的直线是圆的切线;两点确定一条直线.【2020·丰台一模】2.下面是“作一个角等于已知角”的尺规作图过程.已知:∠A .求作:一个角,使它等于∠A . 作法:如图,(1)以点A 为圆心,任意长为半径作⊙A ,交∠A 的两边于B ,C 两点; (2)以点C 为圆心,BC 长为半径作弧,与⊙A 交于点D ,作射线AD . 所以∠CAD 就是所求作的角.第10讲 填空压轴题PONMBAP OADCB A请回答:该尺规作图的依据是 .【答案】在同圆或等圆中,如果两个圆心角、两条弧、两条弦中的一组量相等,那么它们所对应的其余各组量都分别相等.或:同圆半径相等,三条边对应相等的两个三角形全等,全等三角形的对应角相等.【2020·大兴一模】3.下面是“求作∠AOB 的角平分线”的尺规作图过程.已知:如图,钝角∠AOB. 求作:∠AOB 的角平分线.作法:①在OA 和OB 上,分别截取OD 、OE ,使OD =OE ;②分别以D 、E 为圆心,大于12DE的长为半径作弧, 在∠AOB 内,两弧交于点C ; ③作射线OC.所以射线OC 就是所求作的∠AOB 的角平分线.请回答:该尺规作图的依据是 . 【答案】SSS 公理,全等三角形的对应角相等.【2020·顺义一模】4.在数学课上,老师提出一个问题“用直尺和圆规作一个矩形”.小华的做法如下:(1)如图1,任取一点O ,过点O 作直线l 1,l 2; (2)如图2,以O 为圆心,任意长为半径作圆,与直线l 1,l 2分别相交于点A 、C ,B 、D ; (3)如图3,连接AB 、BC 、CD 、DA .四边形ABCD 即为所求作的矩形.OOOABCDl 1l 2l 1l 2l 2l 1DCBA老师说:“小华的作法正确” .请回答:小华的作图依据是 . 【答案】同圆半径相等,对角线相等且互相平分的四边形是矩形.(或直径所对的圆周角是直角,三个角是直角的四边形是矩形. 等等)【2020·平谷一模】5.下面是“作已知角的角平分线”的尺规作图过程.已知:如图1,∠MON .求作:射线OP ,使它平分∠MON . 作法:如图2,(1)以点O 为圆心,任意长为半径作弧,交OM 于点A ,交ON 于点B ; (2)连结AB ;(3)分别以点A ,B 为圆心,大于12AB 的长为半径作弧,两弧相交于点P ;(4)作射线OP .所以,射线OP 即为所求作的射线.请回答:该尺规作图的依据是 .【答案】答案不唯一:到线段两端点距离相等的点在线段的垂直平分线上;等腰三角形三线合一.【2020·怀柔一模】6. 阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:小明的作法如下:ONM图1图2PB ONMA已知:△ABC.求作:△ABC 的内切圆.BAC请回答:该尺规作图的依据是____________________________.【答案】到角两边距离相等的点在角平分上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.【2020·门头沟一模】7. 下图是“已知一条直角边和斜边做直角三角形”的尺规作图过程.请回答:该尺规作图的依据是__________.【答案】等圆的半径相等,直径所对的圆周角是直角,三角形定义 【2020·石景山一模】8.小林在没有量角器和圆规的情况下,利用刻度尺和一副三角板画出了一个角的平分线,他的做法是这样的:如图,(1)利用刻度尺在AOB ∠的两边OA ,OB 上分别取OM ON =; (2)利用两个三角板,分别过点M ,N 画OM ,ON 的垂线,交点为P ; (3)画射线OP .则射线OP 为AOB ∠的平分线.请写出小林的画法的依据 . 【答案】(1)斜边和一条直角边分别相等的两个直角三角形全等;(2)全等三角形的对应角相等.【2020·朝阳一模】9.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程.已知:直线a和直线外一点P.求作:直线a的垂线,使它经过P.作法:如图,(1)在直线a上取一点A, 连接PA;(2)分别以点A和点P为圆心,大于AP的长为半径作弧,两弧相交于B,C两点,连接BC交PA于点D;(3)以点D为圆心,DP为半径作圆,交直线a于点E,作直线PE.所以直线PE就是所求作的垂线.请回答:该尺规作图的依据是.【答案】与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;直径所对的圆周角是直角【2020·东城一模】10.已知正方形ABCD.求作:正方形ABCD的外接圆.作法:如图,(1)分别连接AC,BD,交于点O ;(2) 以点O为圆心,OA长为半径作O.O即为所求作的圆.请回答:该作图的依据是_____________________________________.【答案】正方形的对角线相等且互相平分,圆的定义【2020·西城一模】11.阅读下面材料:在复习课上,围绕一道作图题,老师让同学们尝试应用学过的知识设计多种不同的作图方法,并交流其中蕴含的数学原理.已知:直线和直线外的一点P.求作:过点P且与直线l垂直的直线PQ,垂足为点Q P某同学的作图步骤如下:请你根据该同学的作图方法完成以下推理:∠=∠__________,∵PA PB=,APQ⊥.(依据:__________).∴PQ l【答案】BPQ.等腰三角形顶角的角平分线与底边上的高重合.。
北京市朝阳区2019-2020学年中考数学第三次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是()A.a4+a2=a4B.(x2y)3=x6y3C.(m﹣n)2=m2﹣n2D.b6÷b2=b32.下列四个数表示在数轴上,它们对应的点中,离原点最远的是()A.﹣2 B.﹣1 C.0 D.13.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y= 1x的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y34.如图,下列四个图形是由已知的四个立体图形展开得到的,则对应的标号是()A.①②③④B.②①③④C.③②①④D.④②①③5.某学校组织艺术摄影展,上交的作品要求如下:七寸照片(长7英寸,宽5英寸);将照片贴在一张矩形衬纸的正中央,照片四周外露衬纸的宽度相同;矩形衬纸的面积为照片面积的3倍.设照片四周外露衬纸的宽度为x英寸(如图),下面所列方程正确的是()A.(7+x)(5+x)×3=7×5 B.(7+x)(5+x)=3×7×5C.(7+2x)(5+2x)×3=7×5 D.(7+2x)(5+2x)=3×7×56.如图,直角三角形ABC中,∠C=90°,AC=2,AB=4,分别以AC、BC为直径作半圆,则图中阴影部分的面积为()A.2π3B.3C.3D.2π﹣37.从①②③④中选择一块拼图板可与左边图形拼成一个正方形,正确的选择为()A.①B.②C.③D.④8.cos30°的值为()A.1 B.12C.33D.329.如图,先锋村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB为()A.5sinαB.5sinαC.5cosαD.5cosα10.在1、﹣1、3、﹣2这四个数中,最大的数是()A.1 B.﹣1 C.3 D.﹣2 11.图为小明和小红两人的解题过程.下列叙述正确的是( )计算:31x-+231xx--A.只有小明的正确B.只有小红的正确C.小明、小红都正确D.小明、小红都不正确12.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有()A.1对B.2对C.3对D.4对二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,数轴上点A、B、C所表示的数分别为a、b、c,点C是线段AB的中点,若原点O是线段AC上的任意一点,那么a+b-2c= ______ .14.已知x a y b =⎧⎨=⎩是方程组2325x y x y -=⎧⎨+=⎩的解,则3a ﹣b 的算术平方根是_____. 15.如图,在四边形ABCD 中,AC 、BD 是对角线,AC=AD ,BC >AB ,AB ∥CD ,AB=4,BD=2,tan ∠BAC=3,则线段BC 的长是_____.16.计算2211x x x ---的结果为_____. 17.|-3|=_________;18.如图,在圆心角为90°的扇形OAB 中,半径OA=1cm ,C 为»AB 的中点,D 、E 分别是OA 、OB 的中点,则图中阴影部分的面积为_____cm 1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简2211a a a a ⎛⎫-÷ ⎪--⎝⎭,然后从22a -≤<中选出一个合适的整数作为a 的值代入求值. 20.(6分)如图,已知点A ,B ,C 在半径为4的⊙O 上,过点C 作⊙O 的切线交OA 的延长线于点D . (Ⅰ)若∠ABC=29°,求∠D 的大小;(Ⅱ)若∠D=30°,∠BAO=15°,作CE ⊥AB 于点E ,求:①BE 的长;②四边形ABCD 的面积.21.(6分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D 、C 、B 、A 四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a=,b=,c=;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.22.(8分)如图所示,已知一次函数y kx b=+(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数ymx=(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.23.(8分)在下列的网格图中.每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中作出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)中的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.24.(10分)如图,在65⨯的矩形方格纸中,每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.在图中画出以线段AB为底边的等腰CAB,其面积为5,点C在小正方形的顶点上;在图中面出以线段AB为一边的ABDEW,其面积为16,点D和点E均在小正方形的顶点上;连接CE,并直接写出线段CE的长.25.(10分)如图,A,B,C 三个粮仓的位置如图所示,A 粮仓在B 粮仓北偏东26°,180 千米处;C 粮仓在 B 粮仓的正东方,A 粮仓的正南方.已知A,B两个粮仓原有存粮共450 吨,根据灾情需要,现从 A 粮仓运出该粮仓存粮的35支援 C 粮仓,从B 粮仓运出该粮仓存粮的25支援 C 粮仓,这时A,B两处粮仓的存粮吨数相等.(tan26°=0.44,cos26°=0.90,tan26°=0.49)(1)A,B 两处粮仓原有存粮各多少吨?(2)C 粮仓至少需要支援200 吨粮食,问此调拨计划能满足C 粮仓的需求吗?(3)由于气象条件恶劣,从 B 处出发到 C 处的车队来回都限速以每小时35 公里的速度匀速行驶,而司机小王的汽车油箱的油量最多可行驶 4 小时,那么小王在途中是否需要加油才能安全的回到B 地?请你说明理由.26.(12分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,12),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.27.(12分)《九章算术》中有这样一道题,原文如下:今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?大意为:今有甲、乙二人,不知其钱包里有多少钱.若乙把其一半的钱给甲,则甲的钱数为50;若甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?请解答上述问题.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:根据合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,逐一计算判断即可.详解:根据同类项的定义,可知a4与a2不是同类项,不能计算,故不正确;根据积的乘方,等于个个因式分别乘方,可得(x2y)3=x6y3,故正确;根据完全平方公式,可得(m-n)2=m2-2mn+n2,故不正确;根据同底数幂的除法,可知b6÷b2=b4,不正确.故选B.点睛:此题主要考查了合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,熟记并灵活运用是解题关键.2.A【解析】【分析】由于要求四个数的点中距离原点最远的点,所以求这四个点对应的实数绝对值即可求解.【详解】∵|-1|=1,|-1|=1,∴|-1|>|-1|=1>0,∴四个数表示在数轴上,它们对应的点中,离原点最远的是-1.故选A.【点睛】本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合的思想.3.D【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<x2<0<x1,判断出三点所在的象限,再根据函数的增减性即可得出结论.【详解】∵反比例函数y=1x中,k=1>0,∴此函数图象的两个分支在一、三象限,∵x1<x2<0<x1,∴A、B在第三象限,点C在第一象限,∴y1<0,y2<0,y1>0,∵在第三象限y随x的增大而减小,∴y1>y2,∴y2<y1<y1.故选D.【点睛】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及三点所在的象限是解答此题的关键.4.B【解析】【分析】根据常见几何体的展开图即可得.【详解】由展开图可知第一个图形是②正方体的展开图,第2个图形是①圆柱体的展开图,第3个图形是③三棱柱的展开图,第4个图形是④四棱锥的展开图,故选B【点睛】本题考查的是几何体,熟练掌握几何体的展开面是解题的关键.5.D【解析】试题分析:由题意得;如图知;矩形的长="7+2x" 宽=5+2x ∴矩形衬底的面积=3倍的照片的面积,可得方程为(7+2X)(5+2X)=3×7×5考点:列方程点评:找到题中的等量关系,根据两个矩形的面积3倍的关系得到方程,注意的是矩形的间距都为等量的,从而得到大矩形的长于宽,用未知数x的代数式表示,而列出方程,属于基础题.6.D【解析】分析:观察图形可知,阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC,然后根据扇形面积公式和三角形面积公式计算即可.详解:连接CD.∵∠C=90°,AC=2,AB=4,∴2242-3.∴阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC=2211113223 222ππ⨯+⨯-⨯⨯=323 22ππ+-223π=-.故选:D.点睛:本题考查了勾股定理,圆的面积公式,三角形的面积公式及割补法求图形的面积,根据图形判断出阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC是解答本题的关键.7.C【解析】【分析】根据正方形的判定定理即可得到结论.【详解】与左边图形拼成一个正方形,正确的选择为③,故选C.【点睛】本题考查了正方形的判定,是一道几何结论开放题,认真观察,熟练掌握和应用正方形的判定方法是解题的关键.8.D【解析】cos30°=32.故选D.9.D【解析】【分析】利用所给的角的余弦值求解即可.【详解】∵BC=5米,∠CBA=∠α,∴AB=BCcosα=5cosα.故选D.【点睛】本题主要考查学生对坡度、坡角的理解及运用.10.C【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:根据有理数比较大小的方法,可得-2<-1<1<1,∴在1、-1、1、-2这四个数中,最大的数是1.故选C.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.11.D【解析】【分析】直接利用分式的加减运算法则计算得出答案.【详解】解:31x-231xx-+-=﹣31x-+3(1)(1)xx x--+=﹣3(1)(1)(1)xx x+-++3(1)(1)xx x--+=333 (1)(1)x xx x --+--+=26 (1)(1)xx x---+,故小明、小红都不正确.故选:D.【点睛】此题主要考查了分式的加减运算,正确进行通分运算是解题关键.12.C【解析】∵∠ACB=90°,CD⊥AB,∴△ABC∽△ACD,△ACD∽CBD,△ABC∽CBD,所以有三对相似三角形.故选C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】∵点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点,∴由中点公式得:c=2a b +, ∴a+b=2c ,∴a+b-2c=1.故答案为1.14.22.【解析】【分析】灵活运用方程的性质求解即可。
2020年北京市中考数学试卷一、选择题(本题共16分,每小题2分).1.(2分)(2020北京)如图是某几何体的三视图,该几何体是()A.圆柱B.圆椎C.三棱柱D.长方体2.(2分)(2020北京)2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为()A.0.36×105B.3.6×105C.3.6×104D.36×1033.(2分)(2020北京)如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1>∠4+∠5 D.∠2<∠54.(2分)(2020北京)下列图形中,既是中心对称图形也是轴对称图形的是()A.B.C.D.5.(2分)(2020北京)正五边形的外角和为()A.180°B.360°C.540°D.720°6.(2分)(2020北京)实数a 在数轴上的对应点的位置如图所示,若实数b 满足-a <b <a ,则b 的值可以是( )A .2B .-1C .-2D .-37.(2分)(2020北京)不透明的袋子中有两个小球,上面分别写着数字“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( )A .14B .13C .12D .238.(2分)(2020北京)有一个装有水的容器,如图所示,容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A .正比例函数关系B .一次函数关系C .二次函数关系D .反比例函数关系二、填空题(本题共16分,每小题2分)9.(2分)(2020北京)若代数式1x -7有意义,则实数x 的取值范围是 .10.(2分)(2020北京)已知关于x 的方程x 2+2x +k =0有两个相等的实数根,则k 的值是 .11.(2分)(2020北京)写出一个比2大且比15小的整数 .12.(2分)(2020北京)方程组⎩⎪⎨⎪⎧x -y =13x +y =7的解为 .13.(2分)(2020北京)在平面直角坐标系xOy 中,直线y =x 与双曲线y =m x 交于A ,B 两点.若点A ,B 的纵坐标分别为y 1,y 2,则y 1+y 2的值为 .14.(2分)(2020北京)如图,在△ABC 中,AB =AC ,点D 在BC 上(不与点B ,C 重合).只需添加一个条件即可证明△ABD ≌△ACD ,这个条件可以是 (写出一个即可).15.(2分)(2020北京)如图所示的网格是正方形网格,A ,B ,C ,D 是网格线交点,则△ABC 的面积与△ABD 的面积的大小关系为:S △ABC S △ABD (填“>”,“=”或“<”).16.(2分)(2020北京)如图是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位号之和最小,如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一个购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序 .三、解答题(本题共68分,第17-20题,每小题5分,第21题6分,第22题5分,第23-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5分)(2020北京)计算:(13)-1+18+|-2|-6sin45°.18.(5分)(2020北京)解不等式组:⎩⎪⎨⎪⎧5x -3>2x 2x -13<x 219.(5分)(2020北京)已知5x2-x-1=0,求代数式(3x+2)(3x-2)+x(x-2)的值.20.(5分)(2020北京)已知:如图,△ABC为锐角三角形,AB=AC,CD∥AB.求作:线段BP,使得点P在直线CD上,且∠ABP=12∠BAC.作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵CD∥AB,∴∠ABP=.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∴∠BPC=12∠BAC()(填推理的依据).∴∠ABP=12∠BAC.21.(6分)(2020北京)如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 是AD 的中点,点F ,G 在AB 上,EF ⊥AB ,OG ∥EF . (1)求证:四边形OEFG 是矩形;(2)若AD =10,EF =4,求OE 和BG 的长.22.(5分)(2020北京)在平面直角坐标系xOy 中,一次函数y =kx +b (k ≠0)的图象由函数y =x 的图象平移得到,且经过点(1,2). (1)求这个一次函数的解析式;(2)当x >1时,对于x 的每一个值,函数y =mx (m ≠0)的值大于一次函数y =kx +b 的值,直接写出m 的取值范围.23.(6分)(2020北京)如图,AB 为⊙O 的直径,C 为BA 延长线上一点,CD 是⊙O 的切线,D 为切点,OF ⊥AD 于点E ,交CD 于点F . (1)求证:∠ADC =∠AOF ;(2)若sin C =13,BD =8,求EF 的长.24.(6分)(2020北京)小云在学习过程中遇到一个函数y=16|x|(x2-x+1)(x≥-2).下面是小云对其探究的过程,请补充完整:(1)当-2≤x<0时,对于函数y1=|x|,即y1=-x,当-2≤x<0时,y1随x的增大而,且y1>0;对于函数y2=x2-x+1,当-2≤x<0时,y2随x的增大而,且y2>0;结合上述分析,进一步探究发现,对于函数y,当-2≤x<0时,y随x的增大而.(2)当x≥0时,对于函数y,当x≥0时,y与x的几组对应值如下表:x0 121322523 …y0 116167161954872…结合上表,进一步探究发现,当x≥0时,y随x的增大而增大.在平面直角坐标系xOy中,画出当x≥0时的函数y的图象.(3)过点(0,m)(m>0)作平行于x轴的直线l,结合(1)(2)的分析,解决问题:若直线l与函数y=16|x|(x2-x+1)(x≥-2)的图象有两个交点,则m的最大值是.25.(5分)(2020北京)小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:a.小云所住小区5月1日至30日的厨余垃圾分出量统计图:b.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段1日至10日11日至20日21日至30日平均数100 170 250(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为(结果取整数);(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为s12,5月11日至20日的厨余垃圾分出量的方差为s22,5月21日至30日的厨余垃圾分出量的方差为s32.直接写出s12,s22,s32的大小关系.26.(6分)(2020北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线y=ax2+bx+c(a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,求t的取值范围.27.(7分)(2020北京)在△ABC中,∠C=90°,AC>BC,D是AB的中点.E为直线AC 上一动点,连接DE.过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当E是线段AC的中点时,设AE=a,BF=b,求EF的长(用含a,b的式子表示);(2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF之间的数量关系,并证明.28.(7分)(2020北京)在平面直角坐标系xOy中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,得到⊙O的弦A'B'(A',B' 分别为点A,B的对应点),线段AA' 长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图,平移线段AB得到⊙O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是;在点P1,P2,P3,P4中,连接点A与点的线段的长度等于线段AB到⊙O的“平移距离”;(2)若点A,B都在直线y=3x+23上,记线段AB到⊙O的“平移距离”为d1,求d1的最小值;(3)若点A的坐标为(2,32),记线段AB到⊙O的“平移距离”为d2,直接写出d2的取值范围.2020年北京市中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2分)(2020北京)如图是某几何体的三视图,该几何体是()A.圆柱B.圆椎C.三棱柱D.长方体【解答】解:该几何体是长方体,故选:D.2.(2分)(2020北京)2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为()A.0.36×105B.3.6×105C.3.6×104D.36×103【解答】解:36000=3.6×104,故选:C.3.(2分)(2020北京)如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1>∠4+∠5 D.∠2<∠5【解答】解:A.∵∠1和∠2是对顶角,∴∠1=∠2,故A正确;B.∵∠2=∠A+∠3,∴∠2>∠3,故B错误;C.∵∠1=∠4+∠5,故③错误;D.∵∠2=∠4+∠5,∴∠2>∠5;故D错误;故选:A.4.(2分)(2020北京)下列图形中,既是中心对称图形也是轴对称图形的是()A.B.C.D.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;C、不是轴对称图形,是中心对称图形,不合题意;D、既是中心对称图形,又是轴对称图形,符合题意.故选:D.5.(2分)(2020北京)正五边形的外角和为()A.180°B.360°C.540°D.720°【解答】解:任意多边形的外角和都是360°,故正五边形的外角和的度数为360°.故选:B.6.(2分)(2020北京)实数a在数轴上的对应点的位置如图所示,若实数b满足-a<b<a,则b的值可以是()A.2 B.-1 C.-2 D.-3【解答】解:因为1<a<2,所以-2<-a<-1,因为-a<b<a,所以b只能是-1.故选:B.7.(2分)(2020北京)不透明的袋子中有两个小球,上面分别写着数字“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是()A.14B.13C.12D.23【解答】解:列表如下:1 21 2 32 3 4由表可知,共有4种等可能结果,其中两次记录的数字之和为3的有2种结果,所以两次记录的数字之和为3的概率为24=12,故选:C.8.(2分)(2020北京)有一个装有水的容器,如图所示,容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A.正比例函数关系B.一次函数关系C.二次函数关系D.反比例函数关系【解答】解:设容器内的水面高度为h,注水时间为t,根据题意得:h=0.2t+10,∴容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系.故选:B.二、填空题(本题共16分,每小题2分)9.(2分)(2020北京)若代数式1x−7有意义,则实数x的取值范围是x≠7.【解答】解:若代数式1x−7有意义,则x-7≠0,解得:x≠7.故答案为:x≠7.10.(2分)(2020北京)已知关于x的方程x2+2x+k=0有两个相等的实数根,则k的值是1.【解答】解:∵关于x的方程x2+2x+k=0有两个相等的实数根,∴△=22-4×1×k=0,解得:k=1.故答案为:1.11.(2分)(2020北京)写出一个比√2大且比√15小的整数 2或3(答案不唯一) . 【解答】解:∵1<√2<2,3<√15<4,∴比√2大且比√15小的整数2或3(答案不唯一). 故答案为:2或3(答案不唯一). 12.(2分)(2020北京)方程组{x −y =13x +y =7的解为 {x =2y =1 .【解答】解:{x −y =1①3x +y =7②,①+②得:4x =8, 解得:x =2,把x =2代入①得:y =1,则方程组的解为{x =2y =1.故答案为:{x =2y =1.13.(2分)(2020北京)在平面直角坐标系xOy 中,直线y =x 与双曲线y =mx 交于A ,B 两点.若点A ,B 的纵坐标分别为y 1,y 2,则y 1+y 2的值为 0 . 【解答】解:∵直线y =x 与双曲线y =mx 交于A ,B 两点, ∴联立方程组得:{y =x y =m x ,解得:{x 1=√m y 1=√m ,{x2=−√my2=−√m,∴y 1+y 2=0, 故答案为:0.14.(2分)(2020北京)如图,在△ABC 中,AB =AC ,点D 在BC 上(不与点B ,C 重合).只需添加一个条件即可证明△ABD ≌△ACD ,这个条件可以是 BD =CD (写出一个即可).【解答】解:∵AB =AC ,∴∠ABD =∠ACD , 添加BD =CD , ∴在△ABD 与△ACD 中 {AB =AC∠ABD =∠ACD BD =CD, ∴△ABD ≌△ACD (SAS ), 故答案为:BD =CD .15.(2分)(2020北京)如图所示的网格是正方形网格,A ,B ,C ,D 是网格线交点,则△ABC 的面积与△ABD 的面积的大小关系为:S △ABC = S △ABD (填“>”,“=”或“<”).【解答】解:∵S △ABC =12×2×4=4,S △ABD =2×5−12×5×1−12×1×3−12×2×2=4, ∴S △ABC =S △ABD , 故答案为:=.16.(2分)(2020北京)如图是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位号之和最小,如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一个购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序 丙、丁、甲、乙 .【解答】解:根据题意,丙第一个购票,只能购买3,1,2,4号票, 此时,3号左边有6个座位,4号右边有5个座位,即甲、乙购买的票只要在丙的同侧,四个人购买的票全在第一排, ①第二个丁可以购买3号左边的5个座位,另一侧的座位甲和乙购买, 即丙(3,1,2,4)、丁(5,7,9,11,13)、甲(6,8)、乙(10,12,14), 或丙(3,1,2,4)、丁(5,7,9,11,13)、乙(6,8,10)、甲(12,14);②第二个由甲或乙购买,此时,只能购买5,7号票,第三个购买的只能是丁,且只能购买6,8,10,12,14号票,此时,四个人购买的票全在第一排,即丙(3,1,2,4)、甲(5,7)、丁(6,8,10,12,14)、乙(9,11,13),或丙(3,1,2,4)、乙(5,7,9)、丁(6,8,10,12,14)、甲(11,13),因此,第一个是丙购买票,丁只要不是最后一个购买票的人,都能使四个人购买的票全在第一排,故答案为:丙、丁、甲、乙.三、解答题(本题共68分,第17-20题,每小题5分,第21题6分,第22题5分,第23-24题,每小题5分,第25题5分,第26题6分,第27-28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5分)(2020北京)计算:(13)-1+√18+|-2|-6sin45°.【解答】解:原式=3+3√2+2-6×√22=3+3√2+2-3√2=5.18.(5分)(2020北京)解不等式组:{5x−3>2x,2x−13<x2.【解答】解:解不等式5x-3>2x,得:x>1,解不等式2x−13<x2,得:x<2,则不等式组的解集为1<x<2.19.(5分)(2020北京)已知5x2-x-1=0,求代数式(3x+2)(3x-2)+x(x-2)的值.【解答】解:(3x+2)(3x-2)+x(x-2)=9x2-4+x2-2x=10x2-2x-4,∵5x2-x-1=0,∴5x2-x=1,∴原式=2(5x2-x)-4=-2.20.(5分)(2020北京)已知:如图,△ABC为锐角三角形,AB=AC,CD∥AB.求作:线段BP,使得点P在直线CD上,且∠ABP=12∠BAC.作法:①以点A为圆心,AC长为半径画圆,交直线CD于C,P两点;②连接BP.线段BP就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵CD∥AB,∴∠ABP=∠BPC.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∠BAC(同弧所对的圆周角等于圆心角的一半)(圆周角定理)(填推理的∴∠BPC=12依据).∠BAC.∴∠ABP=12【解答】解:(1)如图,即为补全的图形;(2)证明:∵CD∥AB,∴∠ABP=∠BPC.∵AB=AC,∴点B在⊙A上.又∵点C,P都在⊙A上,∴∠BPC=1∠BAC(同弧所对的圆周角等于圆心角的一半),2∠BAC.∴∠ABP=12故答案为:∠BPC,同弧所对的圆周角等于圆心角的一半.21.(6分)(2020北京)如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.【解答】解:(1)∵四边形ABCD是菱形,∴BD⊥AC,∠DAO=∠BAO,∵E是AD的中点,AD,∴AE=OE=12∴∠EAO=∠AOE,∴∠AOE=∠BAO,∴OE∥FG,∵OG∥EF,∴四边形OEFG是平行四边形,∵EF⊥AB,∴∠EFG=90°,∴四边形OEFG是矩形;(2)∵四边形ABCD是菱形,∴BD⊥AC,AB=AD=10,∴∠AOD=90°,∵E是AD的中点,∴OE=AE=1AD=5;2由(1)知,四边形OEFG是矩形,∴FG=OE=5,∵AE=5,EF=4,∴AF=√AE2−EF2=3,∴BG=AB-AF-FG=10-3-5=2.22.(5分)(2020北京)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.【解答】解:(1)∵一次函数y=kx+b(k≠0)的图象由直线y=x平移得到,∴k=1,将点(1,2)代入y=x+b,得1+b=2,解得b=1,∴一次函数的解析式为y=x+1;(2)把点(1,2)代入y=mx求得m=2,∵当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=x+1的值,∴m≥2.23.(6分)(2020北京)如图,AB为⊙O的直径,C为BA延长线上一点,CD是⊙O的切线,D为切点,OF⊥AD于点E,交CD于点F.(1)求证:∠ADC=∠AOF;,BD=8,求EF的长.(2)若sin C=13【解答】解:(1)连接OD,∵AB为⊙O的直径,∴∠ADB=90°,∴AD⊥BD,∵OF⊥AD,∴OF∥BD,∴∠AOF =∠B ,∵CD 是⊙O 的切线,D 为切点, ∴∠CDO =90°,∴∠CDA +∠ADO =∠ADO +∠BDO =90°, ∴∠CDA =∠BDO , ∵OD =OB , ∴∠ODB =∠B , ∴∠AOF =∠ADC ; (2)∵OF ∥BD ,AO =OB , ∴AE =DE ,∴OE =12BD =12×8=4, ∵sin C =OD OC =13,∴设OD =x ,OC =3x , ∴OB =x , ∴CB =4x , ∵OF ∥BD , ∴△COF ∽△CBD , ∴OCBC =OFBD , ∴3x4x =OF 8,∴OF =6,∴EF =OF -OE =6-4=2.24.(6分)(2020北京)小云在学习过程中遇到一个函数y =16|x |(x 2-x +1)(x ≥-2). 下面是小云对其探究的过程,请补充完整:(1)当-2≤x <0时,对于函数y 1=|x |,即y 1=-x ,当-2≤x <0时,y 1随x 的增大而 减小 ,且y 1>0;对于函数y 2=x 2-x +1,当-2≤x <0时,y 2随x 的增大而 减小 ,且y 2>0;结合上述分析,进一步探究发现,对于函数y ,当-2≤x <0时,y 随x 的增大而 减小 .(2)当x ≥0时,对于函数y ,当x ≥0时,y 与x 的几组对应值如下表:x 0 12 1322 52 3… y116167161 954872…结合上表,进一步探究发现,当x ≥0时,y 随x 的增大而增大.在平面直角坐标系xOy 中,画出当x ≥0时的函数y 的图象.(3)过点(0,m )(m >0)作平行于x 轴的直线l ,结合(1)(2)的分析,解决问题:若直线l 与函数y =16|x |(x 2-x +1)(x ≥-2)的图象有两个交点,则m 的最大值是 73 .【解答】解:(1)当-2≤x <0时,对于函数y 1=|x |,即y 1=-x ,当-2≤x <0时,y 1随x 的增大而减小,且y 1>0;对于函数y 2=x 2-x +1,当-2≤x <0时,y 2随x 的增大而减小,且y 2>0;结合上述分析,进一步探究发现,对于函数y ,当-2≤x <0时,y 随x 的增大而减小.故答案为:减小,减小,减小.(2)函数图象如图所示:(3)∵直线l 与函数y =16|x |(x 2-x +1)(x ≥-2)的图象有两个交点, 观察图象可知,x =-2时,m 的值最大,最大值m =16×2×(4+2+1)=73, 故答案为7325.(5分)(2020北京)小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下:a .小云所住小区5月1日至30日的厨余垃圾分出量统计图:b.小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:时段1日至10日11日至20日21日至30日平均数100 170 250(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为173(结果取整数);(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的 2.9倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为s12,5月11日至20日的厨余垃圾分出量的方差为s22,5月21日至30日的厨余垃圾分出量的方差为s32.直接写出s12,s22,s32的大小关系.【解答】解:(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为100×10+170×10+250×10≈173(千克),30故答案为:173;≈2.9(倍),(2)该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的17360故答案为:2.9;(3)由小云所住小区5月1日至30日的厨余垃圾分出量统计图知,第1个10天的分出量最分散、第3个10天分出量最为集中,∴s12>s22>s32.26.(6分)(2020北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线y=ax2+bx+c(a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,求t的取值范围.【解答】解:(1)由题意y1=y2=c,∴x1=0,∵对称轴x=1,∴M,N关于x=1对称,∴x2=2,∴x1=0,x2=2时,y1=y2=c.(2)∵抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,当x1+x2=3,且y1=y2时,对称轴x=3,2.观察图象可知满足条件的值为:t≤3227.(7分)(2020北京)在△ABC中,∠C=90°,AC>BC,D是AB的中点.E为直线AC 上一动点,连接DE.过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当E是线段AC的中点时,设AE=a,BF=b,求EF的长(用含a,b的式子表示);(2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF之间的数量关系,并证明.【解答】解:(1)∵D是AB的中点,E是线段AC的中点,BC,∴DE∥BC,DE=12∵∠ACB=90°,∴∠DEC=90°,∵DF⊥DE,∴∠EDF=90°,∴四边形CEDF是矩形,∴DE=CF=1BC,2∴CF=BF=b,∵CE=AE=a,∴EF=√CF2+CE2=√a2+b2;(2)AE2+BF2=EF2.证明:过点B作BM∥AC,与ED的延长线交于点M,连接MF,则∠AED =∠BMD ,∠CBM =∠ACB =90°, ∵D 点是AB 的中点, ∴AD =BD ,在△ADE 和△BDM 中, {∠AED =∠BMD∠ADE =∠BDM AD =BD, ∴△ADE ≌△BDM (AAS ), ∴AE =BM ,DE =DM , ∵DF ⊥DE , ∴EF =MF , ∵BM 2+BF 2=MF 2, ∴AE 2+BF 2=EF 2.28.(7分)(2020北京)在平面直角坐标系xOy 中,⊙O 的半径为1,A ,B 为⊙O 外两点,AB =1.给出如下定义:平移线段AB ,得到⊙O 的弦A 'B '(A ',B ′分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图,平移线段AB 得到⊙O 的长度为1的弦P 1P 2和P 3P 4,则这两条弦的位置关系是 P 1P 2∥P 3P 4 ;在点P 1,P 2,P 3,P 4中,连接点A 与点 P 3 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =√3x +2√3上,记线段AB 到⊙O 的“平移距离”为d 1,求d 1的最小值;(3)若点A 的坐标为(2,32),记线段AB 到⊙O 的“平移距离”为d 2,直接写出d 2的取值范围.【解答】解:(1)如图,平移线段AB得到⊙O的长度为1的弦P1P2和P3P4,则这两条弦的位置关系是P1P2∥P3P4;在点P1,P2,P3,P4中,连接点A与点P3的线段的长度等于线段AB到⊙O的“平移距离”.故答案为:P1P2∥P3P4,P3.(2)如图1中,作等边△OEF,点E在x轴上,OE=EF=OF=1,设直线y=√3x+2√3交x轴于M,交y轴于N.则M(-2,0),N(0,2√3),过点E作EH⊥MN于H,∵OM=2,ON=2√3,∴tan∠NMO=√3,∴∠NMO=60°,,∴EH=EM•sin60°=√32.观察图象可知,线段AB到⊙O的“平移距离”为d1的最小值为√32(3)如图2中,以A为圆心1为半径作⊙A,作直线OA交⊙O于M,交⊙A于N,以OA ,AB 为邻边构造平行四边形ABDO ,以OD 为边构造等边△ODB ′,等边△OB ′A ′,则AB ∥A ′B ′,AA ′的长即为线段AB 到⊙O 的“平移距离”, 当点A ′与M 重合时,AA ′的值最小,最小值=OA -OM =52−1=32, 当点B 与N 重合时,AA ′的长最大,如图3中,过点A ′作A ′H ⊥OA 于H .由题意A ′H =√32,AH =12+52=3,∴AA ′的最大值=√(√32)2+32=√392, ∴32≤d 2≤√392.。
赢在中考之2020中考数学押题卷(北京卷)一、选择题(本大题共有8个小题,每小题2分,共16分.在每小题给出的四个选项中,只有一个选项符合题目要求,请将选择项前面的字母代号填涂到相应位置上)1.16的算术平方根是()A.2 B.4 C.±2D.±4【答案】A【解析】=4,4的算术平方根是2,故选:A.2.由五个相同的立方体搭成的几何体如图所示,则它的左视图是()A. B.C.D.【答案】D【解析】从左边看第一层是三个小正方形,第二层左边一个小正方形,故选:D.3.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为()A.259×104 B.25.9×105 C.2.59×106 D.0.259×107【答案】C【解析】将2590000用科学记数法表示为:2.59×106.故选:C.4.下列图形中,既是中心对称图形,又是轴对称图形的是()A. B. C. D.【答案】C【解析】A、不是轴对称图形,是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选:C.5.下列图形中,∠1一定大于∠2的是()A. B. C.D.【答案】C【解析】A、根据对顶角相等,∠1=∠2,故本选项错误;B、根据两直线平行、内错角相等,∠1=∠2,故本选项错误;C、根据外角等于不相邻的两内角和,∠1>∠2,故本选项正确;D、根据圆周角性质,∠1=∠2,故本选项错误.故选:C.6.已知△AB C中,∠A=70°,∠B=60°,则∠C=()A.50° B.60° C.70°D.80°【答案】A【解析】∵∠A+∠B+∠C=180°,而∠A=70°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣70°﹣60°=50°.故选:A.7.一元二次方程x(x﹣2)=0根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根 C.只有一个实数根 D.没有实数根【答案】A【解析】原方程变形为:x2﹣2x=0,∵△=(﹣2)2﹣4×1×0=4>0,∴原方程有两个不相等的实数根.故选:A.8.如图把一个长方形纸片沿EF折叠后,点D、C分别落在D′、C′位置,若∠EFB=60°,则∠AED′=()A.50° B.55° C.60°D.65°【答案】C【解析】如图,∵长方形纸片对边平行,∴∠1=∠EFB=60°,由翻折的性质得,∠2=∠1=60°,∴∠AED′=180°﹣∠1﹣∠2=180°﹣60°﹣60°=60°.故选:C.二、填空题(本大题共有8个小题,每小题2分,共16分)9.甲、乙是两个不透明的纸箱,甲中有三张标有数字,,1的卡片,乙中有三张标有数字1,2,3的卡片,卡片除所标数字外无其他差别,现制定一个游戏规则:从甲中任取一张卡片,将其数字记为a,从乙中任取一张卡片,将其数字记为b.若a,b能使关于x的一元二次方程ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.则乙获胜的概率为【答案】【解析】画树状图如下:由图可知,共有9种等可能的结果,其中能使乙获胜的有4种结果数,∴乙获胜的概率为,10.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC于点E,若∠1=145°,则∠2的度数是【答案】40°【解析】△ABC中,AB=AC,∠A=30°,∴∠B=75°,∵∠1=145°,∴∠FDB=35°过点B作BG∥a∥b,∴∠FDB=∠DBG,∠2=∠CBG,∵∠B=∠ABG+∠CBG,∴∠2=40°,故选C11.如图,七边形ABCDEFG中,AB、ED的延长线交于点O,着∠1、∠2、∠3、∠4对应的邻补角和等于215°,则∠BOD的度数为【答案】30°【解析】由题意知:设4G网络的峰值速率为每秒传输x兆数据,则5G网络的峰值速率为每秒传输10x兆数据,4G传输500兆数据用的时间是500,x,5G网络比4G网络快45秒,所以5G传输500兆数据用的时间是50010x500500-=.45x x1012.如图,在△OAB中,顶点O(0,0),A(-3,4),B(3,4).将△OAB与正方形ABCD组成的图形绕点O顺时针旋转,每次旋转90°,则第70次旋转结束时,点D的坐标为【答案】(3,-10)【解题过程】延长DA交x轴于点M∵A(-3,4),B(3,4),∴AB=6,AB∥x轴∵四边形ABCD为正方形∴AD=AB=6,∠DAB=90°∴∠DM0=∠DAB=90°连结OD,Rt△DMO中,MO=3 DM=10 则D点的坐标为(-3,10)将△OAB和正方形ABCD绕点O每次顺时针旋转90°,Rt△DMO也同步绕点O每次顺时针转90°当图形绕点O顺时针第一次旋转90°后,D点的坐标为(10,3),当图形绕点O顺时针第二次旋转90°后,D点的坐标为(3,-10),当图形绕点O顺时针第三次旋转90°后,D点的坐标为(-10,-3),当图形绕点O顺时针第四次旋转90°后,D点的坐标为(-3,10),当图形绕点O顺时针第五次旋转90°后,D点的坐标为(10,3),每四次为一个循环∵70÷4=17 (2)∴旋转70次后,D点的坐标为(3,-10)13.《九章算术》是我国古代数学的经典著作,书中有一个问题:”今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金,银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子的重量忽略不计),问黄金,白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意可列方程组为_______________.【答案】()()9x 11y 10y x 8x y 13=⎧⎪⎨+-+=⎪⎩【解析】甲袋中装有黄金9枚,乙袋中装有白银11枚,称重两袋相等,设每枚黄金重x 两,每枚白银重y 两,可得9x =11y,两袋互相交换1枚后,甲袋比乙袋轻了13两,可得(10y +x )-(8x +y )=13,∴方程组为()()9x 11y10y x 8x y 13=⎧⎪⎨+-+=⎪⎩.14.如图,一艘轮船从位于灯塔C 的北偏东60°方向,距离灯塔60 n mile的小岛A 出发,沿正南方向航行一段时间后,到达位于灯塔C 的南偏东45°方向上的B 处,这时轮船B 与小岛A 的距离是 。
ECAHFE DC B【2020·怀柔一模】1.如图,在△ABC 中,△A=90°,AB=AC ,点D 是BC 上任意一点,将线段AD 绕点A 逆时针方向旋转90°,得到线段AE ,连结EC. (1)依题意补全图形; (2)求△ECD 的度数;(3)若△CAE=7.5°,AD=1,将射线DA 绕点D 顺时针旋转60°交EC 的延长线于点F ,请写出求AF 长的思路.【答案】 (1) 如图(2) (2) △线段AD 绕点A 逆时针方向旋转90°,得到线段AE. △△DAE=90°,AD=AE. △△DAC+△CAE =90°. △△BAC=90°, △△BAD+△DAC =90°. △△BAD=△CAE . 又△AB=AC, △△ABD△△ACE. △△B=△ACE.△△ABC 中,△A=90°,AB=AC, △△B=△ACB=△ACE=45°.第13讲 几何压轴题△△ECD=△ACB+△ACE=90°.(3) △.连接DE,由于△ADE 为等腰直角三角形,所以可求DE=;△.由△ADF=60°,△CAE=7.5°,可求△EDC 的度数和△CDF 的度数,从而可知DF 的长; △.过点A 作AH△DF 于点H ,在Rt△ADH 中, 由△ADF=60°,AD=1可求AH 、DH 的长; △. 由DF 、DH 的长可求HF 的长;△. 在Rt△AHF 中, 由AH 和HF,利用勾股定理可求AF 的长.【2020·平谷一模】2.在△ABC 中,AB=AC ,CD △BC 于点C ,交△ABC 的平分线于点D ,AE 平分∠BAC 交BD 于点E ,过点E 作EF △BC 交AC 于点F ,连接DF . (1)补全图1;(2)如图1,当△BAC =90°时,①求证:BE=DE ;②写出判断DF 与AB 的位置关系的思路(不用写出证明过程); (3)如图2,当△BAC=α时,直接写出α,DF ,AE 的关系.【答案】解:(1)补全图1;(2)①延长AE ,交BC 于点H . ∵AB=AC , AE 平分∠BAC ,∴AH ⊥BC 于H ,BH=HC .∵CD △BC 于点C ,2DFEABC图1DE BCEDBC图2GDFEBC∴EH ∥CD . ∴BE=DE .②延长FE ,交AB 于点G .由AB=AC ,得△ABC =△ACB . 由EF ∥BC ,得∠AGF =∠AFG . 得AG=AF .由等腰三角形三线合一得GE=E F . 由∠GEB =∠FED ,可证△BEG ≌△DEF .可得∠ABE =∠FDE .从而可证得DF ∥AB . (3)tan 2DF αAE . 【2020·顺义一模】3 .如图,在正方形ABCD 中,E 是BC 边上一点,连接AE ,延长CB 至点F ,使BF=BE ,过点F 作FH △AE 于点H ,射线FH 分别交AB 、CD 于点M 、N ,交对角线AC 于点P ,连接AF .(1)依题意补全图形; (2)求证:△F AC =△APF ;(3)判断线段FM 与PN 的数量关系,并加以证明. 【答案】(1)补全图如图所示. (2)证明△正方形ABCD ,△△BAC =△BCA =45°,△ABC =90°, △△P AH =45°-△BAE .EDCBAB△FH△AE.△△APF=45°+△BAE.△BF=BE,△AF=AE,△BAF=△BAE.△△F AC=45°+△BAF.(3)判断:FM=PN.证明:过B作BQ△MN交CD于点Q,△MN=BQ,BQ△AE.△正方形ABCD,△AB=BC,△ABC=△BCD=90°.△△BAE=△CBQ.△△ABE△△BCQ.△AE=BQ.△AE=MN.△△F AC=△APF,△AF=FP.△AF=AE,△AE=FP.△FP=MN.△FM=PN.【2020·大兴一模】4.如图,在等腰直角△ABC中,△CAB=90°,F是AB边上一点,作射线CF,过点B作BG△C F于点G,连接AG.(1)求证:△ABG=△ACF;(2)用等式表示线段C G,AG,BG之间的等量关系,并证明.【答案】(1)证明:△ △CAB=90°. △ BG △CF 于点G , △ △BGF =△CAB =90°. △△GFB =△CF A . △ △ABG =△ACF .(2)CG =2AG +BG .证明:在CG 上截取CH =BG ,连接AH , △ △ABC 是等腰直角三角形, △ △CAB =90°,AB =AC . △ △ABG =△ACH . △ △ABG △△ACH . △ AG =AH ,△GAB =△HAC . △ △GAH =90°.△ 222AG AH GH +=. △ GH =2AG .△ CG =CH +GH =2AG +BG .【2020·石景山一模】5.在正方形ABCD 中,M 是BC 边上一点,点P 在射线AM 上,将线段AP 绕点A 顺时针旋转90°得到线段AQ ,连接BP ,DQ . (1)依题意补全图1;(2)△连接DP ,若点P ,Q ,D 恰好在同一条直线上,求证:2222DP DQ AB +=; △若点P ,Q ,C 恰好在同一条直线上,则BP 与AB 的数量关系为: .【答案】(1)补全图形如图1.(2)△证明:连接BD ,如图2,△线段AP 绕点A 顺时针旋转90°得到线段AQ , △AQ AP =,90QAP ∠=°. △四边形ABCD 是正方形, △AD AB =,90DAB ∠=°. △12∠=∠.QB ADCMP图1图1备用图BA CDMBA D CMP321QB ACDMP图2△△ADQ △△ABP . △DQ BP =,3Q ∠=∠.△在Rt QAP ∆中,90Q QPA ∠+∠=°, △390BPD QPA ∠=∠+∠=°. △在Rt BPD ∆中,222DP BP BD +=, 又△DQ BP =,222BD AB =,△2222DP DQ AB +=. △BP AB =.【2020·门头沟一模】6. 如图,在△ABC 中,AB =AC ,2A α∠=,点D 是BC 的中点,DE AB E ⊥于点,DF AC F ⊥于点.(1)EDB ∠=_________°;(用含α的式子表示)(2)作射线DM 与边AB 交于点M ,射线DM 绕点D 顺时针旋转1802α︒-,与AC 边交于点N . △根据条件补全图形;△写出DM 与DN 的数量关系并证明;△用等式表示线段BM CN 、与BC 之间的数量关系, (用含α的锐角三角函数表示)并写出解题思路. 【答案】(1) EDB α∠=(2)△补全图形正确 △数量关系:DM DN =QB ADCMP图1F E DCB△,AB AC BD DC == △DA 平分BAC ∠△DE AB E ⊥于点,DF AC F ⊥于点 △DE DF = , MED NFD ∠=∠ △2A α∠=△1802EDF α∠=︒- △1802MDN α∠=︒- △MDE NDF ∠=∠△MDE NDF △≌△ △DM DN =△数量关系:sin BM CN BC α+=⋅ 证明思路:a.由MDE NDF △≌△可得EM FN =b. 由AB AC =可得B C ∠=∠,进而通过BDE CDF △≌△,可得BE CF = 进而得到2BE BM CN =+c.过BDE Rt △可得sin BEα=,最终得到sin BM CN BC α+=⋅ 【2020·房山一模】7. 如图,已知Rt△ABC 中,△C =90°,△BAC =30°,点D 为边BC 上的点,连接AD ,△BAD =α,点D 关于AB 的对称点为E ,点E 关于AC 的对称点为G ,线段EG 交AB 于点F ,连接AE ,DE ,DG ,AG . (1)依题意补全图形;(2)求△AGE 的度数(用含α的式子表示);(3)用等式表示线段EG 与EF ,AF 之间的数量关系,并说明理由.【答案】 解(1)(2)由轴对称性可知,AB 为ED 的垂直平分线,AC 为EG 的垂直平分线.△AE =AG =AD .△△AEG =△AGE ,△BAE =△BAD =α △△EAC =△BAC +△BAE =30°+α △△EAG =2△EAC =60°+2α△△AGE =12(180°-△EAG ) =60°-α或:△AGE =△AEG =90°-△EAC =90°-(△BAC +△EAB )=90°-(30°+α) =60°-α(3)EG =2EF +AF 法1:设AC 交EG 于点H △△BAC =30°,△AHF =90° △FH =12AFαD CB AαAB CEFGαNGFEAH△EH =EF +FH =EF +12AF又△点E ,G 关于AC 对称 △EG =2EH△EG =2(EF +12AF )=2EF +AF法2:在FG 上截取NG =EF ,连接AN. 又△AE =AG , △△AEG =△AGE △△AEF △△AGN △AF =AN△△EAF =α,△AEG =60°-α △△AFN =60°△△AFN 为等边三角形△AF =FN△EG =EF +FN +NG =2EF +AF【2020·朝阳一模】8. 如图,在菱形ABCD 中,∠DAB =60°,点E 为AB 边上一动点(与点A ,B 不重合),连接CE ,将∠ACE 的两边所在射线CE ,CA 以点C 为中心,顺时针旋转120°,分别交射线AD 于点F ,G. (1)依题意补全图形;(2)若∠ACE=α,求∠AFC 的大小(用含α的式子表示); (3)用等式表示线段AE 、AF 与CG 之间的数量关系,并证明.【答案】(1)补全的图形如图所示.(2)解:由题意可知,∠ECF=∠ACG=120°.△∠FCG=∠ACE=α.△四边形ABCD 是菱形,∠DAB=60°, △∠DAC=∠BAC= 30°. △∠AGC=30°. △∠AFC =α+30°.(3)用等式表示线段AE 、AF 与CG 之间的数量关系为CG AF AE 3=+.证明:作CH △AG 于点H.由(2)可知∠BAC=∠DAC=∠AGC=30°. △CA=CG. △HG =21AG. △∠ACE =∠GCF ,∠CAE =∠CGF , △△ACE ≌△GCF. △AE =FG .在Rt △HCG 中, .23cos CG CGH CG HG =∠⋅= △AG =3CG . 即AF+AE =3CG .【2020·东城一模】9. 已知△ABC中,AD是的平分线,且AD=AB,过点C作AD 的垂线,交AD 的延长线于点H.(1)如图1,若△直接写出B∠和ACB∠的度数;△若AB=2,求AC和AH的长;(2)如图2,用等式表示线段AH与AB+AC之间的数量关系,并证明.【答案】(1)△75B∠=︒,45ACB∠=︒;△作DE△AC交AC于点E.Rt△ADE中,由30DAC∠=︒,AD=2可得DE=1,AE3=.Rt△CDE中,由45ACD∠=︒,DE=1,可得EC=1.△AC31=.Rt△ACH中,由30DAC∠=︒,可得AH33+=;(2)线段AH与AB+AC之间的数量关系:2AH=AB+ACBAC∠60BAC∠=︒证明: 延长AB 和CH 交于点F ,取BF 中点G ,连接GH .易证△ACH △△AFH .△AC AF =,HC HF =. △GH BC ∥. △AB AD =, △ ABD ADB ∠=∠. △ AGH AHG ∠=∠ . △ AG AH =.△()2222AB AC AB AF AB BF AB BG AG AH +=+=+=+==.【2020·西城一模】10.正方形ABCD 的边长为2,将射线AB 绕点A 顺时针旋转α,所得射线与线段BD 交于点M ,作CE AM ⊥于点E ,点N 与点M 关于直线CE 对称,连接CN . (1)如图1,当045α︒<<︒时, △依题意补全图1.△用等式表示NCE ∠与BAM ∠之间的数量关系:__________.(2)当4590α︒<<︒时,探究NCE ∠与BAM ∠之间的数量关系并加以证明. (3)当090α︒<<︒时,若边AD 的中点为F ,直接写出线段EF 长的最大值.【答案】(1)△补全的图形如图7所示.△ △NCE =2△BAM .(2)当45°<α<90°时,=1802NCE BAM ∠︒-∠.证明:如图8,连接CM ,设射线AM 与CD 的交点为H .△ 四边形ABCD 为正方形,△ △BAD=△ADC=△BCD=90°,直线BD 为正方形ABCD 的对称轴,CDBA图1备用图C DBAM点A与点C关于直线BD对称.△ 射线AM与线段BD交于点M,△ △BAM=△BCM=α.△ △1=△2=90α︒-.△ CE△AM,△ △CEH=90°,△3+△5=90°.又△△1+△4=90°,△4=△5,△ △1=△3.△ △3=△2=90α︒-.△ 点N与点M关于直线CE对称,△ △NCE=△MCE=△2+△3=1802BAM︒-∠.(31.【2020·海淀一模】11.如图,已知60AOB∠=︒,点P为射线OA上的一个动点,过点P 作PE OB⊥,交OB于点E,点D在AOB∠内,且满足DPA OPE∠=∠,6DP PE+=.图7((【答案】解:(1)作PF △DE 交DE 于F . △PE △BO ,60AOB ∠=,△30OPE ∠=.△30DPA OPE ∠=∠=.△120EPD ∠=. △DP PE =,6DP PE +=, △30PDE ∠=,3PD PE ==. △cos30DF PD =⋅︒=△2DE DF ==(2)当M 点在射线OA 上且满足OM =DMME的值不变,始终为1.理由如下: 当点P 与点M 不重合时,延长EP 到K 使得PK PD =.△,DPA OPE OPE KPA ∠=∠∠=∠, △KPA DPA ∠=∠. △KPM DPM ∠=∠. △PK PD =,PM 是公共边, △KPM △△DPM △. △MK MD =. 作ML △OE 于L ,MN △EK 于N .△60MO MOL =∠=, △sin 603ML MO =⋅=.△PE △BO ,ML △OE ,MN △EK , △四边形MNEL 为矩形. △3EN ML ==.△6EK PE PK PE PD =+=+=, △EN NK =. △MN △EK , △MK ME =. △ME MK MD ==,即1DMME=. 当点P 与点M 重合时,由上过程可知结论成立.【2020·丰台一模】12.如图,Rt △ABC 中,∠ACB = 90°,CA = CB ,过点C 在△ABC外作射线CE ,且∠BCE = α,点B 关于CE 的对称点为点D ,连接AD ,BD ,CD ,其中AD ,BD 分别交射线CE 于点M ,N .(1)依题意补全图形;(2)当α= 30°时,直接写出∠CMA 的度数;(3)当0°<α< 45°时,用等式表示线段AM ,CN 之间的数量关系,并证明.【答案】解:(1)如图;(2)45°; (3)结论:AM. 证明:作AG ⊥EC 的延长线于点G .∵点B 与点D 关于CE 对称, ∴CE 是BD 的垂直平分线. ∴CB =CD . ∴∠1=∠2=α.∵CA =CB ,∴CA =CD .∴∠3=∠CAD . ∵∠4=90°, ∴∠3=(180°∠ACD )=(180°90°αα)=45°.∴∠5=∠2+∠3=α+45°-=45°. ∵∠4=90°,CE 是BD 的垂直平分线, ∴∠1+∠7=90°,∠1+∠6=90°. ∴∠6=∠7. ∵AG ⊥EC ,∴∠G =90°=∠8. ∴在△BCN 和△CAG 中, ∠8=∠G ,12-12----ααABCE∠7=∠6,BC=CA,∴△BCN≌△CAG.∴CN=AG.∵Rt△AMG中,∠G=90°,∠5=45°,∴AMAG.∴AMCN.(其他证法相应给分.)。
图形变换1.(2020·石景山一模)篆体是我国汉字古代书体之一.下列篆体字“美”,“丽”,“北”,“京”中,不是..轴对称图形的为A B C D答案:B2.(2020·东城一模)我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化. 如图2,窗框的一部分所展示的图形是一个轴对称图形,其对称轴有A.1条B.2条C.3条D.4条答案:B3.(2020·房山一模)下列图案是轴对称图形的是A. B. C. D.答案:C4.(2020·丰台一模)北京教育资源丰富,高校林立,下面四个高校校徽主体图案是中心对称图形的是北京林业大学北京体育大学北京大学中国人民大学A.B.C.D.答案:B5.(2020·海淀一模)下列四个图形依次是北京、云南、西藏、安徽四个省市的图案字体,其中是轴对称图形的是A B C D答案:A6.(2020·平谷一模)下列图形中,既是轴对称图形,又是中心对称图形的是A.B.C.D.答案:D7.(2020·顺义一模)我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是A B C D答案:B8.(2020·通州一模)下列图形中,是中心对称图形的是A.B.C.D.答案:D9.(2020·西城一模)右图是某几何体的三视图,该几何体是(A)三棱柱(B)长方体(C)圆锥(D)圆柱答案:B10.(2020·门头沟一模)剪纸是中国古老的汉族传统民间艺术之一.下面是制作剪纸的简单流程,展开后的剪纸图案从对称性来判断A.是轴对称图形但不是中心对称图形B.是中心对称图形但不是轴对称图形C.既是轴对称图形也是中心对称图形D.既不是轴对称图形也不是中心对称图形答案:C。
北京市中考数学押题卷A学校姓名准考证号一、选择题.(本题共30分,每小题3分)下面各题均有四个选项,符合题意的选项只有一个.1.+(﹣3)的相反数是()A.﹣(+3)B.﹣3C.3D.【解析】求出式子的值,再求出其相反数即可.【解答】解:+(﹣3)=﹣3,﹣3的相反数是3.故选:C.【说明】本题考查了相反数和化简求值的应用,注意:a的相反数是﹣a.2.实数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.|a|<|b|B.a>b C.a<﹣b D.|a|>|b|【解析】据点的坐标,可得a、b的值,根据相反数的意义,有理数的减法,有理数的加法,可得答案.【解答】解:由点的坐标,得0>a>﹣1,1<b<2.A、|a|<|b|,故本选项正确;B、a<b,故本选项错误;C、a>﹣b,故本选项错误;D、|a|<|b|,故本选项错误;故选:A.【说明】本题考查了实数与数轴,利用点的坐标得出a、b的值是解题关键.3.若点A(﹣1,2),B(2,﹣3)在直线y=kx+b上,则函数y=的图象在()A.第一、三象限B.第一、二象限C.第二、四象限D.第二、三象限【解析】待定系数法求得k、b的值,根据反比例函数的图象与性质即可判断.【解答】解:根据题意,将点A(﹣1,2),B(2,﹣3)代入直线y=kx+b,得:,解得:,∴由反比例函数的性质可知,k=﹣<0时,函数y=的图象在第二、四象限,故选:C.【说明】本题主要考查待定系数法求一次函数解析式及反比例函数的图象与性质,熟练掌握待定系数法与反比例函数的图象与性质是解题的关键.4.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.【解析】如图所示,根据三视图的知识可使用排除法来解答.【解答】解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故答案为三棱柱.【说明】本题考查了由三视图判断几何体的知识,考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.5.下列四张扑克牌图案,属于中心对称的是()A.B.C.D.【解析】根据中心对称图形的概念和各扑克牌的花色排列特点的求解.【解答】解:A、是中心对称图形,符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故答案为:A.【说明】本题考查中心对称的知识,掌握好中心对称图形的概念是解题的关键.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.6.甲、乙两位运动员在一段2000米长的笔直公路上进行跑步比赛,比赛开始时甲在起点,乙在甲的前面200米,他们同时同向出发匀速前进,甲的速度是8米/秒,乙的速度是6米/秒,先到终点者在终点原地等待.设甲、乙两人之间的距离是y米,比赛时间是x秒,当两人都到达终点计时结束,整个过程中y与x之间的函数图象是()A.B.C.D.【解析】先算出甲到达终点的时间,由此算出二者之间的最大距离,再算出乙到达终点的时间,由此找出点的坐标,结合点的坐标利用待定系数法求出函数解析式,根据函数解析式分析四个选项即可得出结论.【解答】解:当甲跑到终点时所用的时间为:2000÷8=250(秒),此时甲乙间的距离为:2000﹣200﹣6×250=300(米),乙到达终点时所用的时间为:(2000﹣200)÷6=300(秒),∴最高点坐标为(250,300).设y关于x的函数解析式为y=kx+b,当0≤x≤100时,有,解得:,此时y=﹣2x+200;当100<x≤250时,有,解得:,此时y=2x﹣200;当250<x≤300时,有,解得:,此时y=﹣6x+1800.∴y关于x的函数解析式为y=.∴整个过程中y与之间的函数图象是B.故选B.【说明】本题考查了函数的图象,解题的关键是根据点的坐标利用待定系数法求出函数解析式.本题属于基础题,难度不大,解决该题型题目时,找出点的坐标,利用待定系数法求出函数解析式是关键.7.周星驰拍摄的电影《美人鱼》取景地在深圳杨梅坑,据称是深圳最美的溪谷,为估计全罗湖区8000名九年级学生去过杨梅坑的人数,随机抽取400名九年级学生,发现其中有50名学生去过该景点,由此估计全区九年级学生中有()个学生去过该景点.A.1000人B.800人C.720人D.640人【解析】用样本中去过该景点的人数所占比例乘以总人数即可得.【解答】解:根据题意,估计全区九年级学生中去过该景点的学生有8000×=1000(人),故选:A.【说明】本题主要考查样本估计总体,熟练掌握样本估计总体的思想及计算方法是解题的关键.8.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是()A.B.C.D.【解析】利用△ABC中,∠ACB=135°,AC=2,BC=,然后根据两组对应边的比相等且夹角对应相等的两个三角形相似可对各选项进行判定即可.【解答】解:在△ABC中,∠ACB=135°,AC=2,BC=,在A、C、D选项中的三角形都没有135°,而在B选项中,三角形的钝角为135°,它的两边分别为1和,因为=,所以B选项中的三角形与△ABC相似.故选B.【说明】此题考查了相似三角形的判定.注意两组对应边的比相等且夹角对应相等的两个三角形相似.9.小明家凉台呈圆弧形,凉台的宽度AB为8m,凉台的最外端C点离AB的距离CD为2m,则凉台所在圆的半径为()A.4m B.5m C.6m D.7m【解析】设圆心为O点,连接OA,OD,根据题意得:OC⊥AB,利用垂径定理得到D为AB 的中点,求出AD的长,由OC﹣CD求出OD的长,在直角三角形AOD中,设OA=r,利用勾股定理列出关于r的方程,求出方程的解得到r的值,即为圆的半径.【解答】解:设圆心为O点,连接OA,OD,根据题意得:OC⊥AB,∴D为AB的中点,即AD=BD=AB=4(m),设圆半径为r,则有OD=OC﹣CD=(r﹣2)m,在Rt△AOD中,OA2=AD2+OD2,即r2=42+(r﹣2)2,解得:r=5,则凉台所在圆的半径为5m.故选B【说明】此题考查了垂径定理的应用,以及勾股定理,熟练掌握垂径定理及勾股定理是解本题的关键.10.如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是()A.﹣2<m<B.﹣3<m<﹣C.﹣3<m<﹣2D.﹣3<m<﹣【解析】首先求出点A和点B的坐标,然后求出C2解析式,分别求出直线y=x+m与抛物线C2相切时m的值以及直线y=x+m过点B时m的值,结合图形即可得到答案.【解答】解:令y=﹣2x2+8x﹣6=0,即x2﹣4x+3=0,解得x=1或3,则点A(1,0),B(3,0),由于将C1向右平移2个长度单位得C2,则C2解析式为y=﹣2(x﹣4)2+2(3≤x≤5),当y=x+m1与C2相切时,令y=x+m1=y=﹣2(x﹣4)2+2,即2x2﹣15x+30+m1=0,△=﹣8m1﹣15=0,解得m1=﹣,当y=x+m2过点B时,即0=3+m2,m2=﹣3,当﹣3<m<﹣时直线y=x+m与C1、C2共有3个不同的交点,故选:D.【说明】本题主要考查抛物线与x轴交点以及二次函数图象与几何变换的知识,解答本题的关键是正确地画出图形,利用数形结合进行解题,此题有一定的难度.二.填空题(本题共18分,每小题3分)11.若代数式在实数范围内有意义,则实数x的取值范围是.【解析】先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:由题意得x﹣3≠0,解得x≠3,故答案为:x≠3.【说明】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.12.如果二次函数y=ax2(a≠0)的图象开口向下,那么a的值可能是(只需写一个).【解析】由抛物线开口方向可求得a的取值范围,可求得答案.【解答】解:∵二次函数y=ax2(a≠0)的图象开口向下,∴a<0,∴可取a=﹣1,故答案为:﹣1.【说明】本题主要考查二次函数的性质,掌握抛物线的开口方向由a的正负决定是解题的关键.13.某班男生进行引体向上的专项训练,已知共有6名男生,并对其训练前、后引体向上的个数进行统计分析,男生训练前、后引体向上个数统计表(单位:个)男生A 男生B男生C男生D男生E男生F平均个数众数中位数训练前4 6 4 35 2 4 b 4训练后8 9 6 6 7 6a6c(1)根据以上信息,解答下列问题:(1)a=,b=,c=;(2)甲组训练后引体向上的平均个数比训练前增长了%;【解析】(1)根据平均数、众数和中位数的定义即可求解;(2)根据即可求得增长率;【解答】解:(1)a=(8+9+6+6+7+6)÷6=7,b=4,c=(6+7)÷2=6.5;(2)(7﹣4)÷4×100%=3÷4×100%=75%;【说明】本题考查了平均数、众数、中位数等相关概念及求法,考查了如何求增长率。
赢在中考之2020中考数学押题卷(北京卷)一、选择题(本大题共有8个小题,每小题2分,共16分.在每小题给出的四个选项中,只有一个选项符合题目要求,请将选择项前面的字母代号填涂到相应位置上) 1.1-1-12的计算结果为( )A .21B .21-C .25-D .25【答案】B【解析】原式=﹣,故选:B .2.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是( )A .圆柱B .圆锥C .棱锥D .球【答案】A【解析】∵主视图和左视图都是长方形,∴此几何体为柱体, ∵俯视图是一个圆,∴此几何体为圆柱.故选:A . 3.从﹣1,0,2,﹣0.3,π,31中任意抽取一个数.下列事件发生的概率最大的是( )A .抽取正数B .抽取非负数C .抽取无理数D .抽取分数 【答案】B【解析】A 、抽取正数的概率为:,B 、抽取非负数的概率为:;C 、抽取无理数的概率为:;D 、抽取分数的概率为:;故发生的概率最大的是B 选项. 故选:B .4.某校规定学生的学期体育成绩由三部分组成:体育课外活动占学期成绩的20%,理论测试占20%,体育技能测试占60%,一名同学上述三项成绩依次为90分,95分,85分,则该同学这学期的体育成绩为( ) A .85分 B .88分C .90分D .95分【答案】B【解析】由题意知,该同学这学期的体育成绩=90×20%+95×20%+85×60%=88(分).答:该同学这学期的体育成绩为88分.故选:B.5.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.30°B.40°C.50°D.60°【答案】C【解析】如图,∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF =∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选:C.6.下列计算正确的有()个①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6③(x﹣2)2=x2﹣4④﹣2m 3+m 3=﹣m 3 ⑤﹣16=﹣1. A .0 B .1 C .2 D .3【答案】C【解析】①(﹣2a 2)3=﹣8a 6,错误;②(x ﹣2)(x +3)=x 2+x ﹣6,错误; ③(x ﹣2)2=x 2﹣4x +4,错误;④﹣2m 3+m 3=﹣m 3,正确;⑤﹣16=﹣1,正确.计算正确的有2个.故选:C .7.关于x 的方程3x +2a =x ﹣5的解是负数,则a 的取值范围是( ) A .a <25B .a >25C .a <25-D .a >25-【答案】D【解析】解方程3x +2a =x ﹣5得:x =﹣a ﹣,∵关于x 的方程3x +2a =x ﹣5的解是负数,∴﹣a ﹣<0,解得:a >﹣,故选:D . 8.下列4个点,不在反比例函数y =x6-图象上的是( )A .(2,﹣3)B .(﹣3,2)C .(3,﹣2)D .(3,2) 【答案】D【解析】A、∵2×(﹣3)=﹣6,点在反比例函数图象上,故本选项错误;B、∵﹣3×2=﹣6,点在反比例函数图象上,故本选项错误;C、∵3×(﹣2)=﹣6,点在反比例函数图象上,故本选项错误;D、∵3×2=6≠﹣6,点不在反比例函数图象上,故本选项正确;故选:D.二、填空题(本大题共有8个小题,每小题2分,共16分)9.在平面直角坐标系中,将点P(﹣4,2)绕原点O顺时针旋转90°,则其对应点Q的坐标为【答案】(2,4).【解析】作图如下,∵∠MPO+∠POM=90°,∠QON+∠POM=90°,∴∠MPO=∠QON,在△PMO和△ONQ中,∵,∴△PMO ≌△ONQ , ∴PM =ON ,OM =QN , ∵P 点坐标为(﹣4,2), ∴Q 点坐标为(2,4).10.某班体育委员对本班学生一周锻炼(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是【答案】11【解析】由统计图可得,本班学生有:6+9+10+8+7=40(人), 该班这些学生一周锻炼时间的中位数是:1111.如图①是半径为2的半圆,点C 是弧AB 的中点,现将半圆如图②方式翻折,使得点C 与圆心O 重合,则图中阴影部分的面积是【答案】3232π【解析】连接OC交MN于点P,连接OM、ON,由题意知,OC⊥MN,且OP=PC=1,在Rt△MOP中,∵O M=2,OP=1,∴cos∠POM==,AC==,∴∠POM=60°,MN=2MP=2,∴∠AOB=2∠AOC=120°,则图中阴影部分的面积=S半圆﹣2S弓形MCN=×π×22﹣2×(﹣×2×1)=2﹣π,12.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b<0;③a<0;④b2+8a>4ac,其中正确的有个【答案】4【解析】①当x =﹣2时,y =ax 2+bx +c ,y =4a ﹣2b +c , ∵﹣2<x 1<﹣1,∴y <0,故①正确;②∵二次函数y =ax 2+bx +c (a ≠0)的图象经过点(﹣1,2), ∴a ﹣b +c =2,与y 轴交于(0,1)点,c =1, ∴a ﹣b =1,二次函数的开口向下,a <0, 又﹣1<﹣<0,∴2a ﹣b <0,故②正确;③因为抛物线的开口方向向下,所以a <0,故③正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即>2,由于a <0,所以4ac ﹣b 2<8a ,即b 2+8a >4ac ,故④正确. 13.分解因式:9﹣12t +4t 2= . 【答案】(3﹣2t )2【解析】原式=(3﹣2t )2.故答案为:(3﹣2t )2 14.关于x 的方程32311+=-x x 的解是x = .【答案】6【解析】去分母得:2x +3=3x ﹣3,移项合并得:﹣x =﹣6,解得:x =6,故答案为:615.A、B两地之间为直线距离且相距600千米,甲开车从A地出发前往B 地,乙骑自行车从B地出发前往A地,已知乙比甲晚出发1小时,两车均匀速行驶,当甲到达B地后立即原路原速返回,在返回途中再次与乙相遇后两车都停止,如图是甲、乙两人之间的距离s(千类)与甲出发的时间t(小时)之间的图象,则当甲第二次与乙相遇时,乙离B地的距离为千米.【答案】【解析】设甲的速度为a km/h,乙的速度为b km/h,,解得,,设第二次甲追上乙的时间为m小时,100m﹣25(m﹣1)=600,解得,m=,∴当甲第二次与乙相遇时,乙离B地的距离为:25×()=千米,故答案为:.16.如图,已知矩形ABC D中,点E是BC边上的点,BE=2,EC=1,AE=BC,DF⊥AE,垂足为F.则下列结论:①△ADF≌△EAB;②AF=BE;③DF平分∠ADC ;④sin ∠CDF =32.其中正确的结论是 .(把正确结论的序号都填上)【答案】①②【解析】∵四边形ABCD 是矩形,∴AD =BC ,AD ∥BC ,∠B =90°, ∵BE =2,EC =1,∴AE =AD =BC =3,AB ==,∵AD ∥BC ,∴∠DAF =∠AEB , ∵DF ⊥AE ,∴∠AFD =∠B =90°, ∴△EAB ≌△ADF , ∴AF =BE =2,DF =AB =,故①②正确,不妨设DF 平分∠ADC ,则△ADF 是等腰直角三角形,这个显然不可能,故③错误,∵∠DAF +∠ADF =90°,∠CDF +∠ADF =90°, ∴∠DAF =∠CDF , ∴∠CDF =∠AEB , ∴sin ∠CDF =sin ∠AEB =,故④错误,故答案为①②.三、简答题(本大题共有12个小题,共68分:第17-22题每题5分,第23-26题每题6分,第27-28题每题7分。
代数压轴题1.(2020北京朝阳初三二模)在平面直角坐标系xOy 中,抛物线22(9)6y x m x =-++-的对称轴是2x =.(1)求抛物线表达式和顶点坐标;(2)将该抛物线向右平移1个单位,平移后的抛物线与原抛物线相交于点A ,求点A 的坐标;(3)抛物线22(9)6y x m x =-++-与y 轴交于点C ,点A 关于平移后抛物线的对称轴的对称点为点B ,两条抛物线在点A 、C 和点A 、B 之间的部分(包含点A 、B 、C ) 记 为图象M .将直线22y x =-向下平移b (b >0)个单位,在平移过程中直线与图象M 始终有两个公共点,请你写出b 的取值范围_________.2.(2020北京朝阳初三一模)在平面直角坐标系xOy 中,抛物线c bx x y ++=2经过点(0,–3),(2,–3).(1)求抛物线的表达式;(2)求抛物线的顶点坐标及与x 轴交点的坐标;(3)将c bx x y ++=2(y ≤0)的函数图象记为图象A ,图象A 关于x 轴对称的图象记为图象B .已知一次函数y=mx +n ,设点H 是x 轴上一动点,其横坐标为a ,过点H 作x 轴的垂线,交图象A 于点P ,交图象B 于点Q ,交一次函数图象于点 N .若只有当1<a<3时,点Q 在点N 上方,点N 在点P 上方,直接写出n 的值.3.(2020北京东城中考二模)二次函数21:C y x bx c =++的图象过点A (-1,2),B (4,7).(1)求二次函数1C 的解析式;(2)若二次函数2C 与1C 的图象关于x 轴对称,试判断二次函数2C 的顶点是否在直线AB上;(3)若将1C 的图象位于A ,B 两点间的部分(含A ,B 两点)记为G ,则当二次函数221y x x m =-+++与G 有且只有一个交点时,直接写出m 满足的条件.4.(2020北京房山初三二模)如图,在平面直角坐标系xoy 中,已知点P (-1,0),C ()11-2,,D (0,-3),A ,B 在x 轴上,且P 为AB 中点,1=∆CAP S .(1)求经过A 、D 、B 三点的抛物线的表达式.(2)把抛物线在x 轴下方的部分沿x 轴向上翻折,得到一个新的图象G ,点Q 在此新图象G 上,且APC APQ S S ∆∆=,求点Q 坐标.(3)若一个动点M 自点N (0,-1)出发,先到达x 轴上某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点D ,求使点M 运动的总路程最短的点E 、点F 的坐标.5.(2020北京房山初三一模)如图,二次函数c=2y的图象(抛物线)与x-+x+bx轴交于A(1,0),且当0x=和2x-=时所对应的函数值相等.(1)求此二次函数的表达式;(2)设抛物线与x轴的另一交点为点B,与y轴交于点C,在这条抛物线的对称轴上是否存在点D,使得△DAC的周长最小?如果存在,求出D点的坐标;如果不存在,请说明理由.(3)设点M在第二象限,且在抛物线上,如果△MBC的面积最大,求此时点M的坐标及△MBC的面积.6.(2020北京丰台初三一模) 已知抛物线21(2)262y x m x m =+-+-的对称轴为直线x =1,与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求m 的值;(2)求A ,B ,C 三点的坐标;(3)过点C 作直线l ∥x 轴,将该抛物线在y 轴左侧的部分沿直线l 翻折,抛物线的其余部分保持不变,得到一个新的图象,记为G .请你结合图象回答: 当直线b x y +21=与图象G 只有一个公共点时,求b 的取值范围.xOy中,抛物线223(0)y mx mx m =--≠3,0).y 的取值范围;x 轴翻折,抛物线的其余部分保持不变,得到一个新图M 在直线21=x 左侧的部分只有一个公共点,结合图象求k 的取值范围.8.(2020北京海淀中考二模)已知:点(,)P m n 为抛物线24y ax ax b =-+(0a ≠)上一动点.(1) 1P (1,1n ),2P (3,2n )为P 点运动所经过的两个位置,判断1n ,2n 的大小,并说明理由;(2) 当14m ≤≤时,n 的取值范围是14n ≤≤,求抛物线的解析式.9.(2020北京怀柔初三二模)已知:二次函数y 1=x 2+bx+c 的图象经过A (-1,0),B (0,-3)两点.(1)求y 1的表达式及抛物线的顶点坐标;(2)点C (4,m )在抛物线上,直线y 2=kx+b(k≠0)经过 A , C 两点,当y 1 >y 2时,求自变量x 的取值范围;(3) 将直线AC 沿y 轴上下平移,当平移后的直线与抛物线只有一个公共点时,求平移后直线的表达式.10.(2020北京怀柔初三一模)在平面直角坐标系中,二次函数y=x2+mx+2m-7的图象经过点(1,0).(1)求抛物线的表达式;(2)把-4<x<1时的函数图象记为H,求此时函数y的取值范围;(3)在(2)的条件下,将图象H在x轴下方的部分沿x轴翻折,图象H的其余部分保持不变,得到一个新图象M.若直线y=x+b与图象M有三个公共点,求b的取值范围.11.(2020北京平谷初三一模)已知:直线l :2y x =+与过点(0,﹣2),且与平行于x 轴的直线交于点A ,点A 关于直线1x =-的对称点为点B .(1)求,A B 两点的坐标;(2)若抛物线2y x bx c =-++经过A ,B 两点,求抛物线解析式;(3)若抛物线2y x bx c =-++的顶点在直线l 上移动,当抛物线与线段AB 有一个公共点时,求抛物线顶点横坐标t 的取值范围.12.(2020北京石景山初三一模)在平面直角坐标系xOy 中,抛物线C :142++=x mx y . (1)当抛物线C 经过点()5,6-A 时,求抛物线的表达式及顶点坐标; (2)当直线1+-=x y 与直线3+=x y 关于抛物线C 的对称轴对称时,求m 的值;(3)若抛物线C :142++=x mx y )0(>m 与x 轴的交点的横坐标都在1-和0之间(不包括1-和0),结合函数的图象,求m 的取值范围.13.(2020北京顺义初三一模)在平面直角坐标系xOy 中,抛物线22y ax x =-的对称轴为1x =-.(1)求a 的值及抛物线22y ax x =-与x 轴的交点坐标;(2)若抛物线22y ax x m =-+与x 轴有交点,且交点都在点A (-4,0),B (1,0)之间,求m 的取值范围.14.(2020北京通州初三一模)已知二次函数2y x mx n =++的图象经过点A (1,0)和D (4,3),与x 轴的另一个交点为B ,与y 轴交于点C . (1)求二次函数的表达式及顶点坐标;(2)将二次函数2y x mx n =++的图象在点B ,C 之间的部分(包含点B ,C )记为图象G . 已知直线l :y kx b =+经过点M (2,3),且直线l 总位于图象G 的上方,请直接写出b 的取值范围;(3)如果点()1,P x c 和点()2,Q x c 在函数2y x mx n =++的图象上,且12x x <,2PQ a =. 求21261x ax a -++的值;15. (2020北京通州中考二模)已知:二次函数c bx -x y ++=2的图象过点A (-1,0)和C (0,2).(1)求二次函数的表达式及对称轴;(2)将二次函数c bx -x y ++=2的图象在直线y =1上方的部分沿直线y =1翻折,图象其余的部分保持不变,得到的新函数图象记为G ,点M(m ,1y )在图象G 上,且0y 1≥,求m 的取值范围。
北京市通州区2019-2020学年中考数学第三次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是( )A .3月份B .4月份C .5月份D .6月份2.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .3.整数a 、b 在数轴上对应点的位置如图,实数c 在数轴上且满足a c b ≤≤,如果数轴上有一实数d ,始终满足0c d +≥,则实数d 应满足( ).A .d a ≤B .a d b ≤≤C .d b ≤D .d b ≥4.下列图形中,不是中心对称图形的是( ) A .平行四边形B .圆C .等边三角形D .正六边形5.计算(﹣ab 2)3的结果是( ) A .﹣3ab 2B .a 3b 6C .﹣a 3b 5D .﹣a 3b 66.下列各式中正确的是( ) A .=±3 B .=﹣3 C .=3 D .7.某市2017年国内生产总值(GDP )比2016年增长了12%,由于受到国际金融危机的影响,预计2018比2017年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是( ) A .12%7%%x += B .(112%)(17%)2(1%)x ++=+ C .12%7%2%x +=D .2(112%)(17%)(1%)x ++=+8.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg 的煤所产生的能量.把130000000kg 用科学记数法可表示为( )A .13×710kgB .0.13×810kgC .1.3×710kgD .1.3×810kg9.在函数y=x x +-中,自变量x 的取值范围是( ) A .x≥0B .x≤0C .x=0D .任意实数10.如图,a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=40°,那么∠2的度数( )A .40°B .50°C .60°D .90°11.已知关于x 的一元二次方程()2220x x m +--=有实数根,则m 的取值范围是( ) A .1m >B .1m <C .m 1≥D .1m £12.有以下图形:平行四边形、矩形、等腰三角形、线段、菱形,其中既是轴对称图形又是中心对称图形的有( )A .5个B .4个C .3个D .2个二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.如图,点A ,B 在反比例函数ky x=(k >0)的图象上,AC ⊥x 轴,BD ⊥x 轴,垂足C ,D 分别在x 轴的正、负半轴上,CD=k ,已知AB=2AC ,E 是AB 的中点,且△BCE 的面积是△ADE 的面积的2倍,则k 的值是______.14.一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_____米.15.如图所示一棱长为3cm 的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下底面点A 沿表面爬行至侧面的B 点,最少要用_____秒钟.16.如图所示,一个宽为2cm 的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm ),那么该光盘的半径是____cm.17.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.正多边形的一个外角是40°,则这个正多边形的边数是____________ .B.运用科学计算器比较大小:5?1-________ sin37.5° .18.如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠的身高分别为1.8 m,1.5 m,则路灯的高为____m.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某商场甲、乙、丙三名业务员2018年前5个月的销售额(单位:万元)如下表:月份销售额人员第1月第2月第3月第4月第5月甲 6 9 10 8 8乙 5 7 8 9 9丙 5 9 10 5 11(1)根据上表中的数据,将下表补充完整:统计值数值人员平均数(万元)众数(万元)中位数(万元)方差甲8 8 1.76乙7.6 8 2.24丙8 5(2)甲、乙、丙三名业务员都说自己的销售业绩好,你赞同谁的说法?请说明理由.20.(6分)在平面直角坐标系xOy中,函数kyx=(0x>)的图象G经过点A(4,1),直线14l y x b=+∶与图象G交于点B,与y轴交于点C.求k的值;横、纵坐标都是整数的点叫做整点.记图象G在点A,B 之间的部分与线段OA ,OC ,BC 围成的区域(不含边界)为W .①当1b =-时,直接写出区域W 内的整点个数;②若区域W 内恰有4个整点,结合函数图象,求b 的取值范围.21.(6分)如图,某同学在测量建筑物AB 的高度时,在地面的C 处测得点A 的仰角为30°,向前走60米到达D 处,在D 处测得点A 的仰角为45°,求建筑物AB 的高度.22.(8分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:a= %,并补全条形图.在本次抽样调查中,众数和中位数分别是多少?如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?23.(8分)如图,Rt ABP V 的直角顶点P 在第四象限,顶点A 、B 分别落在反比例函数ky x=图象的两支上,且PB x ⊥轴于点C ,PA y ⊥轴于点D ,AB 分别与x 轴,y 轴相交于点F 和.E 已知点B 的坐标为()1,3.()1填空:k =______; ()2证明://CD AB ;()3当四边形ABCD 的面积和PCD V 的面积相等时,求点P 的坐标.24.(10分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去. (1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.25.(10分)如图,四边形ABCD 为平行四边形,∠BAD 的角平分线AF 交CD 于点E ,交BC 的延长线于点F .(1)求证:BF=CD ;(2)连接BE ,若BE ⊥AF ,∠BFA=60°,BE=23,求平行四边形ABCD 的周长.26.(12分)如图,在平面直角坐标系xOy 中,函数my x=(0x <)的图象经过点(4,)A n -,AB ⊥x 轴于点B ,点C 与点A 关于原点O 对称, CD ⊥x 轴于点D ,△ABD 的面积为8. (1)求m ,n 的值;(2)若直线y kx b =+(k≠0)经过点C ,且与x 轴,y 轴的交点分别为点E ,F ,当2CF CE =时,求点F 的坐标.27.(12分)如图,四边形ABCD 是平行四边形,点E 在BC 上,点F 在AD 上,BE=DF ,求证:AE=CF .参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】【详解】解:各月每斤利润:3月:7.5-4.5=3元,4月:6-2.5=3.5元,5月:4.5-2=2.5元,6月:3-1.5=1.5元,所以,4月利润最大,故选B.2.D【解析】试题分析:A.是轴对称图形,故本选项错误;B.是轴对称图形,故本选项错误;C.是轴对称图形,故本选项错误;D.不是轴对称图形,故本选项正确.故选D.考点:轴对称图形.3.D【解析】【分析】根据a≤c≤b,可得c的最小值是﹣1,根据有理数的加法,可得答案.【详解】由a≤c≤b,得:c最小值是﹣1,当c=﹣1时,c+d=﹣1+d,﹣1+d≥0,解得:d≥1,∴d≥b.故选D.【点睛】本题考查了实数与数轴,利用a≤c≤b得出c的最小值是﹣1是解题的关键.4.C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A、平行四边形是中心对称图形;选项B、圆是中心对称图形;选项C、等边三角形不是中心对称图形;选项D、正六边形是中心对称图形;故选C.【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.5.D【解析】【分析】根据积的乘方与幂的乘方计算可得.【详解】解:(﹣ab2)3=﹣a3b6,故选D.【点睛】本题主要考查幂的乘方与积的乘方,解题的关键是掌握积的乘方与幂的乘方的运算法则.6.D【解析】【分析】原式利用平方根、立方根定义计算即可求出值.【详解】解:A、原式=3,不符合题意;B、原式=|-3|=3,不符合题意;C 、原式不能化简,不符合题意;D 、原式=2-=,符合题意,故选:D . 【点睛】此题考查了立方根,以及算术平方根,熟练掌握各自的性质是解本题的关键. 7.D 【解析】分析:根据增长率为12%,7%,可表示出2017年的国内生产总值,2018年的国内生产总值;求2年的增长率,可用2016年的国内生产总值表示出2018年的国内生产总值,让2018年的国内生产总值相等即可求得所列方程.详解:设2016年的国内生产总值为1,∵2017年国内生产总值(GDP )比2016年增长了12%,∴2017年的国内生产总值为1+12%; ∵2018年比2017年增长7%, ∴2018年的国内生产总值为(1+12%)(1+7%), ∵这两年GDP 年平均增长率为x%, ∴2018年的国内生产总值也可表示为:()21%x +, ∴可列方程为:(1+12%)(1+7%)=()21%x +.故选D .点睛:考查了由实际问题列一元二次方程的知识,当必须的量没有时,应设其为1;注意2018年的国内生产总值是在2017年的国内生产总值的基础上增加的,需先算出2016年的国内生产总值. 8.D 【解析】试题分析:科学计数法是指:a×10n ,且110a ≤<,n 为原数的整数位数减一. 9.C 【解析】 【分析】当函数表达式是二次根式时,被开方数为非负数.据此可得. 【详解】 解:根据题意知0x x ≥⎧⎨-≥⎩ ,解得:x=0, 故选:C . 【点睛】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.【解析】 分析:根据“平行线的性质、平角的定义和垂直的定义”进行分析计算即可. 详解: ∵AB ⊥BC , ∴∠ABC=90°, ∵点B 在直线b 上, ∴∠1+∠ABC+∠3=180°, ∴∠3=180°-∠1-90°=50°, ∵a ∥b , ∴∠2=∠3=50°. 故选B.点睛:熟悉“平行线的性质、平角的定义和垂直的定义”是正确解答本题的关键. 11.C 【解析】 【详解】解:∵关于x 的一元二次方程()2220x x m +--=有实数根,∴△=24b ac -=2241[(2)]m -⨯⨯--, 解得m≥1, 故选C . 【点睛】本题考查一元二次方程根的判别式. 12.C 【解析】矩形,线段、菱形是轴对称图形,也是中心对称图形,符合题意; 等腰三角形是轴对称图形,不是中心对称图形,不符合题意; 平行四边形不是轴对称图形,是中心对称图形,不符合题意. 共3个既是轴对称图形又是中心对称图形.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.【解析】试题解析:过点B 作直线AC 的垂线交直线AC 于点F ,如图所示.∵△BCE 的面积是△ADE 的面积的2倍,E 是AB 的中点, ∴S △ABC =2S △BCE ,S △ABD =2S △ADE ,∴S △ABC =2S △ABD ,且△ABC 和△ABD 的高均为BF , ∴AC=2BD , ∴OD=2OC . ∵CD=k , ∴点A 的坐标为(3k ,3),点B 的坐标为(-23k ,-32), ∴AC=3,BD=32, ∴AB=2AC=6,AF=AC+BD=92, ∴22229376()2AB AF -=-=. 【点睛】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k 值是解题的关键. 14.1. 【解析】 【分析】直接根据题意得出直角边的比值,即可表示出各边长进而得出答案. 【详解】 如图所示:∵坡度i=1:0.75, ∴AC :BC=1:0.75=4:3,∴设AC=4x ,则BC=3x ,∴AB=()()2234x x +=5x ,∵AB=20m ,∴5x=20,解得:x=4,故3x=1,故这个物体在水平方向上前进了1m .故答案为:1.【点睛】此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h 和水平宽l 的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是tan h i l α==. 15.2.5秒.【解析】【分析】把此正方体的点A 所在的面展开,然后在平面内,利用勾股定理求点A 和B 点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于5,另一条直角边长等于2,利用勾股定理可求得. 【详解】解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线. (1)展开前面右面由勾股定理得AB ()2223229++=cm ;(2)展开底面右面由勾股定理得AB ()22322++5cm ;所以最短路径长为5cm ,用时最少:5÷2=2.5秒. 【点睛】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.16.5【解析】【分析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【详解】解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R-2)2,解得R=5,∴该光盘的半径是5cm.故答案为5【点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键.17.9, >【解析】【分析】(1)根据任意多边形外角和等于360︒可以得到正多边形的边数(2)用科学计算器计算即可比较大小. 【详解】(1)正多边形的一个外角是40°,任意多边形外角和等于360︒36040?9nn∴==(251->sin37.5° .故答案为(1). 9, (2). >【点睛】此题重点考察学生对正多边形外交和的理解,掌握正多边形外角和,会用科学计算器是解题的关键. 18.3【解析】试题分析:如图,∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF , ∴,CD DE FN MN AB BE FB AB==, 即1.8 1.8 1.5 1.5,1.8 1.5 2.7AB BD AB BD ==++-, 解得:AB=3m ,答:路灯的高为3m .考点:中心投影.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)8.2;9;9;6.4;(2)赞同甲的说法.理由见解析.【解析】【分析】(1)利用平均数、众数、中位数的定义和方差的计算公式求解;(2)利用甲的平均数大得到总营业额高,方差小,营业额稳定进行判断.【详解】(1)甲的平均数()16910888.25=++++=; 乙的众数为9;丙的中位数为9,丙的方差()()()()()222221589810858118 6.45⎡⎤=-+-+-+-+-=⎣⎦; 故答案为8.2;9;9;6.4; (2)赞同甲的说法.理由是:甲的平均数高,总营业额比乙、丙都高,每月的营业额比较稳定.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小.记住方差的计算公式.也考查了平均数、众数和中位数.20.(1)4;(2)①3个.(1,0),(2,0),(3,0).②514b -≤<-或71144b <≤. 【解析】分析:(1)根据点A (4,1)在k y x=(0x >)的图象上,即可求出k 的值; (2)①当1b =-时,根据整点的概念,直接写出区域W 内的整点个数即可.②分a .当直线过(4,0)时,b .当直线过(5,0)时,c .当直线过(1,2)时,d .当直线过(1,3)时四种情况进行讨论即可.详解:(1)解:∵点A (4,1)在k y x =(0x >)的图象上. ∴14k =, ∴4k =.(2)① 3个.(1,0),(2,0),(3,0).② a .当直线过(4,0)时:1404b ⨯+=,解得1b =- b .当直线过(5,0)时:1504b ⨯+=,解得54b =-c .当直线过(1,2)时:1124b ⨯+=,解得74b = d .当直线过(1,3)时:1134b ⨯+=,解得114b =∴综上所述:514b -≤<-或71144b <≤. 点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.21.(3【解析】【分析】【详解】解:设建筑物AB 的高度为x 米在Rt △ABD 中,∠ADB=45°∴AB=DB=x∴BC=DB+CD= x+60在Rt △ABC 中,∠ACB=30°, ∴tan ∠ACB=AB CB ∴tan 3060x x ︒=+ ∴3360x x =+ ∴x=30+30∴建筑物AB 的高度为(30+30)米22.(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.【解析】【分析】(1)用1减去其他天数所占的百分比即可得到a 的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.【详解】解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,该扇形所对圆心角的度数为310°×10%=31°,参加社会实践活动的天数为8天的人数是:2020%×10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1.(3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),活动时间不少于1天的学生人数大约有5400人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(1)1;(2)证明见解析;(1)P点坐标为()13-,. 【解析】【分析】 ()1由点B 的坐标,利用反比例函数图象上点的坐标特征可求出k 值;()2设A 点坐标为3a,a ⎛⎫ ⎪⎝⎭,则D 点坐标为30,a ⎛⎫ ⎪⎝⎭,P 点坐标为31,a ⎛⎫ ⎪⎝⎭,C 点坐标为()1,0,进而可得出PB ,PC ,PA ,PD 的长度,由四条线段的长度可得出PC PD PB PA=,结合P P ∠∠=可得出PDC V ∽PAB V ,由相似三角形的性质可得出CDP A ∠∠=,再利用“同位角相等,两直线平行”可证出CD//AB ; ()3由四边形ABCD 的面积和PCD V 的面积相等可得出PAB PCD S 2S =V V ,利用三角形的面积公式可得出关于a 的方程,解之取其负值,再将其代入P 点的坐标中即可求出结论.【详解】()1解:B Q 点()1,3在反比例函数k y x=的图象, k 133∴=⨯=.故答案为:1.()2证明:Q 反比例函数解析式为3y x=, ∴设A 点坐标为3a,.a ⎛⎫ ⎪⎝⎭PB x ⊥Q 轴于点C ,PA y ⊥轴于点D ,D ∴点坐标为30,a ⎛⎫ ⎪⎝⎭,P 点坐标为31,a ⎛⎫ ⎪⎝⎭,C 点坐标为()1,0, 3PB 3a ∴=-,3PC a=-,PA 1a =-,PD 1=, 3PC 1a 3PB 1a 3a-∴==--,PD 1PA 1a=-, PC PD PB PA∴=. 又P P Q ∠∠=,PDC V ∴∽PAB V ,CDP A ∠∠∴=,CD//AB ∴.()3解:Q 四边形ABCD 的面积和PCD V 的面积相等,PAB PCD S 2S ∴=V V ,()131331a 212a 2a ⎛⎫⎛⎫∴⨯-⨯-=⨯⨯⨯- ⎪ ⎪⎝⎭⎝⎭, 整理得:2(a 1)2-=,解得:1a 12=-,2a 12(=+舍去), P ∴点坐标为()1,323--.【点睛】本题考查了反比例函数图象上点的坐标特征、相似三角形的判定与性质、平行线的判定以及三角形的面积,解题关键是:()1根据点的坐标,利用反比例函数图象上点的坐标特征求出k 值;()2利用相似三角形的判定定理找出PDC V ∽PAB V ;()3由三角形的面积公式,找出关于a 的方程.24.(1)12;(2)规则是公平的; 【解析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可; (2)分别计算出小王和小李去植树的概率即可知道规则是否公平.试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P (小王)=34; (2)不公平,理由如下:∵P (小王)=34,P (小李)=14,34≠14, ∴规则不公平.点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.25.(1)证明见解析;(2)12【解析】【分析】(1)由平行四边形的性质和角平分线得出∠BAF=∠BFA ,即可得出AB=BF ;(2)由题意可证△ABF 为等边三角形,点E 是AF 的中点. 可求EF 、BF 的值,即可得解.【详解】解:(1)证明:∵ 四边形ABCD 为平行四边形,∴ AB=CD ,∠FAD=∠AFB又∵ AF 平分∠BAD ,∴ ∠FAD=∠FAB∴ ∠AFB=∠FAB∴ AB=BF∴ BF=CD(2)解:由题意可证△ABF 为等边三角形,点E 是AF 的中点在Rt △BEF 中,∠BFA=60°,BE=23,可求EF=2,BF=4∴ 平行四边形ABCD 的周长为1226.(1)m=8,n=-2;(2) 点F 的坐标为1(0,6)F ,2(0,2)F【解析】分析:(1)利用三角形的面积公式构建方程求出n ,再利用 待定系数法求出m 的的值即可;(2)分两种情形分别求解如①图,当k<0时,设直线y=kx+b 与x 轴,y 轴的交点分别为1E ,1F . ②图中,当k>0时,设直线y=kx+b 与x 轴,y 轴的交点分别为点2E ,2F .详解:(1)如图②∵ 点A 的坐标为()4,A n -,点C 与点A 关于原点O 对称,∴ 点C 的坐标为()4,C n -.∵ AB ⊥x 轴于点B ,CD ⊥x 轴于点D ,∴ B ,D 两点的坐标分别为()4,0B -,()4,0D .∵ △ABD 的面积为8,()118422ABD S AB BD n n =⨯=⨯-⨯=-V , ∴ 48n -=.解得 2n =-. ∵ 函数m y x=(0x <)的图象经过点()4,A n -, ∴ 48m n =-=.(2)由(1)得点C 的坐标为()4,2C .① 如图,当0k <时,设直线y kx b =+与x 轴,y 轴的交点分别为点1E ,1F .由 CD ⊥x 轴于点D 可得CD ∥1OF .∴ △1E CD ∽△1E 1F O .∴ 1111E C DC OF E F =. ∵ 112CF CE =,∴ 113DC OF =. ∴ 136OF DC ==.∴ 点1F 的坐标为()10,6F .②如图,当0k >时,设直线y kx b =+与x 轴,y 轴的交点分别为点2E ,2F .同理可得CD ∥2OF ,2222E C DC OF E F =. ∵ 222CF CE =,∴ 2E 为线段2CF 的中点,222E C E F =.∴ 22OF DC ==.∴ 点2F 的坐标为()20,2F -.综上所述,点F 的坐标为()10,6F ,()20,2F -.点睛:本题考查了反比例函数综合题、一次函数的应用、三角形的面积公式等知识,解题的关键是会用方程的思想思考问题,会用分类讨论的思想思考问题,属于中考压轴题.27.见解析【解析】【分析】根据平行四边形性质得出AD ∥BC ,且AD=BC ,推出AF ∥EC ,AF=EC ,根据平行四边形的判定推出四边形AECF 是平行四边形,即可得出结论.【详解】证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,且AD=BC ,∴AF ∥EC ,∵BE=DF ,∴AF=EC ,∴四边形AECF 是平行四边形,∴AE=CF .【点睛】本题考查了平行四边形的性质和判定的应用,注意:平行四边形的对边平行且相等,有一组对边平行且相等的四边形是平行四边形.。
统计与概率一、选择题1.(2020·石景山一模)在一个不透明的盒子中装有2个红球,3个黄球和4个白球,这些球除了颜色外无其他差别,现从这个盒子中随机摸出一个球,摸到红球的概率是A .13B .29C .49D .310答案:B2.(2020·顺义一模)如图,在3×3的正方形网格图中,有3个小正方形涂成了黑色,现在从白色小正方形中任意选取一个并涂成黑色,使黑色部分的图形构成一个轴对称图形的概率是 A .23 B .12 C .13 D .16答案:C3.(2020·东城一模)在一个布口袋里装有白、红、黑三种颜色的小球,它们除颜色外没有任何区别,其中白球2只,红球6只,黑球4只,将袋中的球搅匀,闭上眼睛随机从袋中取出1只球,则取出黑球的概率是 A .12 B .13 C .14D .16答案:B4.(2020·房山一模) 一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,从这个盒子中随机摸出一个球,摸到红球的概率为A.152 B.31 C.158 D.21答案:B5.小军为了解同学们的课余生活,设计了如下的调查问卷(不完整):他准备在“①看课外书,①体育活动,①看电视,①踢足球,①看小说”中选取三个作为该问题的备选答案,选取合理的是 (A )①①① (B )①①① (C )①①① (D )①①①答案:A6.(2020·海淀一模)二十四节气是中国古代劳动人民长期经验积累的结晶,它与白昼时长密切相关.当春分、秋分时,昼夜时长大致相等;当夏至时,白昼时长最长.下图是一年中部分节气所对应的白昼时长示意图.在下列选项中白昼时长超过13小时的节气是A.惊蛰B.小满C.秋分D.大寒答案:B7.某班25名同学在一周内做家务劳动的时间如图所示,则做家务劳动时间的众数和中位数分别是(A)2和1.5(B)1.5和1.5(C)2和2.5(D)1.75和2答案:A8.(2020·东城一模)某健步走运动的爱好者用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是A.1.2,1.3 B.1.3,1.3C.1.4,1.35 D.1.4,1.3答案:D9.(2020·西城一模)某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表:(A )平均数、中位数 (B )平均数、方差 (C )众数、中位数 (D )众数、方差答案:C10. (2020·房山一模)2022年将在北京—张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某校开设了冰球选修课,12名同学被分成甲、乙两组进行训练,他们的身高(单位:cm )如下表所示:设两队队员身高的平均数依次为甲x ,乙x ,方差依次为2甲s ,2乙s ,下列关系中完全正确的是A .甲x =乙x ,2甲s <2乙s B .甲x =乙x ,2甲s >2乙s C .甲x <乙x ,2甲s <2乙sD .甲x >乙x ,2甲s >2乙s答案:A11.(2020·丰台一模)如图,这是小新在询问了父母后绘制的去年全家的开支情况扇形统计图,如果他家去年总开支为6万元,那么用于教育的支出为 A .3万元 B .35万元 C .2.4万元 D .2万元答案:D12.(2020·丰台一模)近年来由于空气质量的变化,以及人们对自身健康的关注程度不断提高,空气净化器成为很多家庭的新电器.某品牌的空气净化器厂家为进一步了解市场,制定生产计划,根据2016年下半年销售情况绘制了如下统计图,其中同比增长率%1001⨯⎪⎪⎭⎫⎝⎛-=去年同月销售量当月销售量,下面有四个推断:①2016年下半年各月销售量均比2015年同月销售量增多 ①第四季度销售量占下半年销售量的七成以上 ①下半年月均销售量约为16万台①下半年月销售量的中位数不超过10万台教育医疗食品交通娱乐其它120°55°100°35°30°第8题其中合理的是A .①①B .①①C .①①D .①①答案:C13.(2020·海淀一模)下图为2009年到2015年中关村国家自主创新示范区企业经营技术收入的统计图. 下面四个推断:①2009年到2015年技术收入持续增长; ①2009年到2015年技术收入的中位数是4032亿;①2009年到2015年技术收入增幅最大的是2015年;①2009年到2011年的技术收入增长的平均数比2013年到2015年技术收入增长的平均数大. 其中,正确的是 A .①① B .①① C .①① D .①①答案:A14. (2020·门头沟一模)如图,为某校初三男子立定跳远成绩的统计图,从左到右各分数段的人数之比为1:2:5:6:4,第四组的频数是12,对于下面的四种说法①一共测试了36名男生的成绩.①立定跳远成绩的中位数分布在1.8~2.0组. ①立定跳远成绩的平均数不超过2.2.①如果立定跳远成绩1.85米以下(不含1.85)为不合格, 那么不合格人数为6人. 正确的是A .①① B.①① C.①① D.①①答案:A某品牌空气净化器下半年销售情况统计图10203040销售量/万台-10%0%10%20%30%40%同比增长率销售量同比增长率销售量89.39.813.419.736同比增长率-2.3%6.5%5.2%15.1%20.7%35.9%7月8月9月10月11月12月初三男子立定跳远成绩0人数/名/米15.(2020·平谷一模)1-7月份,某种蔬菜每斤的进价与每斤的售价的信息如图所示,则出售该种蔬菜每斤利润最大的月份是A.3月份B.4月份C.5月份D.6月份答案:A16.(2020·平谷一模)AQI是空气质量指数(Air Quality Index)的简称,是描述空气质量状况的指数.其数值越大说明空气污染状况越严重,对人体的健康危害也就越大.AQI共分六级,空气污染指数为0-50一级优,51-100二级良,101-150三级轻度污染,151-200四级中度污染,201-300五级重度污染,大于300六级严重污染.小明查阅了2015年和2016年某市全年的AQI指数,并绘制了如下统计图,并得出以下结论:①2016年重度污染的天数比2015年有所减少;①2016年空气质量优良的天数比2015年有所增加;① 2015年和2016年AQI指数的中位数都集中在51-100这一档中;①2016年中度污染的天数比2015年多13天.以上结论正确的是A.①① B.①① C.①① D.①①答案:C17.(2020·顺义一模)某公司在抗震救灾期间承担40 000顶救灾帐篷的生产任务,分为A、B、C、D四种型号,它们的数量百分比和每天单独生产各种型号帐篷的数量如图所示:根据以上信息,下列判断错误的是A.其中的D型帐篷占帐篷总数的10%B.单独生产B型帐篷的天数是单独生产C型帐篷天数的3倍C.单独生产A型帐篷与单独生产D型帐篷的天数相等D.单独生产B型帐篷的天数是单独生产A型帐篷天数的2倍答案:B18.(2020·通州一模)小明和小亮组成团队参加某科学比赛.该比赛的规则是:每轮比赛一名选手参加,若第一轮比赛得分满60则另一名选手晋级第二轮,第二轮比赛得分最高的选手所在团队取得胜利.为了在比赛中取得更好的成绩,两人在赛前分别作了九次测试,下图为二人测试成绩折线统计图,下列说法合理的是①小亮测试成绩的平均数比小明的高①小亮测试成绩比小明的稳定①小亮测试成绩的中位数比小明的高①小亮参加第一轮比赛,小明参加第二轮比赛,比较合理A.①① B.①① C.①① D.①①答案:D19.(2020·西城一模)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.右下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是(A)以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多(B)以低于80km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少(C)以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油(D)以80km/h的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升答案:D二、填空题1.某水果公司购进10 000kg苹果,公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分结果如下表:果约为____________kg.答案:0.1;1000.2.(2020·平谷一模)一个猜想是否正确,科学家们要经过反复的论证.下表是几位科学家“掷硬币”的实验数据:请根据以上数据,估计硬币出现“正面朝上”的概率为(精确到0.01).答案:0.503.(2020·通州一模)某农场引进一批新麦种,在播种前做了五次发芽实验,每次任取800 粒麦种进行实验. 实验结果如下表所示( 发芽率精确到0.001 ) :在与实验条件相同的情况下,估计种一粒这样的麦种发芽的概率为_________.答案:98.0左右4.(2020·西城一模)下表记录了一名球员在罚球线上罚篮的结果:这名球员投篮一次,投中的概率约是 . 答案:0.6015.(2020·丰台一模)一天上午林老师来到某中学参加该校的校园开放日活动,他打算随机听一节九年级的课程,下表是他拿到的当天上午九年级的课表,如果每一个班级的每一节课被听的可能性是一样的,那么听数学课的可能性是__________.答案:163 6. (2020·房山一模)中国国家邮政局公布的数据显示, 2016年中国快递业务量突破313.5亿件,同比增长51.7%,快递业务量位居世界第一. 业内人士表示,快递业务连续6年保持50%以上的高速增长,已成为中国经济的一匹“黑马”,未来中国快递业务仍将保持快 速增长势头. 右图是根据相关数据绘制的统计图,请你预估2020年全国快递的业务量大约为 (精确到0.1)亿件.答案:答案不唯一,大于或等于470.3即可.7.(2020·海淀一模)某小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.第15题图(年)该事件最有可能是(填写一个你认为正确的序号).①掷一个质地均匀的正六面体骰子,向上一面的点数是2;②掷一枚硬币,正面朝上;③暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.答案:③8.某同学看了下面这幅统计图说:“这幅图显示,从2015年到2016年A市常住人口大幅增加.”你认为这位同学的说法是否合理?答:________(填“合理”或“不合理”),你的理由是______________________.不合理;答案不惟一,如:所增加的2.4万与2170.5万相比,体现不了“大幅度”.9. (2020·东城一模)北京市2012-2016年常住人口增量统计如图所示.根据统计图中提供的信息,预估2020年北京市常住人口增量约为万人次,你的预估理由是.答案:不唯一,合理就行10.(2020·门头沟一模)在体育中考项目中考生可在篮球、排球中选考一项.小明为了选择一项参加体育中考,将自己的10次测验成绩进行比较并制作了折线统计图,依据图中信息小明选择哪一项参加体育中考更合适,并说明理由,_______________.答案:观点支持结论即可(可以从众数,方差、极值等角度出发)11.(2020·顺义一模)图1为北京城市女生从出生到15岁的平均身高统计图,图2是北京城市某女生从出生到12岁的身高统计图.请你根据以上信息预测该女生15岁时的身高约为,你的预测理由是.答案:170厘米,12岁时该女生比平均身高高8厘米,预测她15岁时也比平均身高高8厘米12.(2020·石景山一模)首都国际机场连续五年排名全球最繁忙机场第二位,该机场 年客流量统20122016计结果如下表:根据统计表中提供的信息,预估首都国际机场2017年客流量约万人次,你的预估理由是.答案:预估理由需包含统计表提供的信息,且支撑预估的数据.如约9900万人次,预估理由是增长趋势平稳.三、解答题1.(2020·石景山一模)阅读下列材料:2017年3月在北京市召开的第十二届全国人民代表大会第五次会议上,环境问题再次成为大家议论的重点内容之一.北京自1984年开展大气监测,至2012年底,全市已建立监测站点35个.2013年,北京发布的首个 2.5PM 年均浓度值为89.5微克/立方米.2014年,北京空气中的二氧化硫年均浓度值达到了国家新的空气质量标准;二氧化氮、10PM 、 2.5PM 年均浓度值超标,其中 2.5PM 年均浓度值为85.9微克/立方米.2016年,北京空气中的二氧化硫年均浓度值远优于国家标准;二氧化氮、10PM 、2.5PM 的年均浓度值分别为48微克/立方米、92微克/立方米、73微克/立方米.与2015年相比,二氧化硫、二氧化氮、10PM 年均浓度值分别下降28.6%、4.0%、9.8%; 2.5PM 年均浓度值比2015年的年均浓度值80.6微克/立方米有较明显改善.(以上数据来源于北京市环保局)根据以上材料解答下列问题:(1)2015年北京市二氧化氮....年均浓度值为 微克/立方米; (2)请你用折线统计图将20132016 年北京市 2.5PM 的年均浓度值表示出来,并 在图上标明相应的数据.(1)50. ………………………………… 1分 (2) ………………………………… 5分2.(2020·东城一模)阅读下列材料:“共享单车”是指企业与政府合作,在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车共享的一种服务,是共享经济的一种新形态.共享单车的出现让更多的用户有了更好的代步选择.自行车也代替了一部分公共交通甚至打车的出行.Quest Mobile监测的M型与O型单车从2016年10月——2020年1月的月度用户使用情况如下表所示:根据以上材料解答下列问题:(1)仔细阅读上表,将O型单车总用户数用折线图表示出来,并在图中标明相应数据;(2)根据图表所提提供的数据,选择你所感兴趣的方面,写出一条你发现的结论.解:(1)…………4分(2)答案不唯一.…………5分3.(2020·丰台一模)阅读下列材料:由于发展时间早、发展速度快,经过20多年大规模的高速开发建设,北京四环内,甚至五环内可供开发建设的土地资源越来越稀缺,更多的土地供应将集中在五环外,甚至六环外的远郊区县.据中国经济网2020年2月报道,来自某市场研究院的最新统计,2016年,剔除了保障房后,在北京新建商品住宅交易量整体上涨之时,北京各区域的新建商品住宅交易量则是有涨有跌.其中,昌平、通州、海淀、朝阳、西城、东城六区下跌,跌幅最大的为朝阳区,新建商品住宅成交量比2015年下降了46.82%.而延庆、密云、怀柔、平谷、门头沟、房山、顺义、大兴、石景山、丰台十区的新建商品住宅成交量表现为上涨,涨幅最大的为顺义区,比2015年上涨了118.80%.另外,从环线成交量的占比数据上,同样可以看出成交日趋郊区化的趋势.根据统计,2008年到2016年,北京全市成交的新建商品住宅中,二环以内的占比逐步从3.0%下降到了0.2%;二、三环之间的占比从5.7%下降到了0.8%;三、四环之间的占比从12.3%下降到了2.3%;四、五环之间的占比从21.9%下降到了4.4%.也就是说,整体成交中位于五环之内的新房占比,从2008年的42.8%下降到了2016年的7.7%,下滑趋势非常明显.由此可见,新房市场的远郊化是北京房地产市场发展的大势所趋.(注:占比,指在总数中所占的比重,常用百分比表示)根据以上材料解答下列问题:(1)补全折线统计图;(2约_________,你的预估理由是________________________________.解:(1)正确画出折线. ……………………………………………3分(2)预估理由须包含材料中提供的信息,且支撑预估的数据. ………………5分 4.(2020·海淀一模)某校八年级共有8个班,241名同学,历史老师为了了解新中考模式下该校八年级学生选修历史学科的意向,请小红,小亮,小军三位同学分别进行抽样调查.三位同学调查结果反馈如下:小红、小亮和小军三人中,你认为哪位同学的调查结果较好地反映了该校八年级同学选修历史的意向,请说出理由,并由此估计全年级有意向选修历史的同学的人数. 答:小军的数据较好地反映了该校八年级同学选修历史的意向. ----------------- 1分 理由如下:小红仅调查了一个班的同学,样本不具有随机性;小亮只调查了8位历史课代表,样本容量过少,不具有代表性;小军的调查样本容量适中,且能够代表全年级的同学的选择意向. ----------- 3分根据小军的调查结果,有意向选择历史的比例约为201804=;-------- 4分故据此估计全年级选修历史的人数为124160.25604⨯=≈(人).------- 5分(注:估计人数时,写61人也正确)5.(2020·通州一模)某单位有职工200人,其中青年职工(20-35岁),中年职工(35-50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄264257健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄23252632333739424852健康指数93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄22293136394043465155健康指数94908885827872766260根据上述材料回答问题:小张、小王和小李三人中,谁的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.解:①小李……………………..(1分)②小张抽样调查所抽取的单位职工数量过少……………………..(3分)③小王抽样调查所抽取的10位单位职工的青年中年老年比例明显和该单位整体情况不符.……………………..(5分)6.(2020·西城一模)某科研小组计划对某一品种的西瓜采用两种种植技术种植.在选择种植技术时,该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率. 为了解这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取20个西瓜,分别称重后,将称重的结果记录如下:表1 甲种种植技术种出的西瓜质量统计表(1)若将质量为4.5~5.5(单位:kg)的西瓜记为优等品,完成下表:(2)根据以上数据,你认为该科研小组应选择哪种种植技术,并请说明理由.解:(1)(2乙种种植技术种出的西瓜,质量更稳定,大小更均匀,科研小组应选择乙种种植技术.7. (2020·朝阳一模)阅读下列材料:2020年3月29日,习主席来到了北京市朝阳区将台乡参加首都义务植树活动,他指出爱绿护绿是每个公民的职责,造林绿化是功在当代、利在千秋的事业.首都北京一直致力于创造绿色低碳的良好生态环境,着力加大城区规划建绿.2013年,城市绿化覆盖率达到46.8%,森林覆盖率为40%,园林绿地面积67048公顷.2014年,城市绿化覆盖率比上年提高0.6个百分点,森林覆盖率为41%.2015年,城市绿化覆盖率达到48.4%,森林覆盖率为41.6%,生态环境进一步提升,园林绿地面积达到81305公顷.2016年,城市绿化覆盖率达到48.1%,森林覆盖率为42.3%,园林绿地面积比上年增加408公顷. 根据以上材料解答下列问题:(1)2016年首都北京园林绿地面积为 公顷;(2)用统计表将2013-2016年首都北京城市绿化覆盖率、森林覆盖率表示出来. 解:(1)81713 (2)统计表如下:2013—2016年首都北京城市绿化覆盖率、森林覆盖率统计表在学习概率时,老师说:“掷一枚质地均匀的硬币,大量重复实验后,正面朝上的概率约是21.”小海、小东、小英分别设计了下列三个模拟实验: 小海找来一个啤酒瓶盖(如图1)进行大量重复抛掷,然后计算瓶盖口朝上的次数与总次数的比值;小东用硬纸片做了一个圆形转盘,转盘上分成8个大小一样的扇形区域,并依次标上1至8个数字(如图2),转动转盘10次,然后计算指针落在奇数区域的次数与总次数的比值;小英在一个不透明的盒子里放了四枚除颜色外都相同的围棋子(如图3),其中有三枚是白子,一枚是黑子,从中随机同时摸出两枚棋子,并大量重复上述实验,然后计算摸出的两枚棋子颜色不同的次数与总次数的比值.图1 图2 图367854321根据以上材料回答问题:小海、小东、小英三人中,哪一位同学的实验设计比较合理,并简要说出其他两位同学实验的不足之处.解:小英设计的模拟实验比较合理.……………………………………………………2分小海选择的啤酒瓶盖质地不均匀;小东操作转盘时没有用力转动,而且实验次数太少,没有进行大量重复实验. ……………………………………………………5分9.(2020·房山一模)阅读下面的材料:2014年,是全面深化改革的起步之年,是实施“十二五”规划的攻坚之年. 房山区经济发展稳中有升、社会局面和谐稳定,年初确定的主要任务目标圆满完成:全年地区生产总值和全社会固定资产投资分别为530和505亿元;区域税收完成202.8亿元;城乡居民人均可支配收入分别达到3.6万元和1.88万元.2015年,我区开启了转型发展的崭新航程:全年地区生产总值比上年增长7%左右;全社会固定资产投资完成530亿元;区域税收完成247亿元;城乡居民人均可支配收入分别增长8%和10%.2016年,发展路径不断完善,房山区全年地区生产总值完成595亿元,全社会固定资产投资完成535亿元,超额实现预期目标,区域税收比上一年增长4.94亿元,城乡居民可支配收入分别增长8.3%和8.8%.(摘自《房山区政府工作报告》)根据以上材料解答下列问题:(1)2015年,我区全年地区生产总值为亿元;(2)选择统计图或.统计表,将房山区2014~2016年全年地区生产总值、固定资产投资和区域税收表示出来.解:(1)567.1 ------1分(2)我区2014-2016年全年地区生产总值、全社会固定资产投资和区域税收的统计表------5分10.(2020·海淀一模)阅读下列材料:厉害了,我的国!近年来,中国对外开放的步伐加快,与世界经济的融合度日益提高,中国经济稳定增长是世界经济复苏的主要动力.“十二五”时期,按照2010年美元不变价计算,中国对世界经济增长的年均贡献率达到30.5%,跃居全球第一,与“十五”和“十一五”时期14.2%的年均贡献率相比,提高16.3个百分点,同期美国和欧元区分别为17.8%和4.4%.分年度来看,2011、2012、2013、2014、2015年,中国对世界经济增长的贡献率分别为28.6%、31.7%、32.5%、29.7%、30.0%,而美国分别为11.8%、20.4%、15.2%、19.6%、21.9%.2016年,中国对世界经济增长的贡献率仍居首位,预计全年经济增速为6.7%左右,而世界银行预测全球经济增速为2.4%左右.按2010年美元不变价计算,2016年中国对世界经济增长的贡献率仍然达到33.2%.如果按照2015年价格计算,则中国对世界经济增长的贡献率会更高一点,根据有关国际组织预测,2016年中国、美国、日本经济增速分别为6.7%、1.6%、0.6%.根据以上材料解答下列问题:(1)选择合适的统计图或统计表将2013年至2015年中国和美国对世界经济增长的贡献率表示出来;(2)根据题中相关信息,2016年中国经济增速大约是全球经济增速的 倍(保留1位小数);(3)根据题中相关信息,预估2020年中国对世界经济增长的贡献率约为 ,你的预估理由是 . 解:(1)2013年至2015年中国和美国对世界经济增长的贡献率统计表图例全年地区生产总值社会固定资产投资区域税收区域税收社会固定资产投资全年地区生产总值中国32.5% 29.7% 30.0%美国15.2% 19.6% 21.9%或2013年至2015年中国和美国对世界经济的贡献率统计图-------------------- 2分(2)2.8;------------------------------------------------------------------ 3分(3)答案不唯一,预估理由与预估结果相符即可.------------------- 5分11.(2020·门头沟一模)阅读下列材料:我区以科学发展观为统领,紧紧围绕区域功能定位,加快着城市建设步伐,取得了喜人的成绩.以下是我区关于“科学技术”方面的公报:2014年,我区组织各级科技项目15个.其中区级科技计划项目1项,市级科技计划项目13项,国家级科技计划项目1个.认定高新技术企业23家,申请专利304项,授予专利179项.2015年,我区组织各级科技项目18个.其中,市级科技计划项目10项,国家级科技计划项目1个.认定高新技术企业18家,申请专利300项,授予专利与2014年相比增加了56项.2016年,我区培训农村实用人才279人次,认定高新技术企业与2015年相比增加了2.5倍,申请专利604项,授予专利与2015年相比增加了99项.根据以上材料解答下列问题:(1)2016年,我区授予的专利为________项;(2)请选择统计表或统计图将2014年—2016年的“申请专利,授予专利”表示出来;(3)通过以上材料的阅读你对我区的发展有什么感受,请用一句话表达.解:(1) 334;……………………1分(2)图形或列表正确即可;…4分时间(年)项目(项)201420152016(3)只要总结符合我区发展与科技有关的正能量的话语即可. ……5分 12.(2020·平谷一模)阅读以下材料:2020年1月28日至2月1日农历正月初一至初五,平谷区政府在占地面积6万平方米的琴湖公园举办主题为“逛平谷庙会乐百姓生活”的平谷区首届春节庙会.本次庙会共设置了文艺展演区、非遗展示互动区、特色商品区、儿童娱乐游艺区、特色美食区等五个不同主题的展区.展区总面积1720平方米.文艺展演区占地面积600平方米,占展区总面积的34.9%;非遗展示区占地190平方米,占展区总面积的11.0%;特色商品区占地面积是文艺展演区的一半,占展区总面积的17.4%;特色美食区占地200平方米,占展区总面积的11.6%;还有孩子们喜爱的儿童娱乐游艺区.此次庙会本着弘扬、挖掘、展示平谷春节及民俗文化,以京津冀不同地域的特色文化为出发点,全面展示平谷风土人情及津冀人文特色.大年初一,来自全国各地的约3.2万人踏着新春的脚步,揭开了首届平谷庙会的帷幕.大年初二尽管天气寒冷,市民逛庙会热情不减,又约有4.3万人次参观了庙会,品尝特色美食,观看绿都古韵、秧歌表演、天桥绝活,一路猜灯谜、赏图片展,场面火爆.琳琅满目的泥塑、木版画、剪纸、年画等民俗作品也让游客爱不释手,纷纷购买.大年初三,单日接待游客约4万人次,大年初四风和日丽的天气让庙会进入游园高峰,单日接待量较前日增长了约50%.大年初五,活动进入尾声,但庙会现场仍然人头攒动,仍约有5.5万人次来园参观. (1)直接写出扇形统计图中m 的值;(2)初四这天,庙会接待游客量约_______万人次;(3)请用统计图或统计表,将庙会期间每日接待游客的人数表示出来.解:(1)扇形统计图中m 的值是25.1%; (1)(2)6; (2)申请专利304 300 604授予专利179235 334。
北京市怀柔区2019-2020学年中考数学第三次押题试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,将函数21(3)12y x =++的图象沿y 轴向上平移得到一条新函数的图象,其中点A (-4,m ),B (-1,n ),平移后的对应点分别为点A'、B'.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数表达式是 ( )A . 21(3)22y x =+- B . 21(3)72y x =++ C . 21325y x =+-()D . 21342y x =++() 2.估算18的值是在( ) A .2和3之间B .3和4之间C .4和5之间D .5和6之间3.在Rt △ABC 中∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,c =3a ,tanA 的值为( ) A .13B .2 C .2D .34.如图,AB 与⊙O 相切于点B ,OA=2,∠OAB=30°,弦BC ∥OA ,则劣弧»BC的长是( )A .2πB .3π C .4π D .6π 5.下列各数中,为无理数的是( ) A 38B 4C .13D 26.我国“神七”在2008年9月26日顺利升空,宇航员在27日下午4点30分在距离地球表面423公里的太空中完成了太空行走,这是我国航天事业的又一历史性时刻.将423公里用科学记数法表示应为( )米. A .42.3×104B .4.23×102C .4.23×105D .4.23×1067.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是( )A .中位数是9B .众数为16C .平均分为7.78D .方差为28.制作一块3m×2m 长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( ) A .360元B .720元C .1080元D .2160元9.下列生态环保标志中,是中心对称图形的是( )A .B .C .D .10.2014 年底,国务院召开了全国青少年校园足球工作会议,明确由教育部正式牵头负 责校园足球工作.2018 年 2 月 1 日,教育部第三场新春系列发布会上,王登峰司长总 结前三年的工作时提到:校园足球场地,目前全国校园里面有 5 万多块,到 2020 年 要达到 85000 块.其中 85000 用科学记数法可表示为( ) A .0.85 ⨯ 105B .8.5 ⨯ 104C .85 ⨯ 10-3D .8.5 ⨯ 10-411.如图,正方形被分割成四部分,其中I 、II 为正方形,III 、IV 为长方形,I 、II 的面积之和等于III 、IV 面积之和的2倍,若II 的边长为2,且I 的面积小于II 的面积,则I 的边长为( )A .4B .3C .423-D .423+12.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图的三角形纸片中,8,6,5AB cm BC cm AC cm ===,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则ADE ∆的周长为__________.14.一个扇形的圆心角为120°,弧长为2π米,则此扇形的半径是_____米.15.如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD 中点,BP与半圆交于点Q,连结DQ.给出如下结论:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正确结论是_________.(填写序号)16.如果一个三角形两边为3cm,7cm,且第三边为奇数,则三角形的周长是_________.17.如图,在平面直角坐标系xOy中,A(-2,0),B(0,2),⊙O的半径为1,点C为⊙O上一动点,过点B作BP⊥直线AC,垂足为点P,则P点纵坐标的最大值为cm.18.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD的度数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图. A B C 笔试 85 95 90 口试8085(1)请将表和图中的空缺部分补充完整;图中B 同学对应的扇形圆心角为 度;竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A 同学得票数为 ,B 同学得票数为 ,C 同学得票数为 ;若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断 当选.(从A 、B 、C 、选择一个填空)20.(6分)如图,半圆D 的直径AB =4,线段OA =7,O 为原点,点B 在数轴的正半轴上运动,点B 在数轴上所表示的数为m .当半圆D 与数轴相切时,m = .半圆D 与数轴有两个公共点,设另一个公共点是C .①直接写出m 的取值范围是 .②当BC =2时,求△AOB 与半圆D 的公共部分的面积.当△AOB 的内心、外心与某一个顶点在同一条直线上时,求tan ∠AOB 的值.21.(6分)已知抛物线23y ax bx =+-经过点(1,1)A -,(3,3)B -.把抛物线23y ax bx =+-与线段AB围成的封闭图形记作G . (1)求此抛物线的解析式;(2)点P 为图形G 中的抛物线上一点,且点P 的横坐标为m ,过点P 作//PQ y 轴,交线段AB 于点Q .当APQ V 为等腰直角三角形时,求m 的值;(3)点C 是直线AB 上一点,且点C 的横坐标为n ,以线段AC 为边作正方形ACDE ,且使正方形ACDE与图形G 在直线AB 的同侧,当D ,E 两点中只有一个点在图形G 的内部时,请直接写出n 的取值范围.22.(8分)如图,ABC ∆的顶点是方格纸中的三个格点,请按要求完成下列作图,①仅用无刻度直尺,且不能用直尺中的直角;②保留作图痕迹.在图1中画出AB 边上的中线CD ;在图2中画出ABEF Y ,使得ABEF ABC S S ∆=Y .23.(8分)已知:如图,∠ABC ,射线BC 上一点D ,求作:等腰△PBD ,使线段BD 为等腰△PBD 的底边,点P 在∠ABC 内部,且点P 到∠ABC 两边的距离相等.24.(10分)如图,热气球探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为30°,看这栋楼底部C 处的俯角为60°,热气球与楼的水平距离AD 为100米,试求这栋楼的高度BC .25.(10分)解方程:1322xx x+= --.26.(12分)如图,已知点A(1,a)是反比例函数y1=mx的图象上一点,直线y2=﹣1122x+与反比例函数y1=mx的图象的交点为点B、D,且B(3,﹣1),求:(Ⅰ)求反比例函数的解析式;(Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;(Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.27.(12分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+1.设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】分析:过A作AC∥x轴,交B′B的延长线于点C,过A′作A′D∥x轴,交B′B的于点D,则C(-1,m),AC=-1-(-1)=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.详解:过A作AC∥x轴,交B′B的延长线于点C,过A′作A′D∥x轴,交B′B的于点D,则C(-1,m),∴AC=-1-(-1)=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴矩形ACD A′的面积等于9,∴AC·AA′=3AA′=9,∴AA′=3,∴新函数的图是将函数y=12(x-2)2+1的图象沿y轴向上平移3个单位长度得到的,∴新图象的函数表达式是y=12(x-2)2+1+3=12(x-2)2+1.故选D.点睛:此题主要考查了二次函数图象变换以及矩形的面积求法等知识,根据已知得出AA′的长度是解题关键.2.C【解析】【分析】161825,推出4185,即可得出答案.【详解】161825,∴4185,∴18的值是在4和5之间.故选:C.【点睛】本题考查了估算无理数的大小和二次根式的性质,解此题的关键是得出16<18<25,题目比较好,难度不大.3.B【解析】【分析】根据勾股定理和三角函数即可解答.【详解】解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,设a=x,则c=3x,b=229x x-=22x.即tanA=22x =24.故选B.【点睛】本题考查勾股定理和三角函数,熟悉掌握是解题关键.4.B【解析】解:连接OB,OC.∵AB为圆O的切线,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧BC的弧长为601180π⨯=13π.故选B.点睛:此题考查了切线的性质,含30度直角三角形的性质,以及弧长公式,熟练掌握切线的性质是解答本题的关键.5.D【解析】A38=2,是有理数;B4=2,是有理数;C.13,是有理数;D2,是无理数,故选D.423公里=423 000米=4.23×105米.故选C.7.A【解析】【分析】根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1.故选A.【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.8.C【解析】【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080元,故选C.【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.9.B【解析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【考点】中心对称图形.【分析】根据科学记数法的定义,科学记数法的表示形式为a×10 n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,等于这个数的整数位数减1. 【详解】解:85000用科学记数法可表示为8.5×104, 故选:B . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 11.C 【解析】 【分析】设I 的边长为x ,根据“I 、II 的面积之和等于III 、IV 面积之和的2倍”列出方程并解方程即可. 【详解】 设I 的边长为x根据题意有2222(22)x x x +=+解得4x =-4x =+ 故选:C . 【点睛】本题主要考查一元二次方程的应用,能够根据题意列出方程是解题的关键. 12.C 【解析】试题分析:根据主视图是从正面看得到的图形,可得答案.解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形. 故选C .考点:简单组合体的三视图.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.7cm 【解析】 【分析】由折叠的性质,可知:BE=BC ,DE=DC ,通过等量代换,即可得到答案.【详解】∵沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,∴BE=BC,DE=DC,∴ADE∆的周长=AD+DE+AE=AD+DC+AE=AC+AE=AB+BC+AC-BC-BE=8+6+5-6-6=7cm,故答案是:7cm【点睛】本题主要考查折叠的性质,根据三角形的周长定义,进行等量代换是解题的关键.14.1【解析】【分析】根据弧长公式l=,可得r=,再将数据代入计算即可.【详解】解:∵l=,∴r===1.故答案为:1.【点睛】考查了弧长的计算,解答本题的关键是掌握弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为r).15.①②④【解析】【分析】①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1;②连接AQ,如图4,根据勾股定理可求出BP.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到PQBQ的值;③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求出QH,从而可求出S△DPQ的值;④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得32 DN PQAN BQ==,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中运用三角函数的定义,就可求出cos∠ADQ的值.【详解】解:①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1.故①正确;②连接AQ,如图4.则有CP=12,BP=22151()22+=.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求得BQ=5,则PQ=5535 255-=,∴32 PQBQ=.故②正确;③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求得QH=35,∴S△DPQ=12DP•QH=12×12×35=320.故③错误;④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得32 DN PQAN BQ==,则有3 12 DNDN=-,解得:DN=35.由DQ=1,得cos∠ADQ=35 DNDQ=.故④正确.综上所述:正确结论是①②④.故答案为:①②④.【点睛】本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用.16.15cm、17cm、19cm.【解析】试题解析:设三角形的第三边长为xcm,由题意得:7-3<x<7+3,即4<x<10,则x=5,7,9,三角形的周长:3+7+5=15(cm),3+7+7=17(cm),3+7+9=19(cm).考点:三角形三边关系.17.13 +【解析】【分析】【详解】当AC与⊙O相切于点C时,P点纵坐标的最大值,如图,直线AC交y轴于点D,连结OC,作CH⊥x 轴于H,PM⊥x轴于M,DN⊥PM于N,∵AC为切线,∴OC⊥AC,在△AOC中,∵OA=2,OC=1,∴∠OAC=30°,∠AOC=60°,在Rt△AOD中,∵∠DAO=30°,∴OD=33OA=33,在Rt△BDP中,∵∠BDP=∠ADO=60°,∴DP=12BD=12(233在Rt△DPN中,∵∠PDN=30°,∴PN=12DP=123而23,∴3+233=132,即P点纵坐标的最大值为132.【点睛】本题是圆的综合题,先求出OD的长度,最后根据两点之间线段最短求出PN+MN的值.18.32°【解析】【分析】根据直径所对的圆周角是直角得到∠ADB=90°,求出∠A的度数,根据圆周角定理解答即可.【详解】∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=58°,∴∠A=32°,∴∠BCD=32°,故答案为32°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)90;(2)144度;(3)105,120,75;(4)B【解析】【分析】(1)由条形图可得A演讲得分,由表格可得C笔试得分,据此补全图形即可;(2)用360°乘以B对应的百分比可得答案;(3)用总人数乘以A、B、C三人对应的百分比可得答案;(4)根据加权平均数的定义计算可得.【详解】解:(1)由条形图知,A演讲得分为90分,补全图形如下:故答案为90;(2)扇图中B 同学对应的扇形圆心角为360°×40%=144°,故答案为144;(3)A 同学得票数为300×35%=105,B 同学得票数为300×40%=120,C 同学得票数为300×25%=75, 故答案为105、120、75;(4)A 的最终得分为854903105310⨯+⨯+⨯=92.5(分), B 的最终得分为954803120310⨯+⨯+⨯=98(分), C 的最终得分为90485375310⨯+⨯+⨯=84(分), ∴B 最终当选,故答案为B .【点睛】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.(1(2)11m <<;②△AOB 与半圆D 的公共部分的面积为43π(3)tan ∠AOB的值为7或41. 【解析】【分析】(1)根据题意由勾股定理即可解答(2)①根据题意可知半圆D 与数轴相切时,只有一个公共点,和当O 、A 、B 三点在数轴上时,求出两种情况m 的值即可②如图,连接DC ,得出△BCD 为等边三角形,可求出扇形ADC 的面积,即可解答(3)根据题意如图1,当OB =AB 时,内心、外心与顶点B 在同一条直线上,作AH ⊥OB 于点H ,设BH =x ,列出方程求解即可解答如图2,当OB =OA 时,内心、外心与顶点O 在同一条直线上,作AH ⊥OB 于点H ,设BH =x ,列出方程求解即可解答【详解】(1)当半圆与数轴相切时,AB ⊥OB ,由勾股定理得m=,.(2)①∵半圆D 与数轴相切时,只有一个公共点,此时m当O 、A 、B 三点在数轴上时,m =7+4=11,∴半圆D 与数轴有两个公共点时,m 的取值范围为3311m <<. 故答案为3311m <<.②如图,连接DC ,当BC =2时,∵BC =CD =BD =2,∴△BCD 为等边三角形,∴∠BDC =60°,∴∠ADC =120°,∴扇形ADC 的面积为212024=3603ADCS ⨯⨯=扇形ππ , 12332BDC S =⨯⨯=△ , ∴△AOB 与半圆D 的公共部分的面积为4+33π ; (3)如图1,当OB =AB 时,内心、外心与顶点B 在同一条直线上,作AH ⊥OB 于点H ,设BH =x ,则72﹣(4+x )2=42﹣x 2,解得x =178 ,OH =498,AH =715 , ∴tan ∠AOB =15, 如图2,当OB =OA 时,内心、外心与顶点O 在同一条直线上,作AH ⊥OB 于点H ,设BH =x ,则72﹣(4﹣x )2=42﹣x 2,解得x =87 ,OH =417,AH 125∴tan ∠AOB =41.综合以上,可得tan ∠AOB . 【点睛】此题此题考勾股定理,切线的性质,等边三角形的判定和性质,三角形的内心和外心,解题关键在于作辅助线21.(1)23y x x =+-;(2)-2或-1;(3)-1≤n<1或1<n≤3. 【解析】【分析】(1)把点(1,1)A -,(3,3)B -代入抛物线23y ax bx =+-得关于a,b 的二元一次方程组,解出这个方程组即可;(2)根据题意画出图形,分三种情况进行讨论;(3)作出图形,把其中一点恰好在抛物线上时算出,再确定其取值范围.【详解】解:(1)依题意,得: 319333a b a b +-=-⎧⎨--=⎩解得:11a b =⎧⎨=⎩∴此抛物线的解析式23y x x =+- ;(2)设直线AB 的解析式为y=kx+b,依题意得:133k b k b +=-⎧⎨-+=⎩解得:10k b =-⎧⎨=⎩∴直线AB 的解析式为y=-x.∵点P 的横坐标为m ,且在抛物线上,∴点P 的坐标为(m, 23m m +-)∵//PQ y 轴,且点Q 有线段AB 上,∴点Q 的坐标为(m,-m )① 当PQ=AP 时,如图,∵∠APQ=90°,//PQ y 轴,∴2213m m m -=--解得,m=-2或m=1(舍去)② 当AQ=AP 时,如图,过点A 作AC ⊥PQ 于C ,∵APQ V 为等腰直角三角形,∴2AC=PQ222(1)3m m m -=--即m=1(舍去)或m=-1.综上所述,当APQ V 为等腰直角三角形时,求m 的值是-2惑-1.;(3)①如图,当n<1时,依题意可知C,D 的横坐标相同,CE=2(1-n )∴点E 的坐标为(n,n-2)当点E 恰好在抛物线上时,232n n n +-=-解得,n=-1.∴此时n 的取值范围-1≤n<1.②如图,当n>1时,依题可知点E 的坐标为(2-n,-n )当点E 在抛物线上时,2(2)3(2)n n n +--=--解得,n=3或n=1.∵n>1.∴n=3.∴此时n 的取值范围1<n≤3.综上所述,n 的取值范围为-1≤n<1或1<n≤3.【点睛】本题主要考查了二次函数与几何图形的综合应用,掌握相关几何图形的性质和二次函数的性质是解题的关键.22.(1)见解析;(2)见解析.【解析】【分析】(1)利用矩形的性质得出AB 的中点,进而得出答案.(2)利用矩形的性质得出AC 、BC 的中点,连接并延长,使延长线段与连接这两个中点的线段相等.【详解】(1)如图所示:CD即为所求.(2)【点睛】本题考查应用设计与作图,正确借助矩形性质和网格分析是解题关键.23.见解析.【解析】【分析】根据角平分线的性质、线段的垂直平分线的性质即可解决问题.【详解】∵点P在∠ABC的平分线上,∴点P到∠ABC两边的距离相等(角平分线上的点到角的两边距离相等),∵点P在线段BD的垂直平分线上,∴PB=PD(线段的垂直平分线上的点到线段的两个端点的距离相等),如图所示:【点睛】本题考查作图﹣复杂作图、角平分线的性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题.24.这栋楼的高度BC 是4003米. 【解析】 试题分析:在直角三角形ADB 中和直角三角形ACD 中,根据锐角三角函数中的正切可以分别求得BD 和CD 的长,从而可以求得BC 的长.试题解析:解:∵90ADB ADC ∠∠==°,30BAD ∠=°,60CAD ∠=°,AD =100,∴在Rt ABD V 中,1003tan BD AD BAD ⋅∠= 在Rt ACD V 中,tan 1003CD AD CAD ⋅∠==.∴4003BC BD CD =+=. 点睛:本题考查解直角三角形的应用-仰角俯角问题,解答此类问题的关键是明确已知边、已知角和未知边之间的三角函数关系.25.52【解析】分析:此题应先将原分式方程两边同时乘以最简公分母,则原分式方程可化为整式方程,解出即可. 详解:去分母,得()132x x -=-.去括号,得136x x -=-.移项,得 361x x -=-.合并同类项,得 25x =.系数化为1,得52x =. 经检验,原方程的解为52x =. 点睛:本题主要考查分式方程的解法.注意:解分式方程必须检验.26.(1)反比例函数的解析式为y=﹣3x ;(2)D (﹣2,32);﹣2<x <0或x >3;(3)P (4,0). 【解析】 试题分析:(1)把点B (3,﹣1)带入反比例函数1m y x =中,即可求得k 的值; (2)联立直线和反比例函数的解析式构成方程组,化简为一个一元二次方程,解方程即可得到点D 坐标,观察图象可得相应x 的取值范围;(3)把A (1,a )是反比例函数1m y x=的解析式,求得a 的值,可得点A 坐标,用待定系数法求得直线AB 的解析式,令y=0,解得x 的值,即可求得点P 的坐标. 试题解析:(1)∵B (3,﹣1)在反比例函数1m y x =的图象上, ∴-1=m 3, ∴m=-3, ∴反比例函数的解析式为3y x =-; (2)31122y x y x ⎧=-⎪⎪⎨⎪=-+⎪⎩, ∴3x -=1122x -+, x 2-x-6=0,(x-3)(x+2)=0,x 1=3,x 2=-2,当x=-2时,y=32, ∴D (-2,32); y 1>y 2时x 的取值范围是-2<x<0或x>32; (3)∵A (1,a )是反比例函数1m y x =的图象上一点, ∴a=-3,∴A (1,-3),设直线AB 为y=kx+b,331k b k b +=-⎧⎨+=-⎩, ∴14k b =⎧⎨=-⎩,∴直线AB 为y=x-4,令y=0,则x=4,∴P(4,0)27. (1)35元;(2)30元.【解析】【分析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)×销售量,从而列出关系式,利用配方法得出最值;(2)令w=2000,然后解一元二次方程,从而求出销售单价.【详解】解:(1)由题意,得:W=(x-20)×y=(x-20)(-10x+1)=-10x 2+700x-10000=-10(x-35)2+2250∴ 当x=35时,W 取得最大值,最大值为2250,答:当销售单价定为35元时,每月可获得最大利润为2250元;(2)由题意,得:210700100002000x x -+-=,解得:130x =,240x =,Q 销售单价不得高于32元,∴ 销售单价应定为30元.答:李明想要每月获得2000元的利润,销售单价应定为30元.【点睛】本题考查二次函数的性质及其应用,还考查抛物线的基本性质,另外将实际问题转化为求函数最值问题,从而来解决实际问题.。
阅读理解题1. (2020·东城二模)佳佳想探究一元三次方程32220x x x +--=的解的情况. 根据以往的学习经验,他想到了方程与函数的关系:一次函数(0)y kx b k =+≠的图象与x 轴交点的横坐标即为一次方程0(0)kx b k +=≠的解;二次函数2(0)y ax bx c a =++≠的图象与x 轴交点的横坐标即为一元二次方程20(0)ax bx c a ++=≠的解. 如:二次函数223y x x =--的图象与x 轴的交点为(1,0)-和(3,0),交点的横坐标-1和3即为方程2230x x --=的解.根据以上方程与函数的关系,如果我们知道函数3222y x x x =+--的图象与x 轴交点的横坐标,即可知道方程32220x x x +--=的解.佳佳为了解函数3222y x x x =+--的图象,通过描点法画出函数的图象:(1)直接写出m 的值,并画出函数图象;(2)根据表格和图象可知,方程的解有_____个,分别为__________________; (3)借助函数的图象,直接写出不等式3222x x x +>+的解集.2.(2020•西城区二模)学习了《平行四边形》一章以后,小东根据学习平行四边形的经验,对平行四边形的判定问题进行了再次探究.以下是小东探究过程,请补充完整:(1)在四边形ABCD中,对角线AC与BD相交于点O,若AB∥CD,补充下列条件中能判定四边形ABCD是平行四边形的是(写出一个你认为正确选项的序号即可);(A)BC=AD (B)∥BAD=∥BCD (3)AO=CO(2)将(1)中的命题用文字语言表述为:∥命题1;∥画出图形,并写出命题1的证明过程;(3)小东进一步探究发现:若一个四边形ABCD的三个顶点A,B,C的位置如图所示,且这个四边形满足CD=AB,∥D=∥B,但四边形ABCD不是平行四边形,画出符合题意的四边形ABCD,进而小东发现:命题2“一组对边相等,一组对角相等的四边形是平行四边形”是一个假命题.3.(2020·海淀二模)已知y是x的函数,该函数的图象经过A(1,6),B(3,2)两点.(1)请写出一个符合要求的函数表达式;x≥,该函数无最小(2)若该函数的图象还经过点C(4,3),自变量x的取值范围是0值.∥如图,在给定的坐标系xOy中,画出一个..符合条件的函数的图象;Array∥根据∥中画出的函数图象,写出6x 对应的函数值y约为;(3)写出(2)中函数的一条性质(题目中已给出的除外).4. (2020·朝阳二模)下面是小东的探究学习过程,请补充完整:(1)探究函数22222x x y x +-=-(x <1)的图象与性质. 小东根据学习函数的经验,对函数22222x x y x +-=-(x <1)的图象与性质进行了探究.∥下表是y 与x 的几组对应值.求m 的值;∥如下图,在平面直角坐标系xOy 中,描出以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;∥进一步探究发现,该函数图象的最高点的坐标是(0,1),结合函数的图象,写出该函数的其他性质(一条即可): _____;(2)小东在(1)的基础上继续探究:他将函数22222x x y x +-=-(x <1)的图象向上平移1个单位长度,再向右平移1个单位长度后得到函数22724x x y x +-=-(x <2)的图象,请写出函数22724x x y x +-=-(x <2)的一条性质:_____.5.(2020·房山二模) 某班“数学兴趣小组”对函数xx y 1+=的图象和性质进行了探究,探究过程如下,请补充完整:(1)自变量x 的取值范围是 ; (2)下表是y 与x 的几组对应数值:在平面直角坐标系中,描出了以表中各对对应值为坐标的点. 根据描出的点,画出该函数的图象;(3)进一步探究发现:该函数在第一象限内的最低点的坐标是(1,2).观察函数图象,写出该函数的另一条性质 ; (4)请你利用配方法证明:当x >0时,xx y 1+=的最小值为2. (提示:当x >0时,()2xx =,211⎪⎭⎫ ⎝⎛=x x )6.(2020·顺义二模)阅读下列材料:实验数据显示,一般成人喝250毫升低度白酒后,其血液中酒精含量(毫克/百毫升)随时间的增加逐步增高达到峰值,之后血液中酒精含量随时间的增加逐渐降低.小明根据相关数据和学习函数的经验,对血液中酒精含量随时间变化的规律进行了探究,发现血液中酒精含量y 是时间x 的函数,其中y 表示血液中酒精含量(毫克/百毫升),x 表示饮酒后的时间(小时).下表记录了6小时内11个时间点血液中酒精含量y (毫克/百毫升)随饮酒后的时间x (小时)(x >0)的变化情况: 饮酒后的时间x(小时) …4121 43 145 23 2 3456 …血液中酒精含量y (毫克/百毫升)…2175 150 2375 200 2375150 **** **** 422545 6225… 下面是小明的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy 中,描出了上表中各对对应值为坐标的点,根据描出的点,画出血液中酒精含量y 随时间x 变化的函数图象;(2)观察表中数据及图象可发现此函数图象在直线x =23两侧可以用不同的函数表达式表示,请你任选其中一部分写出表达式.(3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20∶00在家喝完250毫升低度白酒,第二天早上6∶30能否驾车去上班?请说明理由.7.(2020·石景山二模)已知y 是x 的函数,下表是y 与x 的几组对应值小明根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:∥1x =-对应的函数值y 约为 ;∥该函数的一条性质: .8.(2020·通州二模)有这样一个问题:探究函数x x y 2122-=的图象与性质. 小东根据学习函数的经验,对函数x x y 2122-=的图象与性质进行了探究. 下面是小东的探究过程,请补充完整,并解决相关问题: (1)函数x x y 2122-=的自变量x 的取值范围是 ; (2)下表是y 与x 的几组对应值,求m 的值;x …-4-3-2 23--1 32- 32 1234… y…817 1831 23 3659 25 629 625 23 21- 1823- m …(3)如图,在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第二象限内的最低点的坐标是(-2,23),结合函数的图象,写出该函数的其它性质(一条即可) .(5)根据函数图象估算方程22122=-x x的根为 .(精确到0.1)9.(2020·昌平二模)有这样一个问题:探究函数2)2(1-=x y 的图象与性质,小静根据学习函数的经验,对函数2)2(1-=x y 的图象与性质进行了探究,下面是小静的探究过程,请补充完整: (1)函数2)2(1-=x y 的自变量x 的取值范围是__________;(2)下表是y 与x 的几组对应值.(3)如图,在平面直角坐标系xOy 中,描出以上表中各对对应值为坐标的点,根据描出的点画出该函数的图象;(4)结合函数图象,写出一条该函数图象的性质:______________________________.10.(2020·平谷二模)小敏通过学习,知道了“在直角三角形中,30°的锐角所对的直角边等于斜边的一半”,她猜想这个命题的逆命题为“在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°”.为了证明这个命题的正确性,她画出了如图所示的图形.她又结合图形把这个命题理解为“在直角三角形ABC 中,∥ACB=90°,直角边BC 的长等于斜边AB 长的一半时,BC 所对的锐角∥A 的度数等于30°”.请你根据小敏的图形和理解,补全已知..和求证..,并完成证明. 已知:在Rt∥ABC 中,∥ACB=90°,____________________________. 求证:_____________________________________ .小敏把自己的猜想与数学小组的同学们进行了交流,经过充分交流、研讨,得出了以下两种想法:想法一:取AB 中点D ,连结CD ,利用直角三角形斜边中线的性质使问题得到解决; 想法二:沿AC 翻折∥ABC ,得∥ADC ,构造特殊的三角形,使问题得到解决. 请选择其中一种想法,帮助小敏完成解答过程.A11. (2020·怀柔二模)小明遇到这样一个问题:已知:1=-acb . 求证:042≥-ac b . 经过思考,小明的证明过程如下: ∥1=-acb , ∥ac b =-. ∥0=+-c b a .接下来,小明想:若把1=x 带人一元二次方程02=++c bx ax (0≠a ),恰好得到0=+-c b a .这说明一元二次方程02=++c bx ax 有根,且一个根是1-=x .所以,根据一元二次方程根的判别式的知识易证:042≥-ac b .根据上面的解题经验,小明模仿上面的题目自己编了一道类似的题目: 已知:24-=+bca . 求证:acb 42≥.请你参考上面的方法,写出小明所编题目的证明过程.12.(2020·门头沟二模)小鹏遇到这样一个问题,已知实数a 、b (0,0a b >>),请问2a b+-是否有最小值,如果有请写出最小值并说明理由.他找不到思路,开始翻阅笔记,发现此题可以用以前老师讲的“配方”来解决 笔记中写到:求26+9xx +的最小值步骤如下: 22226+963(3)x x x x x +=++=+ ∥无论x 取任意实数,2(3)0x +≥ ∥26+9x x +的最小值是0(1)小鹏发现代数式23a -+可以用上面的方法找到最小值,请问最小值是多少,并说明理由;(2)小鹏通过笔记和问题(1)的方案很快解决了上面的问题,请你完成解答过程.阅读理解题1. (2020·东城二模)解: (1)0m =,画出函数的图象如下:(2)方程的解有三个,分别是-2,-1,1.(3)不等式的解集是2-11x x -<<或>. …………5分2.(2020•西城区二模)解:(1)在四边形ABCD中,对角线AC与BD相交于点O,若AB∥CD,则当∥BAD=∥BCD或AO=CO时,四边形ABCD是平行四边形;故答案为:B或C;(2)∥选择C,文字语言表述为:一组对边平行,一条对角线平分另一条对角线的四边形是平行四边形;故答案为:一组对边平行,一条对角线平分另一条对角线的四边形是平行四边形;∥已知:如图,在四边形ABCD中,AB∥CD,对角线AC与BD交于点O,AO=CO.求证:四边形ABCD是平行四边形.证明:∥AB∥CD,∥∥ABO=∥CDO,∥BAO=∥DCO,∥AO=CO,∥∥AOB∥∥COD,∥AB=CD,又∥AB∥CD,∥四边形ABCD是平行四边形.(3)如图所示,四边形ABCD满足CD=AB,∥D=∥B,但四边形ABCD不是平行四边形.3.(2020·海淀二模)(1)答案不唯一,例如6yx=,28y x=-+,2611y x x=-+等;---------------2分(2)答案不唯一,符合题意即可;--------------------------- 4分(3)所写的性质与图象相符即可.--------------------- 5分4. (2020·朝阳二模)解:(1)∥当x=12时,y=34.∥34 m .∥该函数的图象如下图所示:∥答案不惟一,如:当x<0时,y随x的增大而增大.(2)答案不惟一,如:函数图象的最高点坐标为(1,2).5.(2020·房山二模)(1)x≠0 ;(2)(3)答案不唯一,如: x>1时,y随x增大而增大;0<x<1时,y随x增大而减小;函数的图象经过第一、三象限; 函数图象与坐标轴无交点(4)∵当x >0时,2xx ,21xx1x x∴221xxx x2222xx22xx……………………4分∵2xx≥0 ∴ 22xx≥2∴1xx≥2 即当x >0时,1y xx的最小值为6.(2020·顺义二模) 解:(1)画图象.(2)y =-200x 2+400x 或xy 225=(3)把y =20代入反比例函数xy 225=得x =11.25.∴喝完酒经过11.25小时为早上7:15.∴第二天早上7:15以后才可以驾驶,6:30不能驾车去上班.7.(2020·石景山二模)(1)如右图.……………………… 2分(2)∥1.5(答案不唯一).……………… 3分∥当2x 时,y随x的增大而减小;当2x≥时,y随x的增大而增大;yx–1–2123456–1–2–3–4–5–612345O当2x =时,y 有最小值为2-. ……(写出一条即可) ………………… 5分8.(2020·通州二模)(1)0≠x ………………………………..(1分) (2)815-………………………………..(2分) (3)图正确………………………………..(3分) (4)性质正确………………………………..(4分)(5)5.34-<<-x ;15.1-<<-x ;16.0<<x 中取值………………………..(5分)9.(2020·昌平二模)(1)2≠x ;…………………………………………1分 (2)m=4;………………………………………………2分 (3)………………………………4分(4)函数图象关于直线x=2对称(答案不唯一,正确即可). ………5分10.(2020·平谷二模) (1)12BC AB =;∥A =30°. (2)想法一证明:取AB 中点D ,连结CD .∥∥ACB =90°, ∥CD=AD=BD =12AB .∥12BC AB =, ∥CD=BD=BC .∥∥B =60°. ∥∥A =30°.想法二证明:沿AC 翻折∥ABC ,得∥ADC . ∥∥ABC∥∥ADC .∥BC=CD ,AB=AD ,∥ACD =∥ACB =90° ∥∥ACB +∥ACD =180°.∥D ,C ,B 三点在同一条直线上. ∥12BC AB =, ∥BD=AB=AD . ∥∥B =60°. ∥∥BAC =30°.11. (2020·怀柔二模)解:∥42a cb +=-,∥42ac b +=-.∥420a b c ++=∥2x =是一元二次方程20ax bx c ++=的根.∥240b ac -≥,∥24b ac ≥A【2020年中考数学——精品提分卷】第 2 页 / 共 21 页 12.(2020·门头沟二模)(1)最小值是0理由:22223=(a a a -+-+=∥2(0a -≥∥23a -+的最小值是0.(2)最小值是0 理由:2222220,0a b a b a b +=+->>=+-=∵∴原式∥20≥。
北京市北京市,2020~2021年中考数学压轴题精选解析北京市北京市中考数学压轴题精选~~第1题~~(2020通州.中考模拟) 在平面直角坐标系xOy中,点P,Q(两点可以重合)在x轴上,点P的横坐标为m,点Q的横坐标为n,若平面内的点M的坐标为(n,|m﹣n|),则称点M为P,Q的跟随点.(1)若m=0,①当n=3时,P,Q的跟随点的坐标为多少;②写出P,Q的跟随点的坐标;(用含n的式子表示);③记函数y=kx﹣1(﹣1≤x≤1,k≠0)的图象为图形G,若图形G上不存在P,Q的跟随点,求k的取值范围;(2)⊙A的圆心为A(0,2),半径为1,若⊙A上存在P,Q的跟随点,直接写出m的取值范围.~~第2题~~(2020北京.中考模拟) 如图,矩形中,,.,分别在,上,点与点关于所在的直线对称,是边上的一动点.(1)连接,,求证四边形是菱形;(2)当的周长最小时,求的值;(3)连接交于点,当时,求的长.~~第3题~~(2020东城.中考模拟) 如图1,在△ABC中,∠ACB=90°,AC=BC,点D是射线CB上一点,连接AD,过D作DE⊥A D交射线AB于点E,以A为旋转中心,将线段AD绕点A逆时针旋转90°得线段AF,过点F作FG⊥AF交AC的延长线于点G,连接EG.(1)如图1,点D在CB上.①依题意补全图1;②猜想DE、EG、FG之间的数量关系并证明;(2)如图2,点D在CB的延长线上.请直接写出DE、EG、FG之间的数量关系为.~~第4题~~(2020丰台.中考模拟) 在平面直角坐标系xOy中,⊙O的半径为r(r>0).给出如下定义:若平面上一点P到圆心O的距离d,满足,则称点P为⊙O的“随心点”.(1)当⊙O的半径r=2时,A(3,0),B(0,4),C(,2),D(,)中,⊙O的“随心点”是;(2)若点E(4,3)是⊙O的“随心点”,求⊙O的半径r的取值范围;(3)当⊙O的半径r=2时,直线y=- x+b(b≠0)与x轴交于点M,与y轴交于点N,若线段MN上存在⊙O的“随心点”,直接写出b的取值范围.~~第5题~~(2020北京.中考真卷) 在平面直角坐标系中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,得到⊙O的弦(分别为点A,B的对应点),线段长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图,平移线段AB到⊙O的长度为1的弦和,则这两条弦的位置关系是________;在点中,连接点A与点________的线段的长度等于线段AB到⊙O的“平移距离”;(2)若点A,B都在直线上,记线段AB到⊙O的“平移距离”为,求的最小值;(3)若点A的坐标为,记线段AB到⊙O的“平移距离”为,直接写出的取值范围.~~第6题~~(2020朝阳.九上期中) 已知∠AOB=60°,P为它的内部一点,M为射线OA上一点,连接PM,以P为中心,将线段PM顺时针旋转120°,得到线段PN,并且点N恰好落在射线OB上.(1)依题意补全图1;(2)证明:点P一定落在∠AOB的平分线上;(3)连接OP,如果OP=2 ,判断OM+ON的值是否变化,若发生变化,请求出值的变化范围,若不变,请求出值.~~第7题~~(2020海淀.中考模拟) 若抛物线(是常数,)与直线都经过轴上的一点,且抛物线的顶点在直线上,则称此直线与该抛物线具有“一带一路”关系.此时,直线叫做抛物线的“带线”,抛物线叫做直线的“路线”.(1)若直线与抛物线具有“一带一路”关系,求的值;(2)若某“路线” 的顶点在反比例函数的图象上,它的“带线” 的解析式为,求此“路线” 的解析式;(3)当常数满足时,请直接写出抛物线:的“带线” 与轴,轴所围成的三角形面积S的取值范围.~~第8题~~(2020北京.中考模拟) 定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P为△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线C:上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是,点N的坐标是时,求点P的坐标;(2)如图3,当点M的坐标是,点N的坐标是时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点,?若存在,请直接写出这两点的坐标;若不存在,请说明理由.~~第9题~~(2020北京.中考模拟) 已知边长为2a的正方形ABCD,对角线AC、BD交于点Q,对于平面内的点P与正方形ABCD,给出如下定义:如果,则称点P为正方形ABCD的“关联点”.在平面直角坐标系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).(1)在,,中,正方形ABCD的“关联点”有;(2)已知点E的横坐标是m,若点E在直线上,并且E是正方形ABCD的“关联点”,求m的取值范围;(3)若将正方形ABCD沿x轴平移,设该正方形对角线交点Q的横坐标是n,直线与x轴、y轴分别相交于M 、N两点.如果线段MN上的每一个点都是正方形ABCD的“关联点”,求n的取值范围.~~第10题~~(2020北京.中考模拟) 在平面直角坐标系中,直线为一、三象限角平分线,点关于轴的对称点称为的一次反射点,记作;关于直线的对称点称为点的二次反射点,记作.例如,点的一次反射点为,二次反射点为.根据定义,回答下列问题:(1)点的一次反射点为,二次反射点为;(2)当点在第一象限时,点,,中可以是点的二次反射点的是;(3)若点在第二象限,点,分别是点的一次、二次反射点,为等边三角形,求射线与轴所夹锐角的度数.(4)若点在轴左侧,点,分别是点的一次、二次反射点,是等腰直角三角形,请直接写出点在平面直角坐标系中的位置.北京市北京市中考数学压轴题答案解析~~第1题~~答案:解析:~~第2题~~答案:解析:答案:解析:~~第4题~~答案:解析:答案:解析:~~第6题~~答案:解析:~~第7题~~答案:解析:答案:解析:~~第9题~~答案:解析:~~第10题~~答案:解析:。
北京市中考数学押题卷C学校姓名准考证号一、选择题.(本题共30分,每小题3分)下面各题均有四个选项,符合题意的选项只有一个.1.的倒数是()A.B.C.D.【解析】根据倒数的定义,可得答案.【解答】解:的倒数是,故选:D.【说明】本题考查了实数的性质,分子分母交换位置是求一个数的倒数的方法.2.人体内一种细胞的直径约为1.56μm,相当于1.56×10﹣6m,则1.56×10﹣6m用小数把它表示出来是()A.0.000156m B.0.0000156m C.0.00000156m D.0.000000156m【解析】把1.56×10﹣6还原成一般的数,就是把1.56的小数点向左移动6位.【解答】解:1.56×10﹣6m用小数把它表示出来是0.00000156m.故选:C.【说明】此题主要考查了科学记数法﹣原数,用科学记数法表示的数还原成原数时,n<0时,n是几,小数点就向前移几位.3.若两个非零的有理数a、b,满足:|a|=a,|b|=﹣b,a+b<0,则在数轴上表示数a、b的点正确的是()A.B.C.D.【解析】根据|a|=a得出a是正数,根据|b|=﹣b得出b是负数,根据a+b<0得出b的绝对值比a大,在数轴上表示出来即可.【解答】解:∵a、b是两个非零的有理数满足:|a|=a,|b|=﹣b,a+b<0,∵a>0,b<0,∵a+b<o,∵|b|>|a|,∵在数轴上表示为:故选B.【说明】本题考查了数轴,绝对值,有理数的加法法则等知识点,关键是确定出a>0,b<0,|b|>|a|.4.如图,直线l1∵l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∵ABC=67°,则∵1=()A.23°B.46°C.67°D.78°【解析】首先由题意可得:AB=AC,根据等边对等角的性质,即可求得∵ACB的度数,又由直线l1∵l2,根据两直线平行,内错角相等,即可求得∵2的度数,然后根据平角的定义,即可求得∵1的度数.【解答】解:根据题意得:AB=AC,∵∵ACB=∵ABC=67°,∵直线l1∵l2,∵∵2=∵ABC=67°,∵∵1+∵ACB+∵2=180°,∵∵1=180°﹣∵2﹣∵ACB=180°﹣67°﹣67°=46°.故选B.【说明】此题考查了平行线的性质,等腰三角形的性质.此题难度不大,解题的关键是注意掌握两直线平行,内错角相等与等边对等角定理的应用.5.一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时是绿灯的概率是()A.B.C.D.【解析】由一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,直接利用概率公式求解即可求得答案.【解答】解:∵一个十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,∵你抬头看信号灯时是绿灯的概率是:=.故选C.【说明】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.6.根据《北京日报》报道,到2017年年底,55公里长的长安街及延长线的市政设施、道路及附属设施等,将全部实现“中国风”设计风格.在下列设计图中,轴对称图形的个数为()A.1个B.2个C.3个D.4个【解析】根据轴对称图形的概念求解.【解答】解:从左边数第一个是轴对称图形,第四个是轴对称图形,故选:B.【说明】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.7.在平面直角坐标系中,点A(﹣1,5),将点A向右平移2个单位,再向下平移3个单位得到点A1;点A1关于y轴与A2对称,则A2的坐标为()A.(2,﹣1)B.(1,2)C.(﹣1,2)D.(﹣2,1)【解析】根据左减右加,上加下减,可得A1,根据关于y轴对称点的纵坐标相等,横坐标互为相反数,可得答案.【解答】解:由题意,得A1(1,2),点A1关于y轴与A2对称,则A2的坐标为(﹣1,2),故选:C.【说明】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.8.李老师对某班学生“你最喜欢的体育项目是什么?”的问题进行了调查,每位同学都选择了其中的一项,现把所得的数据绘制成频数分布直方图(如图).如图中的信息可知,该班学生最喜欢足球的频率是()A.12B.0.3C.0.4D.40【解析】由频数之和等于数据总数计算出学生总数,再由频率=计算最喜欢足球的频率.【解答】解:读图可知:共有(6+5+12+8+7+2)=40人,最喜欢足球的频数为12,是最喜欢篮球的频率是=0.3,故选:B.【说明】此题考查频数(率)分布直方图,熟知计算公式:频率=是解题的关键.9.如图,在∵O中,CD是直径,点A,点B在∵O上,连接OA、OB、AC、AB,若∵AOB=40°,CD∵AB,则∵BAC的大小为()A.30°B.35°C.40°D.70°【解析】在等腰∵OAB中利用等边对等角求得∵OBA的度数,然后根据平行线的性质可得∵COB=∵OBA,最后利用圆周角定理即可求解.【解答】解:∵OA=OB,∵∵OAB=∵OBA===70°,又∵CD∵AB,∵∵COB=∵OBA=70°,∵∵BAC=∵COB=35°.故选B.【说明】本题考查了圆周角定理以及等腰三角形的性质定理,求得∵COB的度数是关键.10.若实数m 满足0)21(22=++mm ,则下列对m 值的估计正确的是( ) A .﹣2<m <﹣1 B .﹣1<m <0C .0<m <1D .1<m <2 【解析】把方程整理成二次函数与反比例函数表达式的形式,然后作出函数图象,再根据两个函数的增减性即可确定交点的横坐标的取值范围.【解答】解:∵m 2+2(1+)=0,∵m 2+2+=0,∵m 2+2=﹣,∵方程的解可以看作是函数y=m 2+2与函数y=﹣的交点的横坐标,作函数图象如图,在第二象限,函数y=m 2+2的y 值随m 的增大而减小,函数y=﹣的y 值随m 的增大而增大,当m=﹣2时y=m 2+2=4+2=6,y=﹣=﹣=2,∵6>2,∵交点横坐标大于﹣2,当m=﹣1时,y=m 2+2=1+2=3,y=﹣=﹣=4, ∵3<4,∵交点横坐标小于﹣1,∵﹣2<m <﹣1.故选A .【说明】本题考查了利用二次函数图象与反比例函数图象估算方程的解,把方程转化为两个函数解析式,并在同一平面直角坐标系中作出函数图象是解题的关键.二.填空题(本题共18分,每小题3分)11.若代数式在实数范围内有意义,则实数x的取值范围是.【解析】先根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:由题意得x﹣3≠0,解得x≠3,故答案为:x≠3.【说明】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.12.如果二次函数y=ax2(a≠0)的图象开口向下,那么a的值可能是(只需写一个).【解析】由抛物线开口方向可求得a的取值范围,可求得答案.【解答】解:∵二次函数y=ax2(a≠0)的图象开口向下,∵a<0,∵可取a=﹣1,故答案为:﹣1.【说明】本题主要考查二次函数的性质,掌握抛物线的开口方向由a的正负决定是解题的关键.13.在大课间活动中,同学们积极参加体育锻炼,小红在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳”成绩优秀的人数为人.【解析】首先由第二小组有10人,占20%,可求得总人数,再根据各小组频数之和等于数据总数求得第四小组的人数,利用总人数260乘以样本中“一分钟跳绳”成绩为优秀的人数所占的比例即可求解.【解答】解:总人数是:10÷20%=50(人),第四小组的人数是:50﹣4﹣10﹣16﹣6﹣4=10,所以该校九年级女生“一分钟跳绳”成绩为优秀的人数是:×1200=480,故答案为:480.【说明】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.14.如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,则电视塔的高ED=.【解析】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比列出方程,通过解方程求解即可.【解答】解:过A点作AH∵ED,交FC于G,交ED于H.由题意可得:∵AFG∵∵AEH,∵=即=,,解得:EH=9.6.∵ED=9.6+1.6=11.2(米).故答案为:11.2.【说明】此题考查了相似三角形的应用,通过构造相似三角形.利用相似三角形对应边成比例解答即可.15.方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,…”则一个大桶和一个小桶一共可以盛酒斛.【解析】设一个大桶盛酒x斛,一个小桶盛酒y斛,根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”即可得出关于x、y的二元一次方程组,解之即可得出x、y值,将其相加即可得出结论.【解答】解:设一个大桶盛酒x斛,一个小桶盛酒y斛,根据题意得:,解得:.∵x+y=+=.故答案为:.【说明】本题考查了二元一次方程组的应用,根据数量关系列出关于x、y的二元一次方程组是解题的关键.16.已知:线段AC,如图1.求作:以线段AC为对角线的一个菱形ABCD.作法:(1)作线段AC的垂直平分线MN交AC点于O;(2)以点O为圆心,任意长为半径画弧,交直线MN于点B,D;(3)顺次连结点A,B,C,D.则四边形ABCD即为所求作的菱形.请回答:上面尺规作图2作出菱形ABCD的依据是.【解析】根据对角线互相垂直平分的四边形是菱形即可得出结论.【解答】解:∵由作法可知.AC∵BD,OA=OC,OB=OD,∵四边形ABCD是菱形.故答案为:对角线互相垂直平分的四边形是菱形.【说明】本题考查的是作图﹣复杂作图,熟知菱形的判定定理是解答此题的关键.三、解答题(本题共72分,第17-26题,每小题5分;第27题7分;第28题7分;第29题8分).解答应写出文字说明,演算步骤或证明过程.17.计算:|﹣|+(2016﹣π)0﹣2sin45°+()﹣2.【解析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=+1﹣2×+4=5.【说明】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解不等式组:,并写出符合不等式组的整数解.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出整数解.【解答】解:解不等式3﹣2(x﹣1)>0,得:x<,解不等式﹣1≤x,得:x≥1,∵不等式组的解集为1≤x<,则整数解为1、2.【说明】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.已知:如图,点D、E分别是等边∵ABC的两边AB、AC上的点,且AD=CE,求证:CD=BE.【解析】根据等边三角形的性质,结合条件可证明∵ADC∵∵CEB,可得CD=BE.【解答】证明:∵∵ABC为等边三角形,∵AC=BC,∵A=∵ACB=60°,在∵ADC和∵CEB中,,∵∵ADC∵∵CEB(SAS),∵CD=BE.【说明】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(SSS、SSAS、ASA、AAS和HL)和性质(全等三角形的对应边、对应角相等)是解题的关键.20.已知关于x的一元二次方程x2﹣(k+3)x+3k=0.(1)求证:不论k取何实数,该方程总有实数根.(2)若等腰∵ABC的一边长为2,另两边长恰好是方程的两个根,求∵ABC的周长.【解析】(1)求出根的判别式,利用偶次方的非负性证明;(2)分∵ABC的底边长为2、∵ABC的一腰长为2两种情况解答.【解答】(1)证明:∵=(k+3)2﹣4×3k=(k﹣3)2≥0,故不论k取何实数,该方程总有实数根;(2)解:当∵ABC的底边长为2时,方程有两个相等的实数根,则(k﹣3)2=0,解得k=3,方程为x2﹣6x+9=0,解得x1=x2=3,故∵ABC的周长为:2+3+3=8;当∵ABC的一腰长为2时,方程有一根为2,方程为x2﹣5x+6=0,解得,x1=2,x2=3,故∵ABC的周长为:2+2+3=7.【说明】本题考查的是一元二次方程根的判别式、等腰三角形的性质,一元二次方程ax2+bx+c=0(a≠0)的根与∵=b2﹣4ac有如下关系:∵当∵>0时,方程有两个不相等的两个实数根;∵当∵=0时,方程有两个相等的两个实数根;∵当∵<0时,方程无实数根.21.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∵AOE=.(1)求该反比例函数和一次函数的解析式;(2)求∵AOC的面积;(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.【解析】(1)作AD∵x轴于D,如图,先利用解直角三角形确定A(﹣3,4),再把A点坐标代入y=可求得m=﹣12,则可得到反比例函数解析式;接着把B(6,n)代入反比例函数解析式求出n,然后把A和B点坐标分别代入y=kx+b得到关于a、b的方程组,再解方程组求出a和b的值,从而可确定一次函数解析式;(2)先确定C点坐标,然后根据三角形面积公式求解;(3)观察函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.【解答】解:(1)作AD∵x轴于D,如图,在Rt∵OAD中,∵sin∵AOD==,∵AD=OA=4,∵OD==3,∵A(﹣3,4),把A(﹣3,4)代入y=得m=﹣4×3=﹣12,所以反比例函数解析式为y=﹣;把B(6,n)代入y=﹣得6n=﹣12,解得n=﹣2,把A(﹣3,4)、B(6,﹣2)分别代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+2;(2)当y=0时,﹣x+2=0,解得x=3,则C(3,0),所以S∵AOC=×4×3=6;(3)当x<﹣3或0<x<6时,一次函数的值大于反比例函数的值.【说明】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了观察函数图象的能力.22.如图,点F在∵ABCD的对角线AC上,过点F、B分别作AB、AC的平行线相交于点E,连接BF,∵ABF=∵FBC+∵FCB.(1)求证:四边形ABEF是菱形;(2)若BE=5,AD=8,sin∵CBE=,求AC的长.【解析】(1)由外角的性质可得∵AFB=∵FBC+∵FCB,又因为∵ABF=∵FBC+∵FCB,易得AB=AF,由菱形的判定定理可得结论;(2)作DH∵AC于点H,由特殊角的三角函数可得∵CBE=30°,由平行线的性质可得∵2=∵CBE=30°,利用锐角三角函数可得AH,DH,由菱形的性质和勾股定理得CH,得AC.【解答】(1)证明:∵EF∵AB,BE∵AF,∵四边形ABEF是平行四边形.∵∵ABF=∵FBC+∵FCB,∵AFB=∵FBC+∵FCB,∵∵ABF=∵AFB,∵AB=AF,∵∵ABEF是菱形;(2)解:作DH∵AC于点H,∵,∵∵CBE=30°,∵BE∵AC,∵∵1=∵CBE,∵AD∵BC,∵∵2=∵1,∵∵2=∵CBE=30°,Rt∵ADH中,,DH=AD•sin∵2=4,∵四边形ABEF是菱形,∵CD=AB=BE=5,Rt∵CDH中,,∵.【说明】本题主要考查了菱形的性质及判定定理,锐角三角函数等,由锐角三角函数解得AH,CH是解答此题的关键.23.某校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分为四类(A.特别好,B.好,C.一般,D.较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将两幅统计图中不完整的部分补充完整;(3)假定全校各班实施新课程改革效果一样,全校共有学生2 400人,请估计该校新课程改革效果达到A类的有多少学生;(4)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【解析】(1)由题意可得:王老师一共调查学生:(2+1)÷15%=20(名);(2)由题意可得:C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);由(1)(2)继而可补全条形统计图;(3)由样本中A类所占的百分比,即可估计该校新课程改革效果达到A类的有多少学生;(4)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.【解答】解:(1)3÷15%=20(人);故答案为:20(2)(3)2 400×15%=360(人);(4)列表如下:A类中的两名男生分别记为A1和A2.男A1男A2女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为P==.【说明】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.24.某班男生分成甲、乙两组进行引体向上的专项训练,已知甲组有6名男生,并对两组男生训练前,后引体向上的个数进行统计分析,得到乙组男生训练前,后引体向上的平均个数分别是6个和10个,及下面不完整的统计表和图的统计图.甲组男生训练前、后引体向上个数统计表(单位:个)根据以上信息,解答下列问题: (1)a= ,b= ,c= ;(2)甲组训练后引体向上的平均个数比训练前增长了 %; (3)你认为哪组训练效果好?并提供一个支持你观点的理由;(4)小华说他发现了一个错误:“乙组训练后引体向上个数不变的人数占到该组人数的50%,所以乙组的平均个数不可能提高4个之多.:你同意他的观点吗?说明理由.【解析】(1)根据平均数、众数和中位数的定义即可求解; (2)根据即可求得增长率;(2)求出各组的增长的数值,即可作出判断;(3)设第二组的人数是x ,判断二组增长的数值是否是9x ﹣6x 即可.甲组男生A男生B男生C 男生D 男生E 男生F 平均个数 众数 中位数训练前 4643524b4训练后896676a6c【解答】解:(1)a=(8+9+6+6+7+6)÷6=7,b=4,c=(6+7)÷2=6.5;(2)(7﹣4)÷4×100%=3÷4×100%=75%;(3)甲组训练效果较好.因为甲组训练后的平均个数比训练前增长75%,乙组训练后的平均个数比训练前增长约67%,甲组训练前、后平均个数的增长率大于乙组的增长率.(4)不同意.因为乙组训练后的平均个数增加了:50%×0+20%×7+20%×8+10%×10=4个,所以不同意小华的观点.故答案为:7,4,6.5;75.【说明】本题考查了统计表,扇形统计图和条形统计图,正确判断小华的观点的正误是本题的难点.25.如图所示,CD为∵O的直径,点B在∵O上,连接BC、BD,过点B的切线AE与CD 的延长线交于点A,OE∵BD,交BC于点F,交AB于点E.(1)求证:∵E=∵C;(2)若∵O的半径为3,AD=2,试求AE的长;(3)求∵ABC的面积.【解析】(1)连接OB.先证明∵ABO、∵CBD均为直角,然后依据同角的余角相等证明∵ABD=∵CBO,接下来,结合等腰三角形的性质和平行线的性质进行证明即可;(2)连接OB,先求得AB的长,然后由平行线分线段成比例定理求得BE的长,最后再∵BOE中依据勾股定理可求得OE的长;(3)根据相似三角形的性质即可得到结论.【解答】解:(1)证明:如图1:连接OB.∵CD为圆O的直径,∵∵CBD=∵CBO+∵OBD=90°.∵AE是圆O的切线,∵∵ABO=∵ABD+∵OBD=90°.∵∵ABD=∵CBO.∵OB=OC,∵∵C=∵CBO.∵∵C=∵ABD.∵OE∵BD,∵∵E=∵ABD.∵∵E=∵C;(2)解:∵∵O的半径为3,AD=2,∵AO=5,∵AB=4.∵BD∵OE,∵BE=OD,∵BE=3,∵BE=6,AE=6+4=10;(3)∵S∵AOE=AE•OB=15,∵∵C=∵E,∵A=∵A,∵∵AOE∵∵ABC,∵=()2=,∵S∵ABC=15×=.【说明】本题主要考查的是切线的性质、圆周角定理的应用、等腰三角形的性质、平行线的性质、平行线分线段成比例定理、勾股定理的应用,求得BE的长是解答本题的关键.26.如图,把函数y=x的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x 的图象;也可以把函数y=x的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=2x的图象.类似地,我们可以认识其他函数.(1)把函数y=的图象上各点的纵坐标变为原来的倍,横坐标不变,得到函数y=的图象;也可以把函数y=的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=的图象.(2)已知下列变化:∵向下平移2个单位长度;∵向右平移1个单位长度;∵向右平移个单位长度;∵纵坐标变为原来的4倍,横坐标不变;∵横坐标变为原来的倍,纵坐标不变;∵横坐标变为原来的2倍,纵坐标不变.(∵)函数y=x2的图象上所有的点经过∵→∵→∵,得到函数的图象;(∵)为了得到函数y=﹣(x﹣1)2﹣2的图象,可以把函数y=﹣x2的图象上所有的点.A.∵→∵→∵B.∵→∵→∵C.∵→∵→∵D.∵→∵→∵(3)函数y=的图象可以经过怎样的变化得到函数y=﹣的图象?(写出一种即可)【解析】(1)根据阅读材料中的规律即可求解;(2)根据阅读材料中的规律以及“左减右加,上加下减”的规律即可求解;(3)首先把函数解析式变为y=﹣==﹣1,然后根据(2)的规律即可求解.【解答】解:(1)把函数y=的图象上各点的纵坐标变为原来的6倍,横坐标不变,设y′=6y,x′=x,将y=,x=x′带入xy=1可得y′=,得到函数y=的图象;也可以把函数y=的图象上各点的横坐标变为原来的6倍,纵坐标不变,设y′=y,x′=6x,将y=y′,x=代入xy=1可得y′=,得到函数y=的图象;(2)(∵)函数y=x2的图象上所有的点经过“纵坐标变为原来的4倍,横坐标不变”的变化后,得到y=4x2的图象;y=4x2的图象经过“向右平移1个单位长度”的变化后,得到y=4(x ﹣1)2的图象;y=4(x﹣1)2的图象经过“向下平移2个单位长度”的变化后,得到y=4(x ﹣1)2﹣2的图象.(∵)为了得到函数y=﹣(x﹣1)2﹣2的图象,可以把函数y=﹣x2的图象上所有的点先向下平移2个单位长度,得到y=﹣x2﹣2的图象,再把y=﹣x2﹣2的图象向右平移个单位长度,得到y=﹣(x﹣)2﹣2的图象;最后把y=﹣(x﹣)2﹣2的图象的横坐标变为原来的2倍,得到y=﹣(x﹣)2﹣2的图象,即y=﹣(x﹣1)2﹣2的图象.(3)∵y=﹣==﹣1,∵函数y=的图象先将纵坐标变为原来的倍,横坐标不变,得到y=;再向左平移2个单位,向下平移1个单位即可得到函数y=﹣的图象.故答案为:(1)6,6;(2)(∵)y=4(x﹣1)2﹣2;(∵)D.【说明】本题考查图形的平移变换和函数解析式之间的关系.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.27、在如图的平面直角坐标系xOy中,抛物线y=2x2+bx+c经过点A(0,﹣2),B(2,﹣2).(1)该抛物线的对称轴为直线,若点(﹣3,m)与点(3,n)在该抛物线上,则m n (填“>”、“=”或“<”);(2)求抛物线的函数表达式及顶点坐标,并画出图象;(3)设点C的坐标为(﹣3,﹣4),点C关于原点的对称点为C′,点D是抛物线对称轴上一动点,记抛物线在直线CC′以下部分为图象g,若直线CD与图象g有公共点,结合函数图象,求点D纵坐标t的取值范围.【解析】(1)根据A、B两点的纵坐标相同可知:A、B是对称点,可得对称轴,由抛物线的增减性可得:m>n;(2)利用待定系数法求二次函数的解析式,配方后写出顶点坐标,并画出图象;(3)根据原点对称的点,横坐标相反,纵坐标相反可得:C′(3,4),如图2,分三种情况:①当D的纵坐标为﹣4时,直线CD∥x轴,直线CD与图象g只有一个公共点,②当D的纵坐标小于﹣4时,直线CD与图象g无公共点,③求直线CC′的解析式为:y=x,设直线CC′与对称轴交于点D,求出此时点D的坐标,得符合要求的点D的纵坐标的最大值应小于,从而得出结论.【解答】解:(1)由对称性得:抛物线的对称轴为直线x=1,∴点(﹣3,m)与点(5,m)对称,∵当x>1时,y随x的增大而增大,∵5>3,∴m>n,故答案为:x=1,>;(2)把点A(0,﹣2),B(2,﹣2)代入抛物线y=2x2+bx+c中得:,解得:,∴y=2x2﹣4x﹣2=2(x﹣1)2﹣4,∴抛物线的函数表达式为:y=2x2﹣4x﹣2,顶点坐标为(1,﹣4),图象如图1所示:(3)由题意得:C′(3,4),如图2,∵D在抛物线的对称轴上,∴当D的纵坐标为﹣4时,直线CD∥x轴,直线CD与图象g只有一个公共点,当D的纵坐标小于﹣4时,直线CD与图象g无公共点,∵直线CC′经过原点,设直线CC′的解析式为:y=kx,∵C(﹣3,﹣4),∴﹣3k=﹣4,k=,∴直线CC′的解析式为:y=x,当x=1时,y=,∴符合要求的点D的纵坐标的最大值应小于,综上所述,﹣4≤t<.【说明】本题是二次函数的综合题,考查了利用待定系数法求二次函数和一次函数的解析式,熟练掌握抛物线的对称性是解本题的关键;第三问利用数形结合的思想解决问题.28.如图1,在Rt∵ABC中,∵ACB=90°,∵B=60°,D为AB的中点,∵EDF=90°,DE交AC于点G,DF经过点C.(1)求∵ADE的度数;(2)如图2,将图1中的∵EDF绕点D顺时针方向旋转角α(0°<α<60°),旋转过程中的任意两个位置分别记为∵E1DF1,∵E2DF2,DE1交直线AC于点P,DF1交直线BC于点Q,DE2交直线AC于点M,DF2交直线BC于点N,求的值;(3)若图1中∵B=β(60°<β<90°),(2)中的其余条件不变,判断的值是否为定值?如果是,请直接写出这个值(用含β的式子表示);如果不是,请说明理由.【解析】(1)根据含30°的直角三角形的性质和等边三角形的性质解答即可;(2)根据相似三角形的判定和性质以及直角三角形中的三角函数解答即可;(3)由(2)的推理得出,再利用直角三角形的三角函数解答.【解答】解:(1)∵∵ACB=90°,D为AB的中点,∵CD=DB,∵∵DCB=∵B,∵∵B=60°,∵∵DCB=∵B=∵CDB=60°,∵∵CDA=120°,∵∵EDC=90°,∵∵ADE=30°;(2)∵∵C=90°,∵MDN=90°,∵∵DMC+∵CND=180°,∵∵DMC+∵PMD=180°,∵∵CND=∵PMD,同理∵CPD=∵DQN,∵∵PMD∵∵QND,过点D分别做DG∵AC于G,DH∵BC于H,可知DG,DH分别为∵PMD和∵QND的高∵=,∵DG∵AC于G,DH∵BC于H,∵DG∵BC,又∵D为AC中点,∵G为AC中点,∵∵C=90°,∵四边形CGDH 为矩形有CG=DH=AG,Rt∵AGD中,即(3)是定值,定值为tan(90°﹣β),∵,四边形CGDH 为矩形有CG=DH=AG,∵Rt∵AGD中,=tan∵A=tan(90°﹣∵B)=tan(90°﹣β),∵=tan(90°﹣β).【说明】此题考查几何变换问题,关键是根据直角三角形的性质和相似三角形的判定进行解答.29.在平面直角坐标系xOy中,设点P(x1,y1),Q(x2,y2)是图形W上的任意两点.定义图形W的测度面积:若|x1﹣x2|的最大值为m,|y1﹣y2|的最大值为n,则S=mn为图形W的测度面积.例如,若图形W是半径为1的∵O,当P,Q分别是∵O与x轴的交点时,如图1,|x1﹣x2|取得最大值,且最大值m=2;当P,Q分别是∵O与y轴的交点时,如图2,|y1﹣y2|取得最大值,且最大值n=2.则图形W的测度面积S=mn=4(1)若图形W是等腰直角三角形ABO,OA=OB=1.∵如图3,当点A,B在坐标轴上时,它的测度面积S=1;∵如图4,当AB∵x轴时,它的测度面积S=1;(2)若图形W是一个边长1的正方形ABCD,则此图形的测度面积S的最大值为2;(3)若图形W是一个边长分别为3和4的矩形ABCD,求它的测度面积S的取值范围.【解析】(1)由测度面积的定义利用它的测度面积S=|OA|•|OB|求解即可;∵利用等腰直角三角形的性质求出AC,AB,利用测度面积S=|AB|•|OC|求解即可;(2)先确定正方形有最大测度面积S时的图形,即可利用测度面积S=|AC|•|BD|求解.(3)分两种情况当A,B或B,C都在x轴上时,当顶点A,C都不在x轴上时分别求解即可.【解答】解:(1)∵如图3,。