数学建模算法大全排队论
- 格式:doc
- 大小:1.11 MB
- 文档页数:19
第六章排队论模型排队论起源于1909年丹麦电话工程师A. K.爱尔朗的工作,他对电话通话拥挤问题进行了研究。
1917年,爱尔朗发表了他的著名的文章—“自动电话交换中的概率理论的几个问题的解决”。
排队论已广泛应用于解决军事、运输、维修、生产、服务、库存、医疗卫生、教育、水利灌溉之类的排队系统的问题,显示了强大的生命力。
排队是在日常生活中经常遇到的现象,如顾客到商店购买物品、病人到医院看病常常要排队。
此时要求服务的数量超过服务机构(服务台、服务员等)的容量。
也就是说,到达的顾客不能立即得到服务,因而出现了排队现象。
这种现象不仅在个人日常生活中出现,电话局的占线问题,车站、码头等交通枢纽的车船堵塞和疏导,故障机器的停机待修,水库的存贮调节等都是有形或无形的排队现象。
由于顾客到达和服务时间的随机性。
可以说排队现象几乎是不可避免的。
排队论(Queuing Theory)也称随机服务系统理论,就是为解决上述问题而发展的一门学科。
它研究的内容有下列三部分:(i)性态问题,即研究各种排队系统的概率规律性,主要是研究队长分布、等待时间分布和忙期分布等,包括了瞬态和稳态两种情形。
(ii)最优化问题,又分静态最优和动态最优,前者指最优设计。
后者指现有排队系统的最优运营。
(iii)排队系统的统计推断,即判断一个给定的排队系统符合于那种模型,以便根据排队理论进行分析研究。
这里将介绍排队论的一些基本知识,分析几个常见的排队模型。
§1 基本概念1.1 排队过程的一般表示下图是排队论的一般模型。
一定的排队规则等待服务,直到按一定的服务规则接受完服务后离开排队系统。
凡要求服务的对象统称为顾客,为顾客服务的人或物称为服务员,由顾客和服务员组成服务系统。
对于一个服务系统来说,如果服务机构过小,以致不能满足要求服务的众多顾客的需要,那么就会产生拥挤现象而使服务质量降低。
因此,顾客总希望服务机构越大越好,但是,如果服务机构过大,人力和物力方面的开支也就相应增加,从而会造成浪费,因此研究排队模型的目的就是要在顾客需要和服务机构的规模之间进行权衡决策,使其达到合理的平衡。
第六章排队论模型排队论起源于1909年丹麦电话工程师A. K.爱尔朗的工作,他对电话通话拥挤问题进行了研究。
1917年,爱尔朗发表了他的著名的文章—“自动电话交换中的概率理论的几个问题的解决”。
排队论已广泛应用于解决军事、运输、维修、生产、服务、库存、医疗卫生、教育、水利灌溉之类的排队系统的问题,显示了强大的生命力。
排队是在日常生活中经常遇到的现象,如顾客到商店购买物品、病人到医院看病常常要排队。
此时要求服务的数量超过服务机构(服务台、服务员等)的容量。
也就是说,到达的顾客不能立即得到服务,因而出现了排队现象。
这种现象不仅在个人日常生活中出现,电话局的占线问题,车站、码头等交通枢纽的车船堵塞和疏导,故障机器的停机待修,水库的存贮调节等都是有形或无形的排队现象。
由于顾客到达和服务时间的随机性。
可以说排队现象几乎是不可避免的。
排队论(Queuing Theory)也称随机服务系统理论,就是为解决上述问题而发展的一门学科。
它研究的内容有下列三部分:(i)性态问题,即研究各种排队系统的概率规律性,主要是研究队长分布、等待时间分布和忙期分布等,包括了瞬态和稳态两种情形。
(ii)最优化问题,又分静态最优和动态最优,前者指最优设计。
后者指现有排队系统的最优运营。
(iii)排队系统的统计推断,即判断一个给定的排队系统符合于那种模型,以便根据排队理论进行分析研究。
这里将介绍排队论的一些基本知识,分析几个常见的排队模型。
§1 基本概念1.1 排队过程的一般表示下图是排队论的一般模型。
凡要求服务的对象统称为顾客,为顾客服务的人或物称为服务员,由顾客和服务员组成服务系统。
对于一个服务系统来说,如果服务机构过小,以致不能满足要求服务的众多顾客的需要,那么就会产生拥挤现象而使服务质量降低。
因此,顾客总希望服务机构越大越好,但是,如果服务机构过大,人力和物力方面的开支也就相应增加,从而会造成浪费,因此研究排队模型的目的就是要在顾客需要和服务机构的规模之间进行权衡决策,使其达到合理的平衡。
1.2 排队系统的组成和特征一般的排队过程都由输入过程、排队规则、服务过程三部分组成,现分述如下:1.2.1 输入过程输入过程是指顾客到来时间的规律性,可能有下列不同情况:(i)顾客的组成可能是有限的,也可能是无限的。
(ii)顾客到达的方式可能是一个—个的,也可能是成批的。
(iii)顾客到达可以是相互独立的,即以前的到达情况对以后的到达没有影响;否则是相关的。
(iv)输入过程可以是平稳的,即相继到达的间隔时间分布及其数学期望、方差等数字特征都与时间无关,否则是非平稳的。
1.2.2 排队规则排队规则指到达排队系统的顾客按怎样的规则排队等待,可分为损失制,等待制和混合制三种。
(i )损失制(消失制)。
当顾客到达时,所有的服务台均被占用,顾客随即离去。
(ii )等待制。
当顾客到达时,所有的服务台均被占用,顾客就排队等待,直到接受完服务才离去。
例如出故障的机器排队等待维修就是这种情况。
(iii )混合制。
介于损失制和等待制之间的是混合制,即既有等待又有损失。
有队列长度有限和排队等待时间有限两种情况,在限度以内就排队等待,超过一定限度就离去。
排队方式还分为单列、多列和循环队列。
1.2.3服务过程(i )服务机构。
主要有以下几种类型:单服务台;多服务台并联(每个服务台同时为不同顾客服务);多服务台串联(多服务台依次为同一顾客服务);混合型。
(ii )服务规则。
按为顾客服务的次序采用以下几种规则:①先到先服务,这是通常的情形。
②后到先服务,如情报系统中,最后到的情报信息往往最有价值,因而常被优先处理。
③随机服务,服务台从等待的顾客中随机地取其一进行服务,而不管到达的先后。
④优先服务,如医疗系统对病情严重的病人给予优先治疗。
1.3 排队模型的符号表示排队模型用六个符号表示,在符号之间用斜线隔开,即C B A Z Y X /////。
第一个符号X 表示顾客到达流或顾客到达间隔时间的分布;第二个符号Y 表示服务时间的分布;第三个符号Z 表示服务台数目;第四个符号A 是系统容量限制;第五个符号B 是顾客源数目;第六个符号C 是服务规则,如先到先服务FCFS ,后到先服务LCFS 等。
并约定,如略去后三项,即指FCFS /////∞∞Z Y X 的情形。
我们只讨论先到先服务FCFS 的情形,所以略去第六项。
表示顾客到达间隔时间和服务时间的分布的约定符号为:M —指数分布(M 是Markov 的字头,因为指数分布具有无记忆性,即Markov 性);D —确定型(Deterministic ); k E —k 阶爱尔朗(Erlang)分布;G —一般(general )服务时间的分布;GI —一般相互独立(General Independent )的时间间隔的分布。
例如,1//M M 表示相继到达间隔时间为指数分布、服务时间为指数分布、单服务台、等待制系统。
c M D //表示确定的到达时间、服务时间为指数分布、c 个平行服务台(但顾客是一队)的模型。
1.4 排队系统的运行指标为了研究排队系统运行的效率,估计其服务质量,确定系统的最优参数,评价系统的结构是否合理并研究其改进的措施,必须确定用以判断系统运行优劣的基本数量指标,这些数量指标通常是:(i)平均队长:指系统内顾客数(包括正被服务的顾客与排队等待服务的顾客)的数学期望,记作s L 。
(ii)平均排队长:指系统内等待服务的顾客数的数学期望,记作q L 。
(iii)平均逗留时间:顾客在系统内逗留时间(包括排队等待的时间和接受服务的时间)的数学期望,记作s W 。
(iv )平均等待时间:指一个顾客在排队系统中排队等待时间的数学期望,记作q W 。
(v )平均忙期:指服务机构连续繁忙时间(顾客到达空闲服务机构起,到服务机构再次空闲止的时间)长度的数学期望,记为b T 。
还有由于顾客被拒绝而使企业受到损失的损失率以及以后经常遇到的服务强度等,这些都是很重要的指标。
计算这些指标的基础是表达系统状态的概率。
所谓系统的状态即指系统中顾客数, 如果系统中有n 个顾客就说系统的状态是n ,它的可能值是(i )队长没有限制时,Λ,2,1,0=n ,(ii )队长有限制,最大数为N 时,N n ,,1,0Λ=,(iii )损失制,服务台个数是c 时,c n ,,1,0Λ=。
这些状态的概率一般是随时刻t 而变化,所以在时刻t 、系统状态为n 的概率用)(t P n 表示。
稳态时系统状态为n 的概率用n P 表示。
§2 输入过程与服务时间的分布排队系统中的事件流包括顾客到达流和服务时间流。
由于顾客到达的间隔时间和服务时间不可能是负值,因此,它的分布是非负随机变量的分布。
最常用的分布有泊松分布、确定型分布,指数分布和爱尔朗分布。
2.1 泊松流与指数分布设)(t N 表示在时间区间),0[t 内到达的顾客数(0>t ),令),(21t t P n 表示在时间区间))(,[1221t t t t >内有)0(≥n 个顾客到达的概率,即)0,(})()({),(121221≥>=-=n t t n t N t N P t t P n当),(21t t P n 合于下列三个条件时,我们说顾客的到达形成泊松流。
这三个条件是:1o在不相重叠的时间区间内顾客到达数是相互独立的,我们称这性质为无后效性。
2o 对充分小的t ∆,在时间区间),[t t t ∆+内有一个顾客到达的概率与t 无关,而约与区间长t ∆成正比,即 )(),(1t o t t t t P ∆+∆=∆+λ (1)其中)(t o ∆,当0→∆t 时,是关于t ∆的高阶无穷小。
0>λ是常数,它表示单位时间有一个顾客到达的概率,称为概率强度。
3o 对于充分小的t ∆,在时间区间),[t t t ∆+内有两个或两个以上顾客到达的概率极小,以致可以忽略,即∑∞=∆=∆+2)(),(n nt o t t t P (2) 在上述条件下,我们研究顾客到达数n 的概率分布。
由条件2o ,我们总可以取时间由0算起,并简记)(),0(t P t P n n =。
由条件1o 和2o,有 )()()(000t P t P t t P ∆=∆+∑=-=∆=∆+nk k k n n n t P t P t t P 0,2,1),()()(Λ由条件2o 和3o得)(1)(0t o t t P ∆+∆-=∆λ因而有tt o t P t t P t t P ∆∆+-=∆-∆+)()()()(000λ, tt o t P t P t t P t t P n n n n ∆∆++-=∆-∆+-)()()()()(1λλ. 在以上两式中,取t ∆趋于零的极限,当假设所涉及的函数可导时,得到以下微分方程组:)()(00t P dtt dP λ-=, Λ,2,1),()()(1=+-=-n t P t P dtt dP n n n λλ. 取初值1)0(0=P ,),2,1(0)0(Λ==n P n ,容易解出t e t P λ-=)(0;再令t n n e t U t P λ-=)()(,可以得到)(0t U 及其它)(t U n 所满足的微分方程组,即 ,,2,1),()(1Λ==-n t U dtt dU n n λ 1)(0=t U ,0)(=t U n .由此容易解得Λ,2,1,!)()(==-n e n t t P t nn λλ. 正如在概率论中所学过的,我们说随机变量)}()()({s N t s N t N -+=服从泊松分布。
它的数学期望和方差分别是t t N E λ=)]([;t t N λ=)](Var[。
当输入过程是泊松流时,那么顾客相继到达的时间间隔T 必服从指数分布。
这是由于),0{[}{t P t T P =>内呼叫次数为零t e t P λ-==)(}0那么,以)(t F 表示T 的分布函数,则有⎩⎨⎧<≥-==≤-0,00,1)(}{t t e t F t T P t λ 而分布密度函数为0,)(>=-t e t f t λλ.对于泊松流,λ表示单位时间平均到达的顾客数,所以λ1就表示相继顾客到达平均间隔时间,而这正和ET 的意义相符。
对一顾客的服务时间也就是在忙期相继离开系统的两顾客的间隔时间,有时也服从指数分布。
这时设它的分布函数和密度函数分别是t e t G μ--=1)(,t e t g μμ-=)(我们得到μ=>∆∆+≤<=∆>∆+≤→∆→∆}{}{lim }|{lim00t T tP t t T t P t t T t t T P t t 这表明,在任何小的时间间隔),[t t t ∆+内一个顾客被服务完了(离去)的概率是)(t o t ∆+∆μ。