有理数的加减法2
- 格式:doc
- 大小:66.50 KB
- 文档页数:6
有理数加减法学生/课程七年级-初一-数学年级初一学科数学授课教师日期时段核心内容有理数加减法课型教学目标1.了解有理数的加减法的意义.2.会根据有理数的加法法则进行有理数的加法运算,在现实背景中理解有理数加法的意义.重、难点1.了解有理数的加减法的意义,会根据有理数的加法法则进行有理数的加法运算.2.有理数加法中的异号两数如何进行加法运算.课首沟通上次作业完成怎么样?对有理数的加减符号分的怎么样?知识导图课首小测1.[单选题]下面结论正确的有().①两个有理数相加,和一定大于每一个加数.②一个正数与一个负数相加得正数.③正数加负数,其和一定等于0.④两个正数相加,和为正数.⑤两个负数相加,绝对值相减.A.1个B.2个C.3个D.4个2.[单选题] 一个数是2015,另一个数比2015的相反数大2,那么这两个数的和为().A.24 B.-24 C.2 D.-23. [单选题] 已知M是6的相反数,N比M的相反数小2,则m - n等于( ).A.4B.8C.-10D.24. [单选题] 计算(-7)+6+(-3)+10+(-6)=( ).A. 1B. 0C.-1D.25. [单选题] 若a、b互为倒数,c、d互为相反数,则c+2ab+d=( )A. 2B. 0C.-1D.-2导学一:有理数加法法则:知识点讲解 11.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.3.一个数同0相加,仍得这个数.例 1. 计算:(-2.48)+4.33+(-7.52)+(-4.33).例 2. 计算:;【学有所获】简化加法运算一般有如下技巧:(1)凑0,互为相反数的两数结合,其结果为0;(2)凑整,即几个非整数的有理数相加,可先把相加得整数的加数相加;(3)同号的两数结合,即正数与正数结合,负数与负数结合;(4)同分母或便于通分的结合.例 3. 李华用400元批发(购买)了8套儿童服装,全部卖出,如果每套以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣3,0,﹣2.问:李华在这次买卖中是盈利还是亏损,盈利或亏损多少元钱?【学有所获】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.一般情况下具有相反意义的量才是一对具有相反意义的量.例 4. 为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+15,﹣4,+13,﹣10,﹣12,+3,﹣13,﹣17.(1)最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?【学有所获】解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.一般情况下具有相反意义的量才是一对具有相反意义的量.例 5. 食堂购进10袋大米,每袋以100千克为准,称重时,超过的千克数记为正数,不足的千克数记为负数,称重记录如下:+5,﹣3,+7,0,0,+2,﹣4,﹣1,+8,﹣2.食堂共购进大米多少千克?【学有所获】用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数我爱展示1. 计算-12.7+7.8+(-2.3)的结果为.2.绝对值不大于10的所有整数的和是 _.3.某商店去年四个季度盈亏情况如下(盈余为正):128.5万元,-140万元,-28.5万元,280万元,这个商店去年总的盈亏情况为.4.运用加法运算律简化计算.(1)(—)++(—);(2)(—)+3 +2.75+(—8.5). 5. 计算:(﹣2)+(+5)+(﹣3 )+(+1.125)+(+4 )6.简便计算:(1)2 +(﹣2 )+(﹣1 )+2 +(﹣3 );(2)(﹣3.75)+5 +(﹣2 )+(﹣4 )+3 +(﹣1 ).7.阅读下列第(1)题中的计算方法,再计算第(2)题中式子的值.(1)﹣+(﹣9 )+ +(﹣3 )解:原式=[(﹣5)+(﹣)]+[(﹣9)+(﹣)]+[(+17)+(+ )]+[(﹣3)+(﹣)]=[(﹣5)+(﹣9)+(+17)+(﹣3)]+[(﹣)+(﹣)+(+ )+(﹣)]=0+(﹣1 )=﹣上面这种方法叫拆项法.仿照上述方法计算:(2)(﹣2008 )+(﹣2007 )+ +(﹣)8.有五袋薯片,以每袋500克为准,超过的克数记为正,不足的克数记为负,称重记录如下:+3.5克,-1.76克,-3.5 克,+2.5克,+2.76克,这五袋薯片的总质量超过或不足多少克?9.8筐白菜,以每筐25千克为准,超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:1.5,﹣3,2,﹣0.5,1,﹣2,﹣2,﹣2.5,8筐白菜的总重量是多少?知识点讲解 2:有理数减法法则(1)被减数、减数、差之间的关系是:被减数-减数= ,差+减数= ;(2)减法是加法的运算.(3)把减法转化为,按照有理数加法运算的步骤进行运算.答案:差,被减数,逆,加法。
有理数的减法第2课时有理数的加减混合运算一、导学1.课题导入:前面我们学习了有理数的加法和减法运算,本节课我们来学习有理数的加减混合运算.2.三维目标:〔1〕知识与技能使学生理解加减法统一成加法的意义,能熟练地进行有理数加减法的混合运算.〔2〕过程与方法通过加减法的相互转化,培养学生的应变能力,口头表达能力及计算能力.〔3〕情感态度敢于面对数学活动中的困难,并获得独立克服困难和运用知识解决问题的成功体验.3.学习重、难点:重点:加减法统一成加法.难点:有理数加法的省略写法和读法.4.自学指导:〔1〕自学内容:教材第23页至24页内容.〔2〕自学时间:6分钟.〔3〕自学要求:认真阅读课本,然后在组内交流讨论有理数加减法的运算步骤及本卷须知.〔4〕自学参考提纲:①例5中,根据有理数减法法那么,把原算式统一为加法运算.②例5的计算过程中,使用了哪些运算律?加法交换律,加法结合律.③引入相反数后,加减混合运算可以统一为加法运算,用字母表示是a+b-c=a+b+(-c).④有理数的加法运算可以省略算式中的括号和加号,你会做吗?简化后的算式你会读吗?会计算吗?用下面算式检验一下:计算:(-8)+(-5)+(+3)+(+6)原式=-8-5+3+6=-4⑤完成课本上的探究,可得结论:数轴上两点A、B的距离AB与这两点所对应的数a、b的关系为:AB=a-b.二、自学同学们可结合自学指导进行自学.三、助学1.师助生:〔1〕明了学情:深入学生之中,了解学生学习情况,特别是探究的结果是否正确,存在哪些问题.〔2〕差异指导:对学习困难的学生予以帮助.2.生助生:学生通过相互交流探讨解决一些自学中的疑难问题.四、强化1.解题要领:〔1〕引入相反数后,加减运算可以统一成加法运算.〔2〕遇到一个式子既有加法,又有减法,第一步应该先把减法转化为加法,然后再运用加法法那么运算,并要注意运用运算律进行简便运算.2.数轴上两点之间的距离等于这两个点所对应的数的差的绝对值.3.练习:〔1〕1-4+3-0.5;〔2〕-2.4+3.5-4.6+3.5;〔3〕〔-7〕-〔+5〕+〔-4〕-〔-10〕;〔4〕34-72+〔-16〕-〔-23〕-1答案:〔1〕-0.5;〔2〕0;〔3〕-6;〔4〕-134.五、评价1.学生的自我评价〔围绕三维目标〕:对自己的自学、交流的收获和缺乏进行自我评价.2.教师对学生的评价:〔1〕表现性评价:对本节课同学们自主学习和合作交流的积极表现和缺乏之处进行总结.〔2〕纸笔评价:课堂评价检测.3.教师的自我评价〔教学反思〕:本课时主要通过学生习题的训练,稳固有理数加法、减法及加减混合运算的法那么与技能,教师要认真归纳学生在进行有理数加法、减法运算时常犯的错误,以便在本节课教学时针对性指导.训练以学生自主解答为主,教师根据学生所做的解法,及时指出最具代表性的方法给学生指明解题方向.一、根底稳固〔70分〕1.〔20分〕把18-〔+33〕+〔-21〕-〔-42〕写成省略括号的和是〔B〕A.18+(-33)+(-21)+42B.18-33-21+42D.18+33-21-422.〔20分〕算式-3-5不能读作〔C〕B.-3与-5的和3.〔30分〕计算.〔1〕-4.2+5.7-8.4+10 〔2〕-14+56+23-12〔3〕12-(-18)+(-7)-15 〔4〕4.7-(-8.9)-7.5+(-6) (6)-23+0-516+-456+-913解:〔1〕3.1;(2)34;(3)8;(4)0.1;(5)-634;(6)0.二、综合应用〔20分〕4.〔10分〕计算:-1+2-3+4-5+6-7+8-9+…+ 2021-2021.解:原式=(-1+2)+(-3+4)+…+(-2021+2021)-2021=1+1+…+1-2021=-1014.5.〔10分〕一天早晨的气温是-7 ℃,中午上升了11 ℃,半夜又下降了9 ℃,半夜的气温是多少摄氏度?解:半夜的气温为-7+11-9=-5(℃).三、拓展延伸〔10分〕6.〔10分〕一种股票第一天的最高价比开盘价高0.3元,最低价比开盘价低0.2元;第二天的最高价比开盘价高0.2元,最低价比开盘价低0.1元;第三天的最高价等于开盘价,最低价比开盘价低0.13元,计算每天的最高价与最低价的差,以及这些差的平均值.平均值:〔0.5+0.3+0.13〕÷答:第一天最高价与最低价的差为0.5元,第二天最高价与最低价的差为0.3元,第三天最高价与最低价的差为0.13元;差的平均值是0.31元.第1课时教学目标1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.2.经历度量三角形边长的实践活动中,理解三角形三边不等的关系.3.懂得判断三条线段可否构成一个三角形的方法,并能运用它解决有关的问题.4.帮助学生树立几何知识源于客观实际,用客观实际的观念,激发学生学习的兴趣.重点、难点重点:1.对三角形有关概念的了解,能用符号语言表示三条形.2.能从图中识别三角形.3.通过度量三角形的边长的实践活动,从中理解三角形三边间的不等关系.难点:1.在具体的图形中不重复,且不遗漏地识别所有三角形.2.用三角形三边不等关系判定三条线段可否组成三角形.教学过程一、看一看1.投影:图形见章前P1图.教师表达: 三角形是一种最常见的几何图形之一.(看条件许可, 可以把古埃及的金字塔、飞机、飞船、分子结构……的投影,给同学放映)从古埃及的金字塔到现代的飞机、上天的飞船,从宏大的建筑如P68-69的图,到微小的分子结构, 处处都有三角形的身影.结合以上的实际使学生了解到:我们所研究的“三角形〞这个课题来源于实际生活之中.学生活动:(1)交流在日常生活中所看到的三角形.(2)选派代表说明三角形的存在于我们的生活之中.2.板书:在黑板上老师画出以下几个图形.(1)教师引导学生观察上图:区别三条线段是否存在首尾顺序相接所组成的.图(1)三条线段AC、CB、AB是否首尾顺序相接.(是)(2)观察发现,以上的图,哪些是三角形?(3)描述三角形的特点:板书:“不在一直线上三条线段首尾顺次相接组成的图形叫做三角形〞.教师提问:上述对三角形的描述中你认为有几个局部要引起重视.学生答复:一直线上的三条线段.b.首尾顺次相接.二、读一读指导学生阅读课本P2,第一局部至思考,一段课文,并答复以下问题:(1)什么叫三角形?(2)三角形有几条边?有几个内角?有几个顶点?(3)三角形ABC用符号表示________.(4)三角形ABC的边AB、AC和BC可用小写字母分别表示为________.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC用符号表示为△ABC,三角形ABC的三边,AB可用边AB的所对的角C的小写字母c 表示,AC可用b表示,BC可用a表示.三、做一做画出一个△ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?同学们在画图计算的过程中,展开议论,并指定答复以上问题:(1)小虫从B出发沿三角形的边爬到C有如下几条路线.a.从B→Cb.从B→A→C(2)从B沿边BC到C的路线长为BC的长.从B沿边BA到A,从A沿边C到C的路线长为BA+AC.经过测量可以说BA+AC>BC,可以说这两条路线的长是不一样的.四、议一议1.在同一个三角形中,任意两边之和与第三边有什么关系?2.在同一个三角形中,任意两边之差与第三边有什么关系?3.三角形三边有怎样的不等关系?通过动手实验同学们可以得到哪些结论?三角形的任意两边之和大于第三边;任意两边之差小于第三边.五、想一想三角形按边分可以,分成几类?六、练一练有三根木棒长分别为3cm、6cm和2cm,用这些木棒能否围成一个三角形?分析:(1)三条线段能否构成一个三角形, 关键在捡判定它们是否符合三角形三边的不等关系,符合即可的构成一个三角形,看不符合就不可能构成一个三角形.(2)要让学生明确两条木棒长为3cm和6cm,要想用三根木棒合起来构成一个三角形,这第三根木棒的长度应介于3cm和9cm之间,由于它的第三根木棒长只有2cm,所以不可能用这三条木棒构成一个三角形.错导:∵3cm+6cm>2cm∴用3cm、6cm、2cm的木棒可以构成一个三角形.错因:三角形的三边之间的关系为任意两边之和大于第三边,任意两边之差小于第三边,这里3+6>2,没错,可6-3不小于2,所以答复这类问题应先确定最大边,然后看小于最大量的两量之和是否大于最大值,大时就可构成,小时就无法构成.七、忆一忆今天我们学了哪些内容:1.三角形的有关概念(边、角、顶点)2.会用符号表示一个三角形.3.通过实践了解三角形的三边不等关系.八、作业课本P8习题11.2第1、2、6、7题.。
1、如果两个数的和是负数,那么一定有( )A.这两个数都是负数B.这两个数异号C.这两个数至少有一个数是负数D.这两个数至少有一个是0 2、-7的绝对值的相反数加上-3的相反数,结果是( ) A.10 B.-10 C.4 D.-4 3、若|a |=3,|b |=2,则a+b 的值为( ) A.5 B.-5 C.-5或5 D.±5或±1 4、下列运算中正确的个数有( )①-3+(-3)=0 ②-10+(+8)=2 ③0+(-5)=-5 ④253()777-++= ⑤14()(6)755--+-=- A.1个 B.2个 C.3个 D.4个5、若三个有理数的和为0,则( )A.三个数可能同号B.三个数一定都是0C.一定有两个数互为相反数D.一定有一个数等于其余两个数的和的相反数 6、如果|a+1.2|+|b -1|=0,那么a+(-1)+(-1.8)+b 的值为( ) A.-1 B.+1 C.3 D.-3 7、下列说法正确的是( )A.两个数的差一定小于被减数B.减去一个负数,差一定大于被减数C.减去一个正数,差一定大于被减数D.零减去任何数,差都是负数 8、对于整数a,b,c,d ,定义运算a b d c=ac -bd ,则1423等于( ) A.1 B.-3 C.-5 D.59、把(+17)+(-24)-(-12)写成省略加号的和的形式为( ) A.17+24-12 B.17+24+12 C.17-24+12 D.17-24-12 10、 m ,n ,p 为三个有理数,下列各式可写成m -n+p 的是( )A. m -(+n)-(+p)B. m -(+n)-(-p)C. m+(-n)+(-p)D. m+(-n)-(+p) 11、若m 是有理数,则||m m +的值( )A 、可能是正数B 、一定是正数C 、可能是负数D 、可能是正数,也可能是负数12、若m m m <-0,则||的值为( ) A 、正数 B 、负数 C 、0 D 、非正数 13、如果0m n -=,m n 则与的关系是 ( )A 、互为相反数B 、 m =±n ,且n ≥0C 、相等且都不小于0D 、m 是n 的绝对值14、下列等式成立的是( ) A 、0=-+a a B 、a a --=0 C 、0=--a a D 、a --a =0 15、若230a b -++=,则a b +的值是( ) A 、5 B 、1 C 、-1 D 、-5 16、在数轴上,a 表示的点在b 表示的点的右边,且6,3a b ==,则a b -的值为( ) A.-3 B.-9 C.-3或-9 D.3或917、两个数的差为负数,这两个数 ( )A 、都是负数B 、两个数一正一负C 、减数大于被减数 D 、减数小于被减数 18、负数a 与它相反数的差的绝对值等于( ) A 、 0 B 、a 的2倍 C 、-a 的2倍 D 、不能确定 19、下列语句中,正确的是( )A 、两个有理数的差一定小于被减数B 、两个有理数的和一定比这两个有理数的差大C 、绝对值相等的两数之差为零D 、零减去一个有理数等于这个有理数的相反数 20、对于下列说法中正确的个数( )①两个有理数的和为正数时,这两个数都是正数 ②两个有理数的和为负数时,这两个数都是负数 ③两个有理数的和可能是其中的一个加数 ④两个有理数的和可能等于0 A 、1 B 、2 C 、3 D 、421、有理数a ,b 在数轴上的对应点的位置如图所示,则( ) A 、a +b =0 B 、a +b >0 C 、a -b <0 D 、a -b >022、用式子表示引入相反数后,加减混合运算可以统一为加法运算,正确的是( )A 、a +b -c =a +b +cB 、a -b +c =a +b +cC 、a +b -c =a +(-b )=(-c )D 、a +b -c =a +b +(-c ) 23、若0a b c d <<<<,则以下四个结论中,正确的是( )A 、a b c d +++一定是正数B 、c d a b +--可能是负数C 、d c a b ---一定是正数D 、c d a b ---一定是正数24、若a 、b 为有理数,a 与b 的差为正数,且a 与b 两数均不为0,那么( ) A 、被减数a 为正数,减数b 为负数 B 、a 与b 均为正数,且被减数a 大于减数b C 、a 与b 两数均为负数,且减数 b 的绝对值大 D 、以上答案都可能 25、若a 、b 表示有理数,且a >0,b <0,a +b <0,则下列各式正确的是( )A 、-b <-a <b <aB 、-a <b <a <-bC 、b <-a <-b <aD 、b <-a <a <-b 26、下列结论不正确的是( )A 、若0a <,0b >,则0a b -<B 、若0a >,0b <,则0a b ->C 、若0a <,0b <,则()0a b -->D 、若0a <,0b <,且a b >,则0a b -< 27、若0x <,0y >时,x ,x y +,y ,x y -中,最大的是( ) A 、xB 、x y +C 、x y -D 、y28、数m 和n ,满足m 为正数,n 为负数,则m ,m -n ,m +n 的大小关系是 ( ) A 、m >m -n >m +n B 、m +n >m >m -n C 、m -n >m +n >m D 、m -n >m >m +n 29、若a b >>00,,则下列各式中正确的是( ) A 、a b ->0B 、a b -<0C 、a b -=0D 、--<a b 030、如果 a 、b 是有理数,则下列各式子成立的是( )A 、如果a <0,b <0,那么a +b >0B 、如果a >0,b <0,那么a +b >0C 、如果a >0,b <0,那么a +b <0D 、如果a <0,b >0,且︱a ︱>︱b ︱,那么a +b <0 31、已知的值是那么y x y x +==,213,6 .32、 三个连续整数,中间一个数是a ,则这三个数的和是___________. 33、若8a =,3b =,且0a >,0b <,则a b -=________.34、当0b <时,a 、a b -、a b +中最大的是_______,最小的是_______. 35、若0a <,那么()a a --等于___________.36、若数轴上,A点对应的数为-5,B 点对应的数是7,则A 、B 两点之间的距离是 . 37、 若||||a b a b =-=312,,且、异号,则a b -=___________.38、用“>”或“<”号填空:有理数a ,b ,c 则a +b +c ______0;|a |______|b |;a -b +c ______0;a +c ___b ;c -b ___a ; 39、如果|a |=4,|b |=2,且|a +b |=a +b ,则a -b 的值是 . 40、加法计算(直接写出得数): (1) (-6)+(-8)= (2) (-4)+2.5=(3) (-7)+(+7)= (4) (-7)+(+4)=(5) (+2.5)+(-1.5)=(6) 0+(-2)= (7) -3+2=(8) (+3)+(+2)=(9) -7-4= (10) (-4)+6= (11) ()31-+= (12) ()a a +-=41、减法计算(直接写出得数): (1) (-3)-(-4)=(2) (-5)-10= (3) 9-(-21)= (4) 1.3-(-2.7)=(5) 6.38-(-2.62)= (6) -2.5-4.5= (7) 13-(-17)= (8) (-13)-(-17)= (9) (-13)-17= (10) 0-6= (11) 0-(-3)= (12) -4-2= (13) (-1.8)-(+4.5)= (14) 1143⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭= (15) 1( 6.25)34⎛⎫--- ⎪⎝⎭=c a b42、加减混合计算题:(1) 4+5-11; (2) 24-(-16)+(-25)-15 (3) -7.2+3.9-8.4+12 (4) -3-5+7(5) -26+43-34+17-48 (6) 91.26-293+8.74+191 (7) 12-(-18)+(-7)-15(8) )15()41()26()83(++-+++- (9) )2.0(3.1)9.0()7.0()8.1(-++-+++-(10) (-40)-(+28)-(-19)+(-24)-32 (11) (+4.7)-(-8.9)-(+7.5)+(-6)(12) -6-8-2+3.54-4.72+16.46-5.28 (13)53141553266767⎛⎫⎛⎫⎛⎫⎛⎫-+-++--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(14) (-1.5)+134⎛⎫+ ⎪⎝⎭+(+3.75)+142⎛⎫- ⎪⎝⎭ (15)()⎪⎭⎫ ⎝⎛--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-41153141325(16) 222348312131355⎛⎫⎛⎫⎛⎫+-++-+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(17) )75.1(321432323+-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-(18) 711145438248⎛⎫⎛⎫⎛⎫⎛⎫---+--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(19) ⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-411433212411211(20) 151.225 3.4( 1.2)66⎛⎫⎛⎫-+------ ⎪ ⎪⎝⎭⎝⎭ (21) 1111122389910++++⨯⨯⨯⨯(22)11111335979999101++++⨯⨯⨯⨯43、已知|a|=6,|b|=3,求a -b 的值.。
有理数的加法一、填空 1.计算 (1)(-4)+(-6)= (2)(+15)+(-17)= (3)(-39)+(-21)= (4)(-6)+│-10│+(-4)= (5)(-37)+22= (6)-3+(3)= (7)(-15)+27= (8)(-3.2)+(+3.2)= (9)5.2+(-2.8)= (10)(-2)+(+1)=(11)-8+│-5│= (12)-(-7)+(-2)= 2.某足球队在一场比赛中上半场负5球,下半场胜4球,•那么全场比赛该队净胜 球.3.绝对值小于2005的所有整数和为 .4.(1)绝对值不小于3且小于5的所有整数的和为 .(2)已知两数512 和-612,这两个数的相反数的和是 ,两数和的相反数是 ,两数绝对值的和是 ,两数和的绝对值是 .5.某天早晨的气温是-7℃,中午上升了11℃,•则中午的气温是 .6.有理数中,所有整数的和等于 .7.一个加数是绝对值等于81的负有理数,另一个加数是-21的相反数,这两个数的和等于 . 二、选择题1.一个数是11,另一个数比11的相反数大2,那么这两个数的和为( )A .24B .-24C .2D .-2 2.下面结论正确的有 ( )①两个有理数相加,和一定大于每一个加数. ②一个正数与一个负数相加得正数.③两个负数和的绝对值一定等于它们绝对值的和.④两个正数相加,和为正数. ⑤两个负数相加,绝对值相减. ⑥正数加负数,其和一定等于0.A .0个B .1个C .2个D .3个3.在1,-1,-2这三个数中,任意两数之和的最大值是( ) A.1 B.0 C.-1 D.34.已知│x │=4,│y │=5,则│x+y │的值为 ( ) A .1 B .9 C .9或1 D .±9或±1 三、计算题(1)-1631+2961(2)(+0.65)+(-1.9)+(-1.1)+(-2013)+(+532)+(-231)(3)143+(-6.5)+383+(-1.75)+285(4)(+653)+(-532)+(452)+(+271)+(-1)+(-171)(5)(+9)+(-7)+(+10)+(-3)+(-9)(6)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)(7)(+1)+(-2)+(+3)+(-4)+…+(+2003)+(-2004)四、列式计算(1)求313的相反数与-223的绝对值的和.(2)某市一天上午的气温是10℃,上午上升2℃,半夜又下降15℃,则半夜的气温是多少.五、解决问题1. 某出租司机某天下午营运全是在东西走向的人民大道进行的,•如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18(1)他将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米?(2)若汽车耗油量为0.3公升/千米,这天下午汽车共耗油多少公升?解:2.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.•某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,•+5.(1)问收工时距A地多远?(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升?3.小李到银行共办理了四笔业务,第一笔存入120元,第二笔支取了85元,第三笔取出70元,第四笔存入130元.如果将这四笔业务合并为一笔,•请你替他策划一下这一笔业务该怎样做.有理数的减法(1)1. 计算题(1)(-32)-(+121)-(-41)(2)(-0.1)-(-831)+(-1132)-(-101)(3)(-1.5)-(-1.4)-(-3.6)+(-4.3)-(+5.2)(4)(5-6)-(7-9)2. 根据题意列出式子计算(1)一个加数是1.8,和是-0.81,求另一个加数.(2)-31的绝对值的相反数与32的相反数的差.解:3.填空题(1)0℃比-10℃高多少度?列算式为 ,转化为加法是 ,•运算结果为 .(2)减法法则为减去一个数,等于 这个数的 ,即把减法转为 .(3)比-18小5的数是 ,比-18小-5的数是 . (4)A 、B 两地海拔高度为100米、-20米,B 地比A 地低 米. 4.下列说法正确的是( )A .正数与正数的差是正数B .负数与负数的差是正数C .正数减去负数差为正数D .0减去正数差为正数 5.下列说法正确的个数是( ) ①减去一个数等于加上这个数; ②零减去一个数,仍得这个数 ③两个相反数相减得零;④有理数减法中,被减数不一定比减数或差大 ⑤减去一个负数,差一定大于被减数; ⑥减去一个正数,差不一定小于被减数A .2个B .3个C .4个D .5个 6.计算题 (1)(-7)-(-4)-(+5); (2)(-9)-[(-10)-(-2)](3)(-441)-(+531)-(-441); (4)-8.2-9.2-1.6-(-5)有理数的减法(2)一、选择题1.绝对值是23的数减去13所得的差是( )A.13 B.-1 C.13或-1 D.13或12.较小的数减去较大的数所得的差一定是( )A.正数 B.负数 C.零 D.不能确定 3.比3的相反数小5的数是( )A.2 B.-8 C.2或-8 D.2或+8 4.根据加法的交换律,由式子a b c -+-可得( )A.b a c -+ B.b a c -++ C.b a c -- D.b a c -+- 5.在数轴上,a 所表示的点在b 所表示的点的右边,且6,3a b ==,则a b -的值为( ) A.-3B.-9C.-3或-9D.3或96.若0,0x y <>时,,,x x y y +,x y -中,最大的是( ) A.xB.x y +C.x y -D.y二、填空题1.计算:3122--=___;95--=___.2.2004年12月21日的天气预报,北京市的最低气温为-3℃,武汉市的最低气温为5℃,这一天北京市的最低气温比武汉市的最低气温低___℃.3.一场足球比赛中,A队进球1个,被对方攻进3个,则A队的净胜球为___个.4.若()0a b --=,则a 与b 的关系是___.5. 0减去一个数得这个数的 . 三、计算:(1)()()()()71012-+++-+- (2)1121153483737---+(3) ()()12.37.2 2.315.2-+---(4)121112242123727⎛⎫⎛⎫⎛⎫-++---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭四、有理数1442,6,8555-+-的代数和比这三个数的相反数的绝对值的和小多少?五、下表列出国外几个城市与北京的时差(带正号的数表示同一(1) 多少?东京时间是多少?(2) 小兵现在想给远在巴黎的爸爸打电话,你认为合适吗?。
北师大版数学七年级2.6有理数的加减混合运算(2)教学设计高度变化记作上升4.5千米+4.5千米下降3.2千米-3.2千米上升1.1千米+1.1千米下降1.4千米-1.4千米对于题中的“高度变化”,你是怎么理解的?你能通过列式计算此时飞机的高度吗?4.5 - 3.2 + 1.1 - 1.4 =?教师引导学生思考得出今天学生内容有理数的加减混合运算。
而引入有理数的加减混合运算。
为载体,继续学习有理数的加减混合运算,调动学生的积极性,成功引入了新课讲授新课2、出示课件想一想:教师引导学生观看课件4.5 - 3.2 + 1.1 - 1.4 =?方法一:4.5+(-3.2)+1.1+(-1.4)=1.3+1.1+(-1.4)=2.4+(-1.4)=1(千米)方法二:4.5-3.2+1.1-1.4=4.5 + ( -3.2 ) + 1.1 + ( -1.4 )=1.3+1.1-1.4=2.4-1.4=1(千米)教师引导学生比较以上两种算法,你发现了什么?找出不同点和相同点。
相同点:都是从左向右计算;不同点:方法二是先把减法统一成加法,然后再从左向右计算。
教师引导学生进一步总结加减混合运算法则:有理数的加减混合运算可以统一成加法运算:议一议:4.5 + ( -3.2 ) + 1.1 + ( -1.4 )=4.5 + 1.1 + [ ( -3.2 ) + ( -1.4 ) ]学生自主观察、分析、对比、思考、总结,用通过两种方法解决有理数的混合运算得出有理数的混合运算法则,分组交流、汇报,然后教师加以矫正主要为了鼓励学生主动思考问题.通过通过对两种算法的比较,学生将体会加减法混合运算可以统一成加法,学生在学会混合运算运算顺序的前提下,理解利用运算律可以改变运算顺序,从而达到简化计算的目的.为进一步学习有理数的加减法混合运算做好铺垫。
通过例题教学使学生巩固解(加法的交换律和结合律)= 5.6 + ( -4.6 )= 1.教师追问学生你发现了什么?加减混合运算时可运用加法交换律和结合律简化运算(2)加减混合运算时可运用加法交换律和结合律简化运算.做一做:教师引导学生学习例题教师追问学生还有别的解法吗?进行有理数的加减混合运算可以省略到加数的括号和前面的加号进行运算。
第2课时1.水位的变化图表(1)图表的意义:日常生活中我们可以用正负数表示河流的水位变化、气温的升降、产量的波动、股票的涨跌等.通常以表格的形式来反映变化情况.如下表:水位高度(米)记录最高水位43.4+2.9警戒水位40.50平均水位36.8-3.7最低水位32.9-7.6(2)图表中的信息“水位的变化”问题是运用有理数的加减法解决实际问题的典型例子,读表格时要注意以下几点:①理解图表下面“标注”或“注意”的含义.②正号表示比某一参考水位上升,负号则表示比某一参考水位下降,参考对象是某一具体参考水位值.如表中的参考水位是警戒水位.③正号表示水位比前一天上升,负号表示水位比前一天下降,参考对象是前一天的水位.连续记录一般采用这样的表示方式.参考对象是怎么回事?参考对象就是用来作比较的数据,本节课中所提到的参考对象也叫做“基准”,基准就是规定某一数据记作“0”,其他数据对比基准来表示,超过基准的一般用正数表示,低于基准的用负数表示.【例1】已知上周周五(周末不开盘)收盘时股市指数以2 880点报收,本周内股市涨跌星期一二三四五股指变化+50-21-100+78-78A.2 880 2 887解析:正数表示涨,负数表示跌,每天的变化是相对于前一天来比较的,所以周四的股市指数为2 880+50-21-100+78=2 887.答案:D2.用正、负数表示变化的量用正、负数表示生活中具有相反意义的量要注意两点:①确定以什么为“基准”,并把它记为0.②规定正负.具有相反意义的两个量,一个为正,另一个必然为负.释疑点对“基准”的理解①“基准”即用来作比较的对象,一般指某一数据.如表示温度时,通常是以冰水混合物的温度为基准,并记为0 ℃.②不同的问题选取的基准不同.【例2】甲、乙两队进行拔河比赛,标志物先向乙队方向移动了0.2米,又向甲队方向移动了0.5米,相持一会后,又向乙队方向移动了0.4米,随后又向甲队方向移动了1.3米,在大家的欢呼鼓励中,标志物又向甲队方向移动了0.9米,若规定标志物向某队方向移动2米该队即可获胜,那么现在谁赢了?用算式说明你的判断.分析:向甲队方向移动与向乙队方向移动是一对具有相反意义的量,若把向甲队方向移动的距离用正数表示,那么向乙队方向移动的距离用负数表示,标志物移动的距离为:-0.2米,+0.5米,-0.4米,+1.3米,+0.9米,求出这5个数的和,然后和2米比较即可.解:甲队获胜,因为-0.2+(+0.5)+(-0.4)+(+1.3)+(+0.9)=+2.1(米)>2(米),所以甲队获胜.3.折线统计图的画法折线统计图可以表示同一种量不同时间的变化规律,如北京周一到周日的天气变化情况.正确地画出折线统计图是观察变化情况的依据.画法及步骤:①写出统计图名称,如天气、水位等;②画出横、纵两条互相垂直的数轴(有时不画箭头,一般向上为正方向,向右为正方向),分别表示两个量,标出单位和单位长度;③根据统计数据,分别描出对应点,描点时可借助三角板来完成;④用线段把所描的点顺次连接起来.谈重点画折线统计图的注意事项①画折线统计图时,要先确定哪一个量或哪一个数值为0,即基准;②要标出横线和竖线的单位;③选择单位长度时要考虑使统计图有明显的上升和下降的幅度,能看出变化情况.【例3】下表是一个水文站在雨季对某条河一周内水位变化情况的记录.其中,水位星期一二三四五六日变化+0.4-0.3-0.4-0.3+0.2+0.2+0.1 注:①表中记录的数据为②上周日12时的水位高度为2米.(1)请你通过计算说明本周末水位是上升了还是下降了.(2)用折线图表示本周每天的水位,并根据折线图说明水位在本周内的升降趋势.分析:计算这七天水位变化量的和,看结果是正、还是负,若是正,说明周末水位上升了;若是负,说明水位下降了.解:(1)因为(+0.4)+(-0.3)+(-0.4)+(-0.3)+(+0.2)+(+0.2)+(+0.1)=0.4-0.3-0.4-0.3+0.2+0.2+0.1=-0.1(米),所以本周末水位下降了.(2)折线图如图所示:由折线图可看出,本周水位先上升,再下降,最后上升.4.折线统计图的应用根据题目提供的折线统计图,结合已知条件解决实际问题,是折线统计图的应用之一.根据折线图解决实际问题的主要步骤:(1)读懂实际问题中的图表信息.理解统计表、统计图中反映的数据信息,正确认识正、负数的含义,看懂折线统计图中折线所反映的数据变化情况.(2)根据图表中的数据信息,列出算式.一般与有理数的加法和减法相关,即列有理数的加法或减法算式.(3)根据实际要求作答.【例5】青云中学学生会为了解该校学生喜欢球类活动的情况,抽取了一部分学生进行调查,从足球、乒乓球、篮球、排球等四个方面调查了若干名学生的兴趣爱好(要求每位同学只能选择一种自己喜欢的球类,从图中你知道一共调查了多少名学生吗?分析:从折线统计图中可以看出这次调查的学生中,喜欢足球的有30人,喜欢乒乓球的有20人,喜欢篮球的有40人,喜欢排球的有10人,再求和即可.解:30+20+40+10=100(人).答:一共调查了100名学生.。
专题 有理数加减法一、有理数力玎法运算律的灵活计算1、计算:()122125433⎛⎫⎛⎫⎛⎫-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()1217222546969⎛⎫⎛⎫⎛⎫⎛⎫+-+-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭二、规律探究2.观察下列每组数据,按某种规律在横线上填上适当的数.(1)1,-2,3,-4,_____,_____,_____。
(2)-23,-18,-13,_____,_____,_____。
(3)-11,-8,-5,_____,_____,_____。
三、分类讨论3.若3a =,b =7,则a b +的值是( )A.10B.4C.10或4 D 以上都不对四、有理数加减法的符号4.若0x <,0y >,则x ,x+y ,x-y ,y 中最小的数是( )A.xB.x+yC.x-yD.y5.如果a<0,b>0,a+b<0,那,额下列关系中正确的是( )A.a>b>-b>-aB. a>-a >b>-bC. b>a> -b>-aD. -a >b >-b > a五、用作差法比较两个有理数的大小6.若1215.5()33A =-++-,11.5 4.5B =-,比较A 与B 的大小。
六、有理数的加减混合运算7.计算:(1)23+(-17)+6+(-22) (2)(-2)+3+1+(-3)+2+(-4)(3)4.7-(-8.9)-7.5+(-6) (3)(-6.3)+|-7.5|-(-2)-1.2(5)237121358358--+--+ (6)5231591736342⎛⎫⎛⎫-+-++- ⎪ ⎪⎝⎭⎝⎭七、用特殊数值代替字母比较两个有理数的大小8.设a 是大于1的数,若221,,33a a a ++在数轴上对应的点分别为A.B.C 三点,则A.B.C 三点在数轴上从左至右的顺序是( )A .CBAB .BCAC .ABCD .CAB八、有理数加法的巧算9.-1+(+2)+(-3)+(+4)+…+(-99)+100.10.已知2ab -与1b -互为相反数,试求代数式:1111(1)(1)(2)(2)(2009)(2009)ab a b a b a b ++++++++++的值。
1.3有理数的加减法第10学时学习目标:1.进一步掌握有理数加法运算法则,理解加法运算律在有理数范围内推广的合理性;2.能运用加法运算律简化加法运算;3.经历有理数加法运算律的探索,体会观察、实践、归纳等活动在数学中的作用.学习难点:运用有理数加法法则简化运算. 课堂活动一、有理数加法运算律的探索 1.试一试:(1)任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个运算的结果:□+○ 和 ○+□(2)任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个运算的结果:(□+○)+◇ 和 □+(○+◇) 2.你能发现什么?请说说自己的猜想.3.概括:通过实例说明加法的交换律和结合律对于有理数同样适用.加法的交换律:文字概括: 字母表示 加法的结合律:文字概括: 字母表示 二、有理数加法运算律的应用 问题1.计算(1) (-23)+(+58)+(-17) (2)(-2.8)+(-3.6)+(-1.5)+3.6(3))75()65()72(61++-+-+ (4)(+4.56)+(-3.45)+(+4.44)+(+2.45)问题2:计算 (1) (-11)+8+(-14) (2)32)41()32()43(+-+-+-(3) 0.35+(-0.6)+0.25+(-5.4) (4))61(31)21()2(-++-+-三、拓展延伸问题3.10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,-4,2.5,3,-0.5,1.5,3,-1,0,-2.5. 问(1)10筐苹果共超过(不足)多少千克? (2)10筐苹果共重多少千克?课堂反馈:1.从某点O 出发,在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程依次为(单位:厘米):+5, -3,+10, -8, -6, +12, -10. 试问:小虫最后能否回到出发点O?2.10名学生的某一次数学考试成绩如下(单位:分)87,91,94,88,93,91,89,87,92,86,你能迅速算出总成绩之和吗?知识巩固 一、填空1. 存折中有存款240元,取出125元,又存入100元,存折中还有 元.2.绝对值小于5的所有负整数的和为3.已知a 是最小的正整数,b 是a 的相反数,c 的绝对值为3,则a +b +c =4.某天股票A 的开盘价是18元,上午11:30跌1.5元,下午收盘时又涨0.3元,则股票A 这天的收盘价是 元.5.如果a<0,则︱a ︱+a= 二、计算(1) )4(1)3()1(3-++-+-+ (2)(-9)+4+(-5)+8;(3)(-36.35)+(-7.25)+26.35+(+714) (4))2(9465195-+++(5))127(25)125()23(-++-+- (6)(-13)+(+25)+(+35)+(-123)三、解答题1. 一天早晨的气温是-7ºC,中午上升了11ºC ,半夜又降了9ºC ,则半夜的气温是多少?2.仓库内原存某种原料4500千克,一周内存入和领出情况如下(存入为正,单位:千克): 1500,-300,-670,400,-1700,-200,-250.问:第7天末仓库内还存有这种原料多少千克?请问这8袋被检奶粉的总净含量是多少? 4.一只电子跳骚从数轴上的原点出发,第一次向右跳1个单位,第二次向左跳2个单位,第三次向右跳3个单位,第四次向左跳4个单位,…,按这样的规律跳100次,跳骚到原点的距离是多少?5. 某出租车沿公路左右行驶,向左为正,向右为负,某天从A 地出发后到收工回家所走的路线如下:(单位:千米)8,9,4,7,2,10,18,3,7,5+-++--+-++ ⑴ 问收工时离出发点A 多少千米?⑵ 若该出租车每千米耗油0.3升,问从A 地出发到收工共耗油多少升?6.已知c b a ,7,2-==的相反数为-5,试求a +)(b -+(-c )7.计算:|1-12|+|12-13|+|13-14|+…+|19-110|课后反思:学习小结:。
第02讲有理数加减法(6大考点)一、有理数的加法1.定义:把两个有理数合成一个有理数的运算叫作有理数的加法.2.法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.要点:利用法则进行加法运算的步骤:(1)判断两个加数的符号是同号、异号,还是有一个加数为零,以此来选择用哪条法则.(2)确定和的符号(是“+”还是“-”).(3)求各加数的绝对值,并确定和的绝对值(加数的绝对值是相加还是相减).3.运算律:有理数加法运算律加法交换律文字语言两个数相加,交换加数的位置,和不变符号语言a+b=b+a加法结合律文字语言三个数相加,先把前两个数相加,或者先把后两个数相加,和不变符号语言(a+b)+c=a+(b+c)要点:交换加数的位置时,不要忘记符号.二、有理数的减法1.定义:已知两个数的和与其中一个加数,求另一个加数的运算,叫做减法,例如:(-5)+?=7,求?,减法是加法的逆运算.要点:(1)任意两个数都可以进行减法运算.考点考向(2) 几个有理数相减,差仍为有理数,差由两部分组成:①性质符号;②数字即数的绝对值. 2.法则:减去一个数,等于加这个数的相反数,即有:()a b a b -=+-.要点: 将减法转化为加法时,注意同时进行的两变,一变是减法变加法;二变是把减数变为它的相反数”.如:三、有理数加减混合运算将加减法统一成加法运算,适当应用加法运算律简化计算.考点一:有理数的加法运算1.计算:(1)(+20)+(+12); (2)1223⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭; (3)(+2)+(-11); (4)(-3.4)+(+4.3); (5)(-2.9)+(+2.9); (6)(-5)+0.【答案与解析】(1)(2)属于同一类型,用的是加法法则的第一条;(3)(4)属于同一类,用的是加法法则的第二条;(5)用的是第二条:互为相反数的两个数相加得0;(6)用的是法则的第三条. (1)(+20)+(+12)=+(20+12)=+32=32; (2)12121123236⎛⎫⎛⎫⎛⎫-+-=-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)(+2)+(-11)=-(11-2)=-9 (4)(-3.4)+(+4.3)=+(4.3-3.4)=0.9 (5)(-2.9)+(+2.9)=0; (6)(-5)+0=-5.【总结升华】绝对值不等的异号两数相加,是有理数加法的难点,在应用法则时,一定要先确定符号,再计算绝对值.2.计算:113343⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭考点精讲【答案】11111 3333433412⎛⎫⎛⎫⎛⎫-++=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3.计算:(1) (+10)+(-11);(2)⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭12 -1+-23【答案】(1) (+10)+(-11)=﹣(11-10)=﹣1;(2)⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1212341 -1+-=-1+=-1+=-2 2323666考点二:有理数的减法运算1.计算:(1)(-32)-(+5);(2)(+2)-(-25).【思路点拨】此题是有理数的减法运算,先按照减法法则将减法转化为加法,再按照有理数的加法进行计算.【答案与解析】法一:法二:(1)原式=-32-5=-32+(-5)=-37;(2)原式=2+25=27【总结升华】算式中的“+”或“-”既可以看作运算符号按法则进行计算,也可以看作是性质符号按多重符号化简进行计算.2.若()﹣(﹣2)=3,则括号内的数是()A.﹣1 B. 1 C. 5 D.﹣5【答案】B.根据题意得:3+(﹣2)=1,则1﹣(﹣2)=3.考点三:有理数的加减混合运算1.计算,能用简便方法的用简便方法计算.(1) 26-18+5-16 ;(2)(+7)+(-21)+(-7)+(+21)(3) ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111 -1+1++7+-2+-8 32432(4)113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫--+-++-+-+⎪ ⎪⎝⎭⎝⎭(5)132.25321.87584+-+(6)1355354624618-++-【答案与解析】(1) 26-18+5-16=(+26)+(-18)+5+(-16) →统一成加法 =(26+5)+[(-18)+(-16)] →符号相同的数先加 = 31+(-34)=-3(2)(+7)+(-21)+(-7)+(+21)=[ (+7)+(-7) ] +[(-21)+(+21)] →互为相反数的两数先加 =0(3)⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21111-1+1++7+-2+-832432 ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦21111-1+-2+1+-8+733224→同分母的数先加 ()()⎡⎤=⎢⎥⎣⎦1-4+-7+74=3-34(4)113.587(5)5(7)3( 1.587)24⎛⎫⎛⎫--+-++-+-+ ⎪ ⎪⎝⎭⎝⎭113.5875573( 1.587)24⎛⎫⎛⎫=++-++-+- ⎪ ⎪⎝⎭⎝⎭→统一成加法11[3.587( 1.587)](57)5324⎡⎤⎛⎫⎛⎫=+-+++-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦→整数、小数、分数分别加312128544⎛⎫=++-= ⎪⎝⎭(5)132.25321.87584+-+ (2.25 2.75)(3.125 1.875)=-++→统一同一形式(小数或分数),把可凑整的放一起0.55 4.5=-+=(6)1355354624618-++-1355354624618=--++++--1355(3546)()24618=-++-+-++-→整数,分数分别加18273010036-++-=+2936= 【总结升华】在进行加减混合的运算时,(1)先将各式中的减法运算转化为加法运算;(2)观察各加数之间的关系,再运用“技巧”适当交换加数的位置,注意交换时各加数的带着符号一起交换. 2.用简便方法计算:(1)(-2.4)+(-4.2)+(-3.8)+(+3.1)+(+0.8)+(-0.7) (2) 2)324(83)65()851(43-++-+-+ 【答案】 (1) 原式=[(-3.8)+ (-4.2)]+[ (-2.4)+ (-0.7) +(+3.1)]+(+0.8)=-8+0.8=-7.2 (2)原式=(2-1-4)+(34-58-56+38-23)=-3+[68-58+38+(-56-46)]=-3-1=-4 考点四:有理数的加减混合运算在实际中的应用1.邮递员骑车从邮局出发,先向南骑行2km 到达A 村,继续向南骑行3km 到达B 村,然后向北骑行9km 到C 村,最后回到邮局.(1)以邮局为原点,以向北方向为正方向,用1cm 表示1km ,画出数轴,并在该数轴上表示出A 、B 、C 三个村庄的位置;(2)C 村离A 村有多远? (3)邮递员一共骑了多少千米?【思路点拨】(1)以邮局为原点,以向北方向为正方向用1cm 表示1km ,按此画出数轴即可; (2)可直接算出来,也可从数轴上找出这段距离;(3)邮递员一共骑了多少千米?即数轴上这些点的绝对值之和. 【答案与解析】解:(1)依题意得,数轴为:;(2)依题意得:C 点与A 点的距离为:2+4=6(千米); (3)依题意得邮递员骑了:2+3+9+4=18(千米).【总结升华】本题主要考查了学生有实际生活中对数轴的应用能力,只要掌握数轴的基本知识即可.2.华英中学七年级(14)班的学生分成五组进行答题游戏,每组的基本分为100分,答对一题加50分,答错一题扣50分,游戏结束后各组的得分如下表:第1组第2组第3组第4组第5组100 150 350 -400 -100(1)第一名超过第二名多少分?(2)第一名超过第五名多少分?【答案】由表看出:第一名350分,第二名150分,第五名-400分.(1) 350-150=200(分)(2) 350-(-400)=350+400=750(分)答:第一名超过第二名200分;第一名超过第五名750分.3.某产粮专业户出售粮食8袋,每袋重量(单位:千克)如下:197,202,197,203,200,196,201,198.计算出售的粮食总共多少千克?【答案】法一:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这8个数的差的累计是:(-3)+(+2)+(-3)+(+3)+0+(-4)+(+1)+(-2)=-6200×8+(-6)=1594(千克)答:出售的粮食共1594千克.法二:197+202+197+203+200+196+201+198=1594(千克)答:出售的粮食共1594千克.考点五:数学思想在本章中的应用1.(1)数形结合思想:有理数a在数轴上对应的点如图所示,则a,-a,1的大小关系.A.-a<a<1 B.1<-a<a C.1<-a<a D.a<1<-a(2)分类讨论思想:已知|x|=5,|y|=3.求x-y的值.【答案与解析】解:(1)将-a在数轴上标出,如图所示,得到a<1<-a,所以大小关系为:a<1<-a.所以正确选项为:D.(2)因为| x|=5,所以x为-5或5因为|y|=3,所以y为3或-3.当x=5,y=3时,x-y=5-3=2当x=5,y=-3时,x-y=5-(-3)=8当x=-5,y=3时,x-y=-5-3=-8当x=-5,y=-3时,x-y=-5-(-3)=-2故(x-y)的值为±2或±82.若a是有理数,|a|-a能不能是负数?为什么? 【答案】解:当a>0时,|a|-a=a-a=0;当a=0时,|a|-a=0-0=0;当a<0时,|a|-a=-a-a=-2a>0.所以,对于任何有理数a,|a|-a都不会是负数.考点六:规律探索1.将1,12-,13,14-,15,16-,…,按一定规律排列如下:请你写出第20行从左至右第10个数是________.【思路点拨】通过观察题目所给的图形、表格或一段语言叙述,然后归纳总结,寻找规律.【答案】1 200 -【解析】认真观察可知,第1行有1个数,第2行有2个数,第3行有3个数,……,所以第20行有20个数,从第1行到第20行共有1+2+3+…+20=210个数,所以第20行最后一个数的绝对值应是1210;又由表中可知,凡是分母是偶数的分数是负数,故第20行最后一个数是1210-,以此类推向前10个,则得到第20行第10个数是1 200 -.【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并将规律表示出来.一、单选题1.(2021·贵州七年级期末)如图,a、b是数轴上的两个数,则b a-一定是()A.负数B.0 C.整数D.正数【答案】D【分析】由图可知b>0,a<0,且|a|>|b|,再根据有理数的加减法法则进行判断.【详解】解:由数轴得:b>0,a<0,且|a|>|b|,∴b-a>0,故选:D.【点睛】本题主要考查正数和负数,数轴等知识点,解答此题,需要用到绝对值不相等的异号两数相加的法则:取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.2.(2021·全国七年级期中)下列关于有理数的加法说法错误的是()A.同号两数相加,取相同的符号,并把绝对值相加B.异号两数相加,绝对值相等时和为0C.互为相反数的两数相加得0D.绝对值不等时,取绝对值较小的数的符号作为和的符号【答案】D【分析】直接利用有理数的加法法则逐一判断即可;【详解】解:A、同号两数相加,取相同的符号,并把绝对值相加,正确,不合题意;B、异号两数相加,绝对值相等时和为0,正确,不合题意;C、互为相反数的两数相加得0,正确,不合题意;D、绝对值不等时,取绝对值较小的数的符号作为和的符号,不正确,符合题意,应该改为:绝对值不等时,巩固提升取绝对值较大的数的符号作为和的符号. 故选择:D .【点睛】本题主要考查有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加,异号两数相加,绝对值不等时,取绝对值较大的数的符号作为和的符号,并用较大的数的绝对值减去较小数的绝对值,互为相反数的两数相加得0.熟练掌握有理数的加法法则是解题的关键.3.(2021·湖北七年级期中)在一家水果店,小明买了1斤苹果,4斤西瓜,2斤橙子,1斤葡萄,共付27.6元;小惠买了2斤苹果,6斤西瓜,2斤橙子,2斤葡萄,共付32.2元.则买1斤西瓜和1斤橙子需付( ) A .16元 B .14.8元 C .11.5元 D .10.7元【答案】C【分析】先用小惠买水果的钱减去小明买水果的钱得到1斤苹果,2斤西瓜,1斤葡萄的钱,再用小明买水果的钱减去1斤苹果,2斤西瓜,1斤葡萄的钱得到2斤西瓜和2斤橙子的钱,最后除以2即可得出答案. 【详解】由题意可得:()27.632.227.62⎡⎤÷⎣⎦﹣﹣()27.64.62=÷﹣232=÷ 11.5=(元).故买1斤西瓜和1斤橙子需付11.5元. 故选:C .【点睛】本题考查了有理数的加减,解题的关键是求出1斤苹果,2斤西瓜,1斤葡萄的钱.4.(2021·陕西七年级期中)某水库的水位将80米作为标准水位,水位为85.3米记为 5.3+米,则水位为76.8米应记为( ) A .76.8+米 B .76.8-米C . 3.2+米D . 3.2-米【答案】D【分析】根据有理数的减法计算,互为相反意义的量的表示方法和正负数的表示方法即可求得 【详解】76.880 3.2-=-∴水位为76.8米应记为 3.2-米故选D【点睛】本题考查了有理数的减法运算,互为相反意义的量的表示方法和正负数的表示方法,理解题意是解题的关键.5.(2021·重庆酉阳·七年级期末)我县某山区学校去年秋季期末考试时最高气温为6℃,最低气温为2-℃,那么这天的最高气温比最低气温高( ) A .-10℃ B .-8℃C .8℃D .10℃【答案】C【分析】依据题意列出算式,然后根据减法法则计算即可. 【详解】解:()62628--=+=℃. 故选C .【点睛】本题主要考查了有理数的减法在实际生活中的应用,掌握有理数的减法法则是解题的关键. 6.(2021·北京市昌平区第二中学七年级月考)如果230x y -++=, 那么x y -的值为( ) A .1 B .-1C .5D .-5【答案】C【分析】根据非负数的性质求出x y 、的值,再计算即可. 【详解】解:∵230x y -++=, ∴203=0x y -=+,,即2x =,=3y -;2(3)5x y -=--=, 故选:C .【点睛】本题考查了绝对值的非负性,解题关键是利用非负数的性质求出x y 、的值. 二、填空题7.(2021·河北石家庄·七年级期中)黄河铁路大桥是一座钢架结构,0℃时,此桥长400米,气温每升高或降低1℃,钢桥伸长或缩短0.011米,某天,技术人员对桥进行实际测量,发现桥短了0.088米,据此可知当天的气温是_____℃. 【答案】﹣8【分析】先计算钢桥缩短了多少个0.011米,再根据其对应关系进行计算即可. 【详解】解:∵气温每升高或降低1℃,钢桥伸长或缩短0.011米, 又∵桥短了0.088米,0.0880.0118÷=∴气温降低了8℃,∴当天的气温是0-8=-8(℃) 故答案为:-8.【点睛】本题考查了正负数的应用,解决本题的关键是读懂题意,理解桥长与温度之间的变化关系,抓住其中的关键词,其中气温升高对应钢桥伸长,气温降低对应钢桥缩短,数量上是1℃对应0.011,本题较基础,考查了学生审题以及对有理数的应用的基本功.8.(2021·全国)绝对值不相等的异号两数相加,取____________数的符号,并用___________减去____________.【答案】绝对值较大较大的绝对值较小的绝对值9.(2021·黑龙江七年级期末)我县12月份某天早晨,气温为-23℃,中午上升了5℃,晚上又下降了6℃,则晚上气温为________℃【答案】-24【分析】根据题意列式计算即可求解.【详解】依题意可得-23+5-6=-24故答案为:-24.【点睛】此题主要考查有理数的加减运算,解题的关键是根据题意列式求解.10.(2021·辽宁)计算:15322⎛⎫⎛⎫--+-=⎪ ⎪⎝⎭⎝⎭____________.【答案】1【分析】根据有理数的加减运算法则计算即可.【详解】解:15 322⎛⎫⎛⎫--+-⎪ ⎪⎝⎭⎝⎭=15 3+22-=3﹣2=1.故答案为:1.【点睛】本题考查有理数的加减混合运算,熟练掌握有理数的加减混合运算法则和运算顺序是解答的关键.11.(2020·河南洛阳·)绝对值大于1.5并且小于3的整数之和是_________.【答案】0【分析】绝对值大于1.5并且小于3的整数的绝对值等于2,据此求出满足题意的整数有哪些,再相加即可.【详解】解:∵绝对值大于1.5并且小于3的整数的绝对值等于2,∴绝对值大于1.5并且小于3的整数是-2,2.∴-2+2=0,故答案为:0.【点睛】此题主要考查了有理数大小比较的方法和有理数的加法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.12.(2021·浙江)计算:12345678910112013201420152016--++--++--+⋅⋅⋅+--+=______.【答案】0【分析】原式四项四项结合,计算即可得到结果.【详解】解:1-2-3+4+5-6-7+8+…+2013-2014-2015+2016=(1-2-3+4)+(5-6-7+8)+…+(2009-2010-2011+2012)+(2013-2014-2015+2016)=0.故答案为:0.【点睛】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.13.(2021·江苏南京一中七年级月考)阅读材料:我们在求1+2+3+…+99+100的值时可以用如下方法:我们设S=1+2+3+…+99+100①,那么S=100+99+…+3+2+1②.然后,我们由①+②,得2S=(100+1)+(99+2)+…+(98+3)+(99+2)+(100+1)=100×101.得S=100×101÷2=5050.依据上述方法,求5+10+15+…+195+200的值为_______.【答案】4100【分析】根据阅读材料的求和方法,即可求解.【详解】解:设S=5+10+15+…+195+200,那么S=200+195+190+…+10+5,则2S=(5+200)+(10+195)+(15+190)+…+(195+10)+(200+5)=205×40,∴S=205×40÷2=4100,故答案为:4100.【点睛】本题主要考查有理数求和,理解倒序相加求和法,是解题的关键.14.(2021·辽宁大连·七年级期末)我市一月某天早上气温为-6℃,中午上升了9℃,这天中午的温度是_______℃.【答案】3【分析】根据题意,将早上的气温加上上升了的温度即可求得答案.-+=.【详解】依题意,693故答案为3【点睛】本题考查了有理数的加减运算的实际应用,掌握有理数的加减是解题的关键.15.(2021·全国七年级专题练习)计算:1-(+2)+3-(+4)+5-(+6)+…-(+2014)=_________.【答案】﹣1007.【分析】按照数字的顺序,两个分为一组,共1007组,计算后进一步合并即可.【详解】解:原式=[1﹣(+2)]+[3﹣(+4)]+[5﹣(+6)]+…+[2013﹣(+2014)]=﹣1﹣1﹣1﹣…﹣1=﹣1007.故答案为:﹣1007.【点睛】此题考查有理数的加减混合运算,掌握运算方法,适当分组是解决问题的关键.16.(2021·北京市昌平区第二中学七年级月考)已知0abc ≠,则b ac a b c ++=__________. 【答案】±3或±1【分析】根据题意可分情况进行求解,即当a 、b 、c 同为正和同为负时,当a 、b 、c 有两正一负和两负一正时,然后进行求解即可.【详解】解:∵0abc ≠,∴当a 、b 、c 同为正时,则有1113b a c a b c++=++=, 当a 、b 、c 同为负时,则有()()1113b a c a b c++=-+-+-=-, 当a 、b 、c 有两正一负,则有()1111b a c a b c ++=+-+=; 当a 、b 、c 有两负一正,则有()()1111b a c a b c++=-+-+=-; 故答案为:3±或±1.【点睛】本题主要考查绝对值的意义、正负数及有理数的加法,熟练掌握绝对值的意义、正负数及有理数的加法是解题的关键.三、解答题17.(2021·全国七年级专题练习)计算下列各式:(1)(﹣1.25)+(+5.25) (2)(﹣7)+(﹣2)【答案】(1)4;(2)-9【分析】(1)根据有理数的加法法则计算,即可解答;(2)根据有理数的加法法则计算,即可解答;【详解】解:(1)(﹣1.25)+(+5.25)=5.25﹣1.25=4;(2)(﹣7)+(﹣2)=﹣(7+2)=﹣9【点睛】本题主要考查了有理数的加法运算,解题的关键在于能够熟练掌握相关知识进行求解.18.(2021·全国七年级专题练习)计算:55754343⎡⎤⎛⎫+--- ⎪⎢⎥⎝⎭⎣⎦. 【答案】12- 【分析】方法1 :直接根据四则运算法则,先通分算小括号里面的,然后算中括号,最后去括号求解即可; 方法2 :运用去括号法则,先去掉括号,再根据加法的交换律,将同分母的数相加减,得出结果.【详解】方法1 :原式552120431212⎡⎤⎛⎫=+--- ⎪⎢⎥⎝⎭⎣⎦ 5514312⎡⎤=+--⎢⎥⎣⎦ 520141212⎡⎤=+--⎢⎥⎣⎦ 521412⎛⎫=+- ⎪⎝⎭ 521412=- 612=- 12=-. 方法2 :55754343⎡⎤⎛⎫+--- ⎪⎢⎥⎝⎭⎣⎦ 55754343⎡⎤=+--+⎢⎥⎣⎦ 55754343=--+ 57554433=--+ 24=- 12=-. 【点睛】算式有多重括号,如果按照方法一计算需要进行多次通分,完成括号内的运算从而得出结果;方法二通过观察算式的结构,括号内和括号外的数有分母相同的情况,如果去掉括号,就可以通过加法交换律让同分母的数相加减,从而减少通分,达到简算的目的.因此,在进行计算前要先观察算式的结构,不要盲目地去进行运算,但无论哪种方法都需要同学们正确运用有理数加减法运算法则.19.(2021·全国七年级专题练习)用较为简便的方法计算下列各题:(1)1112 210833355⎛⎫⎛⎫⎛⎫⎛⎫+-++--+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭;(2)-8721+531921-1279+4221;(3)32115542⎛⎫⎛⎫⎛⎫----+-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【答案】(1)3195-;(2)-9942;(3)1120【分析】(1)根据有理数的加法和减法可以解答本题;(2)根据有理数的加法和减法可以解答本题;(3)根据有理数的加法、减法和绝对值的性质可以解答本题;【详解】解:(1)1112 210833355⎛⎫⎛⎫⎛⎫⎛⎫+-++--+⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=1112210833355⎛⎫⎛⎫+--+⎪ ⎪⎝⎭⎝⎭=3 8115 --=3195-;(2)-8721+531921-1 279+4221=(-8721-1279)+192 (534)2121+=-10000+58 =-9942;(3)32115542⎛⎫⎛⎫⎛⎫----+-+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=1354 --+-=13 54 -+=11 20【点睛】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.20.(2021·河南七年级期中)有10筐白菜,称重后记录如下(单位:kg): 26.5,22,27,24.5,26,23,23,22.5,24,23.5.(1)如果以每筐25kg为标准,超过的千克数记作正数,不足的千克数记作负数,这10筐白菜总计超过多少千克或不足多少千克?(2)10筐白菜一共多少千克?【答案】(1)不足8千克;(2)242千克【分析】(1)根据题意,以25kg为标准,超过的千克数记作正数,不足的千克数记作负数,将10个数据按要求表示出来,并求和即可;(2)根据(1)的结论即可求得.+-++-++-+-+-+-+-【详解】(1)1.5(3)2(0.5)1(2)(2)( 2.5)(1)( 1.5)=+-=-,4.5(12.5)8答:总计不足8千克.(2)由(1)可知总计不足8千克⨯-=(千克),则10筐白菜一共:10258242答:10筐白菜一共242千克.【点睛】本题考查了正负数的实际意义,有理数加减的应用,正确的计算是解题的关键.21.(2021·陕西七年级期中)股民王先生上周星期五买进某公司股票1000股,每股18元,本周该股票的涨跌情况如表(正数表示价格比前一天上涨,负数表示价格比前一天下跌,单位:元,注:股票周末休市):(1)星期三收盘时,该股票每股多少元?(2)该股票本周内每股的最高价和最低价分别是多少元?(3)到周五收盘,王先生那1000股在这一周的盈亏情况如何?【答案】(1)19.6元;(2)股票星期二价格最高为23.7元,星期三价格最低是19.6元;(3)盈利2100元【分析】(1)根据表格列出算式,即可得到结果;(2)根据表格求出每天的股价,即可得到最高与最低股价;(3)根据题意列出算式,计算即可得到结果.【详解】解:(1)星期三收盘时,该股票每股价格为:+++++-=元.18( 2.8)( 2.9)( 4.1)19.6++=元,(2)星期一该股票的价格是18( 2.8)20.8++=元,星期二该股票的价格是20.8( 2.9)23.7+-=元,星期三该股票的价格是23.7( 4.1)19.6++=元,星期四该股票的价格是19.6(2)21.6+-=元,星期五该股票的价格是21.6( 1.5)20.1所以该股票星期二价格最高为23.7元,星期三价格最低是19.6元.(3)这一周每股利润20.118 2.1-=元,所以王先生那1000股在这一周的盈利1000 2.12100⨯=元.【点睛】此题考查了有理数的混合运算的应用,弄清题意是解本题的关键.22.(2021·福建省光泽第一中学七年级开学考试)小明看一本故事书,第一天看了这本书的16,第二天看了42页,这时已看页数和未看页数的比是2:3,这本书一共有多少页?【答案】180页【分析】把这本书的页数看作单位“1”,第一天看了全书的16,第二天看了42页,这时已看了全书的223+,根据分数除法的意义,用42页除以21()236-+,就是这本书的页数.【详解】解:21 42()236÷-+2142()56=÷-74230=÷180=(页)答:这本书一共有180页.【点睛】本题考查了比的应用,解题的关键是把比转化成分数,然后根据分数除法的意义解答.23.(2021·阿荣旗孤山学校七年级期中)2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂每名工人计划每天生产300个医用口罩,一周生产2100个口罩.由于种种原因,实际每天生产量与计划量相比有出入.如表是工人小王某周的生产情况(超产记为正,减产记为负):(1)根据记录的数据可知,小王星期五生产口罩个.(2)根据表格记录的数据,求出小王本周实际生产口罩数量.【答案】(1)291;(2)2111个【分析】(1)根据题意和表格中的数据,可以得到小王星期五生产口罩的数量;(2)根据题意和表格中的数据,可以得到该厂本周生产口罩的数量.【详解】解:(1)小王星期五生产口罩数量为:300﹣9=291(个),故答案为:291;(2)+5﹣2﹣4+13﹣9+16﹣8=11(个),则本周实际生产的数量为:2100+11=2111(个)答:小王本周实际生产口罩数量为2111个;【点睛】本题考查了正数和负数,解答本题的关键是明确正数和负数在题目中的实际意义.。
1.3有理数的加减法(2)一、素质教育目标(一)知识教学点1.理解掌握有理数的减法法则.2.会进行有理数的减法运算.(二)能力训练点1.通过把减法运算转化为加法运算,向学生渗透转化思想.2.通过有理数减法法则的推导,发展学生的逻辑思维能力.3.通过有理数的减法运算,培养学生的运算能力.(三)德育渗透点:通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想.(四)美育渗透点:在小学算术里减法不能永远实施,学习了本节课知道减法在有理数范围内可以永远实施,体现了知识体系的完整美.二、学法引导1.教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.2.学生学法:探索新知→归纳结论→练习巩固.三、重点、难点1.重点:有理数减法法则和运算.2.难点:有理数减法法则的推导.四、课时安排1课时五、师生互动活动设计教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决.七、教学步骤(一)创设情境,引入新课1.相反数概念:若a与b是互为相反数,那么a+b= ,ab-=.2.计算(口答)(1);(2)-3+(-7);(3)-10+(+3);(4)+10+(-3).3.(1)朝阳某一天白天的最高气温是10℃,夜晚的最低气温是5℃.这一天温差等于。
(2)朝阳某一天白天的最高气温是10℃,夜晚的最低气温是-5℃.这一天温差等于。
教师引导学生解决问题:(二)探索新知,讲授新课1.计算(1)10-3= ;10+(-3)= ;(2)0.87-0.47= ;0.87+(-0.47)= 。
63632222(3);()(4)3;3()77773333-=+-=-=+-=观察上面算式,同学们你能得出什么规律呢?提示:第(1)组中的3与-3,(2)中的0.47,-0.47它们是数;(2)从运算符号和结果方面考虑同学们观察减法是否可以转化为加法计算呢?是如何转化的呢(学生归纳总结):有理数减法法则:。
有理数的加减法2
2.3 《绝对值与相反数》(2)学案
学习目标:1、理解相反数的意义;
2、使学生能求出已知数的相反数;
3、使学生能根据相反数的意思进行化简。
教学过程:
一、情境创设:
1、.在数轴上画出右边各数的点,并求它们的绝对值。
3, -3, 0, -1, 1, 2, -2
2、观察各对有理数,它们的位置关系以及到原点距离,你能发现什么?
3与-3; -1与1; 2与 -2;
3、导入:
向上面这3组,只有符号不同,但绝对值相同的两个数互为相反数。
(1)其中一个数叫做另一个的相反数;如:3是-3的相反数;-1的相反数是1;
(2)我们规定:0的相反数是0
二、例题教学:
4的相反数。
1、求3、—4.5、
7
解:3的相反数是:;—4.5的相反数
4的相反数是:;
是:;
7
2、化简:-( +2 ) = ,-( +2.7 ) = ,
-( -3 ) = ,-( -
3) = ,
4
+(+5)= ,+(—1.8)= ,
“+”不影响化简的结果,可以省略,“-”的个数决定最后的结果,
若有偶数个其结果为正,若有奇数个其结果为负。
3、在数轴上画出表示下列各数及其相反数的
点。
并把它们及相反数一起从小到大排列。
—1,+2.5,—3,0
三、练习:书P23练一练第1、2、3、4题。
四、小结:
1、正数的相反数是;负数的相反数是;的相反数是它本身。
2、根据相反数的意义化简多重符号的有理数。
五、课堂检测:
1、互为相反数的两个数在数轴上表示的点到_________的距离相等.
相反数是_____;-2是____的相反数;
2、-11
2
互为相反数.
______与1
10
3、化简下列各数前面的符号.
(1)-(+2)=_______;(2)+(-3)=________;
(3)-(-1
3)=________;(4)+(+1
2
)
=________.
4、判断题.
① -5是相反数.()②-1
2
与+2互为相反
数.()③3
4与-3
4
互为相反数.()④ -1
4
的相反数是4.()⑤ -(+ 8)和 -8互为相反数。
()
5、下列说法正确的是()
A.正数与负数互为相反数
B.符号不同的两个数互为相反数
C.数轴上原点两旁的两个点所表示的数是互为相反数
D.任何一个有理数都有它的相反数
6、化简:|—(+3)| = ;—| + 3 | = ;
|—(—4)|= ;—
|—4| = ;
|+(—5)|= ; +|—5|= ;
7、—(+1.2)的相反数是;+(—2.1)是的相反数。
8、若数轴上的点A和点B分别表示相反的两个数,且A、B两点的距离等于8 ,那么这两点分别记着和。
9、在数轴上表示下列各数及它们的相反数,并把它们和相反数一起用小于号连接。
+21
,-3,0,-1.5.
2。