第三章 条件概率与条件期望
- 格式:pdf
- 大小:346.36 KB
- 文档页数:20
概率论中的条件概率公式详解贝叶斯定理条件期望等概率论是数学中的一门重要学科,研究的是随机事件的概率性质以及它们之间的关系。
条件概率公式、贝叶斯定理和条件期望是概率论中的重要概念和定理,它们在解决实际问题中具有广泛应用。
本文将对这些概念进行详细解释和讨论。
一、条件概率公式条件概率是指在已知某一事件发生的条件下,其他事件发生的概率。
设A和B是两个事件,且P(B)≠0,那么在事件B已经发生的条件下,事件A发生的概率记作P(A|B),读作“A在B发生的条件下发生”。
条件概率公式的形式为:P(A|B) = P(AB) / P(B)其中,P(AB)表示事件A和B同时发生的概率,又称为A与B的交集的概率。
通过这个公式,我们可以根据已知的条件概率来计算其他事件的概率。
二、贝叶斯定理贝叶斯定理是概率论中的核心定理之一,它描述了在已知某一事件发生的条件下,其他事件发生的概率如何更新。
设A和B是两个事件,且P(A)≠0,P(B)≠0,那么贝叶斯定理的表达式为:P(B|A) = P(A|B) * P(B) / P(A)其中,P(B|A)表示在事件A已经发生的条件下,事件B发生的概率。
贝叶斯定理的主要应用在于通过已知的先验概率和条件概率来计算后验概率。
它在统计学、生物信息学、机器学习等领域有着广泛的应用。
三、条件期望条件期望是在已知某一事件发生的条件下,随机变量的期望值。
设X和Y是两个随机变量,且P(Y=y)≠0,那么在事件Y=y已经发生的条件下,随机变量X的条件期望记作E(X|Y=y)。
条件期望的计算公式为:E(X|Y=y) = Σx(x * P(X=x|Y=y))其中,Σ表示对所有可能的取值进行求和。
通过条件期望,我们可以得到在给定条件下随机变量的平均值,从而更好地理解和分析随机事件的分布特性。
综上所述,条件概率公式、贝叶斯定理和条件期望是概率论中的重要概念和定理。
它们可以帮助我们计算和预测事件的概率,以及根据已知条件更新概率。
一、条件概率生活中很多概率都是在某些特殊条件下的概率。
比如你想知道你在家感染新冠的概率,这是取决于很多方面的,比如,政策有没有放开、是否位于高风险区等等。
只有在这些条件的限制下,我们才能较为准确的求出你想知道的概率。
基本概念:设A,B是随机试验E的两个随机试验,且P(B)>0,称P(A|B)=\frac{P(AB)}{P(B)} 为在事件B发生的条件下,事件A发生的条件概率。
韦恩图:上面A、B分别有两个椭圆,代表了他们的事件范围。
我们想要求在B的条件下A发生的概率,那么直观上分母应该是P(B),因为条件是事件B就相当于要以事件B作为基础;而由于事件B的限制,事件A中不属于B的部分应该被舍去,它们不在B的控制之下。
所以也很容易理解,分子是A和B的和事件(交集)的概率。
性质条件概率也属于概率,所以它也满足概率的基本性质,只不过会有所改变。
(1)对于每一事件A,0≤P(A|B)≤1(2) P(\Omega|B)=1(3)若A_1,A_2,……,A_n 互不相容,则P(\bigcup_{i=1}^{m} A_i|B)=\sum_{i=1}^mP(A_i|B) (4) P(A|B)+P(\overlineA|B)=1(5)容斥原理: P(A\bigcup B|B)=P(A|B)+P(B|B)-P(AB|B)二、乘法公式在上文我们知道条件概率的公式为: P(A|B)=\frac{P(AB)}{P(B)} 。
那如果我们此时知道P(B)和P(A|B),相求P(AB),可以通过移项转化成下列公式: P(A|B)P(B)=P(AB)同理,我们也可以得到: P(B|A)P(A)=P(AB) 这两个公式我们称其为乘法公式。
上面两个式子在实际计算中要根据问题灵活选择。
我们也可以将其拓展到n个事件中:P(A_1A_2…A_n)=P(A_1)P(A_2|A_1)P(A_3|A_2A_1)…P(A_n|A_n…A_2A_1) 我们可以这样理解:$P(A_1)$是假设A1正确,$P(A_2|A_1)$是假设A1正确的情况下A2正确,以此类推三、全概率公式有限划分基本概念:设 \Omega 为随机试验E的样本空间,B1,B2 ,…,Bn为E的一组事件,若(1) Bi∩Bj =f ,i ≠ j(2) B_1∪B_2 ∪…∪B_n=\Omega则称B1,B2,…,Bn 为 \emptyset 的一个有限划分,或称完备事件组。