2011年浙江省高考数学试卷及答案(理科)
- 格式:doc
- 大小:1.52 MB
- 文档页数:10
2011年浙江高考理科和文科数学试卷及答案几msja.Eii 芍绘為WL 曲村快豐畫]fi 即■畫师尿.间时尊if ■析几啊帕■* 里总为楚和杠住nietitin «#迪廿=(I 〕解血觥直可輛曲鮭的HM 方管力叮■一以料心矶。
再JHMl 的耐最: tmlhift 我如疔)#5两%賊巧曲字jhJfir 得升网丹ai 円#%财嘴r »»陆站切握方般为严尽=川3-悔). 阳尸如-咗齢血 0| tz*-*4 -i,:| 対一------h/l**1闻"/-】】#*朕〕嘉J 触(打AjJMtlL 址P 札阳帥課华为幽.fe/k”fcj.国忖禹殳上連龙程射的用詞以*• -1% rl弟UtAjr •『牌 J As+ttb"*,' wO T由于旳是lit 方程常辐*魅引“厂斗円W 虽F ・晤且»j 3-<i■ t ,.如g"r 》c j _疔1°*%u 片盟 =哥”:严片#厂均土_-;了 I 亠由Hr : .4叭辑匕■ *jw ■(如"仁"r+%I置Kw 聂兀叮蚪虽江C”听说广2注("“□・:)■罠解褂a ^c^*=3e.嶷脸醴"掏皙垃 魚析収”口咄"航ID-瓠通豈 除內 时MfT 社韋捫窝雲s 悄书心疋怯用 血鼻 ②豈1<r£*时点蓦童,耐補UU ■上O M JM U CSO^1.* ft ^c- ■^8=S 3C +_•/Li (3e )vliit3e )由"[闻f“)・kFM 如RL 弋),Zh »+l-Da!>0.ItfKA(3t )= 2lfi(S<)+l-^jSlliil3c)+1 -_电严J-3 r b 5c-■£ 二 Z1 TtV乂腻;0临偏十]内单純甲tt.lfiu 蒯ft 、®依口"附衍唯一零点品比宰点爲S 掲 卜[乐V 箕订中卢4“血.当“⑴丹)时J 〔】M )理応(斗Q 时J JHU ;蛊昭厂“)w. SJ “皿⑷吐:陶甲罔违憎,在也曲內加囤选陽曲氐g 加单變遽绘(宁)"EM 呼〔泊)宰卷主書專畫站難极僵鬧2、邯数逗冀楚專茁也用,石獰賣尊甚确卿识扇耳"菱抠•谗证低力* 分览晡苗曙爵柝剛4相詹德徇專轉醴力*掲井也非*41/":A ]»2(J (-U ;L I 4*■ 1^^-=(A ^«I )(iv.八-:、、{ I)斑人£羽凰出、正冏Kfl号营的乳;'⑼( t!3谈分弭扫巳知IK誓匡班刊九£凶石项牛気肌"叮「且!J J融卵址龜剋#1 U,讯(i) JR®F1H^的谨项背式tfill时丄疋才局比较丄* L_i■丄* “・4丄电丄的大爪U z OJ 零0^1 叫:N>)(丄洁滴骨14 *“辺込匸三沿1! f-ASC^.AH^C. n弱对?俯中恵』戸上苹箭和匚逐足。
【选择题】【1】.设函数2,0,(),0.x x f x x x -≤⎧=⎨>⎩若()4f α=,则实数α=( ).(A )-4或-2 (B )-4或2 (C )-2或4 (D )-2或2【2】.把复数z 的共轭复数记作z ,i 为虚数单位,若1i,(1)z z z =++⋅则=( ).(A )3-i(B )3+i(C )1+3i(D )3【3】.若某几何体的三视图如下图所示,则这个几何体的直观图可以是( ).【4】.下列命题中错误..的是( ).(A )如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β(B )如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β (C )如果平面α⊥平面γ,平面β⊥平面γ,=l αβ⋂,那么l ⊥平面γ(D )如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β【5】.设实数,x y 满足不等式组250270,0x y x y x y +->⎧⎪+->⎨⎪⎩≥,≥0,若,x y 为整数,则34x y +的最小值为( ).(A )14(B )16(C )17(D )19【6】.若02πα<<,02πβ<<-,1cos()43πα+=,cos()423πβ-=则c o s ()2βα+=( ).(A)(B)(C(D) 【7】.若,a b 为实数,则“01ab <<”是“1a b <或1b a >”的( ).(A )充分而不必要条件 (B )必要而不充分条件(C )充分必要条件(D )既不充分也不必要条件【8】.已知椭圆22122:1(0)x y C a b a b +=>>与双曲线222:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则( ).(A )2132a =(B )213a =(C )212b =(D )22b =【9】.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是( ).(A )15(B )25(C )35 (D )45【10】.设,,a b c 为实数,22()()(),()(1)(1)f x x a x bx c g x ax cx bx =+++=+++.记集合{|()0,R},{|()0,R}.S x f x x T x g x x ==∈==∈若S ,T 分别为集合,S T 的元素个数,则下列结论不可能...的是( ). (A )S =1且T =0 (B )1=1S T =且(C )S =2且T =2(D )S =2且T =3【填空题】 【11】.若函数2()f x x x a =-+为偶函数,则实数a = .【12】.若某程序框图如下图所示,则该程序运行后输出的k 值为 .【13】.若二项式6((0)x a >的展开式中3x 的系数为A ,常数项为B ,若4B A =,则a 的值是 .【14】.若平面向量,αβ满足1,1=≤αβ,且以向量,αβ为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是 .【15】.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若1(0)12P X ==,则随机变量X 的数学期望()E X = . 【16】.设,x y 为实数,若2241xy xy ++=,则2x y +的最大值是 .【17】.设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B =,则点A 的坐标是 . 【解答题】【18】.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知()sin sin sin R ,A C pB p +=∈且214ac b =. (1)当5,14p b ==时,求,a c 的值;(2) 若角B 为锐角,求p 的取值范围. 【19】.已知公差不为0的等差数列{}n a 的首项1a 为a (a ∈R ),设数列的前n 项和为n S ,且11a ,21a ,41a 成等比数列. (1)求数列{}n a 的通项公式及n S ;(2) 记n A =11S +21S +31S +…+1n S , n B =11a + 21a +221a +… +121-n a ,当2n ≥时,试比较n A 与n B 的大小.【20】.如下图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2. (1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.【21】.已知抛物线1:C 2x =y ,圆2:C 22(4)1x y +-=的圆心为点M .(1)求点M 到抛物线1C 的准线的距离;(2)已知点P 是抛物线1C 上一点(异于原点),过点P 作圆2C 的两条切线,交抛物线1C 于A ,B 两点,如下图,若过,M P 两点的直线l 垂直于AB ,求直线l 的方程.【22】.设函数()f x =2()ln x a x -,a ∈R .(1)若x =e 为()y f x =的极值点,求实数a ;(2)求实数a 的取值范围,使得对任意的x ∈(0,3e ],恒有()f x ≤42e 成立. 注:e 为自然对数的底数.【23】.(自选模块测试)设正数,,x y z 满足221x y z ++=.(1)求3xy yz zx++的最大值;(2)证明:311125 11126 xy yz zx++≥+++.【24】.(自选模块测试)已知直线l:1cos,sinx ty tαα=-+⎧⎨=⎩(t为参数,α为l的倾斜角,且0απ<<)与曲线C:,sinxyθθ⎧=⎪⎨=⎪⎩(θ为参数)相交于,A B两点,点F的坐标为(1,0). (1)求ABF∆的周长;(2)若点E(-1,0)恰为线段AB的三等分点,求ABF∆的面积.。
2011年浙江省高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2011•浙江)设函数2,0(),0x x f x x x -⎧=⎨>⎩…,若f (a )4=,则实数(a = )A .4-或2-B .4-或2C .2-或4D .2-或22.(5分)(2011•浙江)把复数z 的共轭复数记作z ,i 为虚数单位.若1z i =+,则(1)(z z +=g) A .3i -B .3i +C .13i +D .33.(5分)(2011•浙江)若某几何体的三视图如图所示,则这个几何体的直观图可以是()A .B .C .D .4.(5分)(2011•浙江)下列命题中错误的是( )A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面α⊥平面γ,平面β⊥平面γ,l αβ=I ,那么l ⊥平面γD .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β5.(5分)(2011•浙江)设实数x 、y 满足不等式组2502700,0x y x y x y +->⎧⎪+->⎨⎪⎩厖,若x 、y 为整数,则34x y+的最小值是( ) A .14B .16C .17D .196.(5分)(2011•浙江)若02πα<<,02πβ-<<,1cos()43πα+=,3cos()42πβ-,则cos()(2βα+= )A 3B .3C 53D .67.(5分)(2011•浙江)若a 、b 为实数,则“01ab <<”是“1a b <”或“1b a>”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.(5分)(2011•浙江)已知椭圆22122:1(0)x y C a b a b +=>>与双曲线222:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于A ,B 两点.若1C 恰好将线段AB 三等分,则( ) A .2132a =B .23a =C .212b =D .22b =9.(5分)(2011•浙江)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机地摆放到书架的同一层上,则同一科目的书都不相邻的概率是( ) A .15B .25 C .35D .4510.(5分)(2011•浙江)设a ,b ,c 为实数,2()()()f x x a x bx c =+++,2()(1)(1)g x ax cx bx =+++.记集合{|()0S x f x ==,}x R ∈,{|()0T x g x ==,}x R ∈.若{}S ,{}T 分别为集合S ,T 的元素个数,则下列结论不可能的是( )A .{}1S =且{}0T =B .{}1S =且{}1T =C .{}2S =且{}2T =D .{}2S =且{}3T = 二、填空题(共7小题,每小题4分,满分28分)11.(4分)(2011•浙江)若函数2()||f x x x a =-+为偶函数,则实数a = . 12.(4分)(2011•浙江)某程序框图如图所示,该程序运行后输出的k 的值是 .13.(4分)(2011•浙江)设二项式6((0)x a x>的展开式中的3x 系数为A ,常数项为B ,若4B A =,则a 的值是 .14.(4分)(2011•浙江)若平面向量α,β满足||1α=,||1β„,且以向量α,β为邻边的平行四边形的面积为12,则α和β的夹角θ的范围是 . 15.(4分)(2011•浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若1(0)12P X ==,则随机变量X 的数学期望()E X = . 16.(4分)(2011•浙江)设x ,y 为实数,若2241x y xy ++=,则2x y +的最大值是 .17.(4分)(2011•浙江)设1F ,2F 分别为椭圆2213x y +=的焦点,点A ,B 在椭圆上,若125F A F B =u u u r u u u u r;则点A 的坐标是 .三、解答题(共5小题,满分72分)18.(14分)(2011•浙江)在ABC ∆中,角A ,B ,C ,所对的边分别为a ,b ,c .已知sin sin sin ()A C p B p R +=∈.且214ac b =.(Ⅰ)当54p =,1b =时,求a ,c 的值; (Ⅱ)若角B 为锐角,求p 的取值范围.19.(14分)(2011•浙江)已知公差不为0的等差数列{}n a 的首项1a 为()a a R ∈设数列的前n 项和为n S ,且11a ,21a ,41a 成等比数列. (Ⅰ)求数列{}n a 的通项公式及n S ; (Ⅱ)记1231111n nA S S S S =+++⋯+,1122111n n B a a a -=++⋯+,当2n …时,试比较n A 与n B 的大小.20.(15分)(2011•浙江)如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知8BC =,4PO =,3AO =,2OD = (Ⅰ)证明:AP BC ⊥;(Ⅱ)在线段AP 上是否存在点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.21.(15分)(2011•浙江)已知抛物线21:C x y =,圆222:(4)1C x y +-=的圆心为点M (Ⅰ)求点M 到抛物线1C 的准线的距离;(Ⅱ)已知点P 是抛物线1C 上一点(异于原点),过点P 作圆2C 的两条切线,交抛物线1C 于A ,B 两点,若过M ,P 两点的直线l 垂直于AB ,求直线l 的方程.22.(14分)(2011•浙江)设函数2()()f x x a lnx =-,a R ∈ (Ⅰ)若x e =为()y f x =的极值点,求实数a ;(Ⅱ)求实数a 的取值范围,使得对任意的(0x ∈,3]e ,恒有2()4f x e …成立. 注:e 为自然对数的底数.2011年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)设函数2,0(),0x x f x x x -⎧=⎨>⎩„,若f (a )4=,则实数(a = )A .4-或2-B .4-或2C .2-或4D .2-或2【考点】3T :函数的值【专题】51:函数的性质及应用【分析】分段函数分段处理,我们利用分类讨论的方法,分0a „与0a >两种情况,根据各段上函数的解析式,分别构造关于a 的方程,解方程即可求出满足条件 的a 值. 【解答】解:当0a „时若f (a )4=,则4a -=,解得4a =- 当0a >时若f (a )4=,则24a =,解得2a =或2a =-(舍去) 故实数4a =-或2a = 故选:B .【点评】本题考查的知识点是分段函数,分段函数分段处理,这是研究分段函数图象和性质最核心的理念,具体做法是:分段函数的定义域、值域是各段上x 、y 取值范围的并集,分段函数的奇偶性、单调性要在各段上分别论证;分段函数的最大值,是各段上最大值中的最大者.2.(5分)把复数z 的共轭复数记作z ,i 为虚数单位.若1z i =+,则(1)(z z +=g ) A .3i -B .3i +C .13i +D .3【考点】5A :复数的运算 【专题】5N :数系的扩充和复数【分析】求出z ,然后代入(1)z z +g ,利用复数的运算法则展开化简为:(,)a bi a b R +∈的形式,即可得到答案.【解答】解:Q 复数1z i =+,i 为虚数单位,1z i =-,则(1)(2)(1)3z z i i i +=+-=-g 故选:A .【点评】本题考查复数代数形式的混合运算,共轭复数,考查计算能力,是基础题,常考题型.3.(5分)若某几何体的三视图如图所示,则这个几何体的直观图可以是( )A .B .C .D .【考点】8L :由三视图还原实物图;LC :空间几何体的直观图 【专题】5Q :立体几何【分析】根据已知中的三视图,结合三视图中有两个三角形即为锥体,有两个矩形即为柱体,有两个梯形即为台体,将几何体分解为简单的几何体分析后,即可得到答案. 【解答】解:由已知中三视图的上部分有两个矩形,一个三角形 故该几何体上部分是一个三棱柱 下部分是三个矩形故该几何体下部分是一个四棱柱 故选:D .【点评】本题考查的知识点是由三视图还原实物图,如果三视图均为三角形,则该几何体必为三棱锥;如果三视图中有两个三角形和一个多边形,则该几何体为N 棱锥(N 值由另外一个视图的边数确定);如果三视图中有两个为矩形和一个多边形,则该几何体为N 棱柱(N 值由另外一个视图的边数确定);如果三视图中有两个为梯形和一个多边形,则该几何体为N 棱柱(N 值由另外一个视图的边数确定);如果三视图中有两个三角形和一个圆,则几何体为圆锥.如果三视图中有两个矩形和一个圆,则几何体为圆柱.如果三视图中有两个梯形和一个圆,则几何体为圆台. 4.(5分)下列命题中错误的是( )A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面α⊥平面γ,平面β⊥平面γ,l αβ=I ,那么l ⊥平面γD .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β 【考点】2K :命题的真假判断与应用;LQ :平面与平面之间的位置关系【专题】5F :空间位置关系与距离;5L :简易逻辑【分析】本题考查的是平面与平面垂直的性质问题.在解答时:A 注意线面平行的定义再结合实物即可获得解答;B 反证法即可获得解答;C 利用面面垂直的性质通过在一个面内作交线的垂线,然后用线面垂直的判定定理即可获得解答;D 结合实物举反例即可. 【解答】解:由题意可知:A 、结合实物:教室的门面与地面垂直,门面的上棱对应的直线就与地面平行,故此命题成立;B 、假若平面α内存在直线垂直于平面β,根据面面垂直的判定定理可知两平面垂直.故此命题成立;C 、结合面面垂直的性质可以分别在α、β内作异于l 的直线垂直于交线,再由线面垂直的性质定理可知所作的垂线平行,进而得到线面平行再由线面平行的性质可知所作的直线与l 平行,又Q 两条平行线中的一条垂直于平面那么另一条也垂直于平面,故命题成立;D 、举反例:教室内侧墙面与地面垂直,而侧墙面内有很多直线是不垂直与地面的.故此命题错误. 故选:D .【点评】本题考查的是平面与平面垂直的性质问题.在解答的过程当中充分体现了面面垂直、线面垂直、线面平行的定义判定定理以及性质定理的应用.值得同学们体会和反思. 5.(5分)设实数x 、y 满足不等式组2502700,0x y x y x y +->⎧⎪+->⎨⎪⎩厖,若x 、y 为整数,则34x y +的最小值是( ) A .14B .16C .17D .19【考点】7C :简单线性规划 【专题】59:不等式的解法及应用【分析】本题考查的知识点是简单线性规划的应用,我们要先画出满足约束条件2502700,0x y x y x y +->⎧⎪+->⎨⎪⎩厖的平面区域,然后分析平面区域里各个整点,然后将其代入34x y +中,求出34x y +的最小值.【解答】解:依题意作出可行性区域2502700,0x y x y x y +->⎧⎪+->⎨⎪⎩厖如图,目标函数34z x y =+在点(4,1)处取到最小值16z =.故选:B .【点评】在解决线性规划的小题时,常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解. 6.(5分)若02πα<<,02πβ-<<,1cos()43πα+=,3cos()42πβ-cos()(2βα+= ) A 3B .3C 53D .6 【考点】GP :两角和与差的三角函数 【专题】56:三角函数的求值【分析】先利用同角三角函数的基本关系分别求得sin()4πα+和sin()42πβ-的值,进而利用cos()cos[()()]2442βππβαα+=+--通过余弦的两角和公式求得答案.【解答】解:02πα<<Q ,02πβ-<<,∴3444πππα<+<,4422ππβπ<-< 122sin()149πα∴+=-=,16sin()1423πβ-=-=53cos()cos[()()]cos()cos()sin()sin()2442442442βππβππβππβαααα∴+=+--=+-++-故选:C .【点评】本题主要考查了三角函数的恒等变换及化简求值.关键是根据cos()cos[()()]2442βππβαα+=+--,巧妙利用两角和公式进行求解. 7.(5分)若a 、b 为实数,则“01ab <<”是“1a b <”或“1b a>”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【考点】29:充分条件、必要条件、充要条件;71:不等关系与不等式 【专题】5L :简易逻辑【分析】因为“01ab <<” ⇒ “1a b <”或“1b a >”.“ 1a b <”或“1b a>”不能推出“01ab <<”,所以“01ab <<”是“1a b <”或“1b a>”的充分而不必要条件. 【解答】解:a Q 、b 为实数,01ab <<,∴ “10a b <<”或“10b a>>” ∴ “01ab <<” ⇒ “1a b <”或“1b a>”. “1a b <”或“1b a>”不能推出“01ab <<”, 所以“01ab <<”是“1a b <”或“1b a>”的充分而不必要条件. 故选:A .【点评】本题考查充分分条件、必要条件和充要条件,解题时要注意基本不等式的合理运用.8.(5分)已知椭圆22122:1(0)x y C a b a b +=>>与双曲线222:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于A ,B 两点.若1C 恰好将线段AB 三等分,则( ) A .2132a =B .23a =C .212b =D .22b =【考点】4K :椭圆的性质;KI :圆锥曲线的综合 【专题】5D :圆锥曲线的定义、性质与方程【分析】先由双曲线方程确定一条渐近线方程为2y x =,根据对称性易知AB 为圆的直径且2AB a =,利用椭圆与双曲线有公共的焦点,得方程225a b -=;设1C 与2y x =在第一象限的交点的坐标为(,2)x x ,代入1C 的方程得:222224a b x b a =+;对称性知直线2y x =被1C 截得的弦长=,根据1C 恰好将线段AB 三等分得:23a=,从而可解出2a ,2b 的值,故可得结论.【解答】解:由题意,2C 的焦点为(0),一条渐近线方程为2y x =,根据对称性易知AB 为圆的直径且2AB a =1C ∴的半焦距c 225a b -=①设1C 与2y x =在第一象限的交点的坐标为(,2)x x ,代入1C 的方程得:222224a b x b a =+②,由对称性知直线2y x =被1C 截得的弦长=,由题得:23a=,所以x =③ 由②③得2211a b =④ 由①④得2 5.5a =,20.5b = 故选:C .【点评】本题以椭圆,双曲线为载体,考查直线与圆锥曲线的位置关系,解题思路清晰,但计算有点烦琐,需要小心谨慎.9.(5分)有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机地摆放到书架的同一层上,则同一科目的书都不相邻的概率是( ) A .15B .25 C .35D .45【考点】6C :等可能事件和等可能事件的概率 【专题】5I :概率与统计【分析】本题是一个等可能事件的概率,试验发生包含的事件是把5本书随机的摆到一个书架上,共有55A 种结果,满足条件的事件是同一科目的书都不相邻,表示出结果,得到概率.【解答】解:由题意知本题是一个等可能事件的概率,试验发生包含的事件是把5本书随机的摆到一个书架上,共有55120A =种结果, 下分类研究同类书不相邻的排法种数假设第一本是语文书(或数学书),第二本是数学书(或语文书)则有4222132⨯⨯⨯⨯=种可能;假设第一本是语文书(或数学书),第二本是物理书,则有412118⨯⨯⨯⨯=种可能; 假设第一本是物理书,则有142118⨯⨯⨯⨯=种可能.∴同一科目的书都不相邻的概率4821205P ==, 故选:B .【点评】本题考查等可能事件的概率,是一个基础题,本题是浙江卷理科的一道选择题目,这种题目可以作为选择或填空出现,也可以作为一道解答题目出现.10.(5分)设a ,b ,c 为实数,2()()()f x x a x bx c =+++,2()(1)(1)g x ax cx bx =+++.记集合{|()0S x f x ==,}x R ∈,{|()0T x g x ==,}x R ∈.若{}S ,{}T 分别为集合S ,T 的元素个数,则下列结论不可能的是( )A .{}1S =且{}0T =B .{}1S =且{}1T =C .{}2S =且{}2T =D .{}2S =且{}3T = 【考点】12:元素与集合关系的判断;18:集合的包含关系判断及应用 【专题】5J :集合【分析】通过给a ,b ,c 赋特值,得到A ,B ,C 三个选项有正确的可能,故本题可以通过排除法得到答案.【解答】解:2()()()f x x a x bx c =+++Q ,当()0f x =时至少有一个根x a =-,当240b c -=时,()0f x =还有一根2bx =-,只要2b a ≠,()0f x =就有2个根;当2b a =,()0f x =是一个根;当240b c -<时,()0f x =只有一个根; 当240b c ->时,()0f x =有二个根或三个根. 当0a b c ===时{}1S =,{}0T =,当0a >,0b =,0c >时,{}1S =且{}1T =, 当1a c ==,2b =-时,有{}2S =且{}2T =. 故选:D .【点评】本题考查解决选择题时,常通过举特例,利用排除法将一定不正确的选项排除,从而选出正确选项,排除法是解决直接求解有困难的选择题的一个好方法,合理恰当的运用,可以提高解题的速度.二、填空题(共7小题,每小题4分,满分28分)11.(4分)若函数2()||f x x x a =-+为偶函数,则实数a = 0 . 【考点】3I :奇函数、偶函数 【专题】51:函数的性质及应用【分析】根据()f x 为偶函数,利用偶函数的定义,得到等式恒成立,求出a 的值. 【解答】解:()f x Q 为偶函数 ()()f x f x ∴-=恒成立即22||||x x a x x a -+=--恒成立 即||||x a x a +=-恒成立 所以0a = 故答案为:0.【点评】本题考查偶函数的定义:()()f x f x =-对于定义域内的x 恒成立. 12.(4分)某程序框图如图所示,该程序运行后输出的k 的值是 7 .【考点】7E :循环结构 【专题】11:计算题【分析】本题循环结构是当型循环结构,根据所给数值判定是否满足判断框中的条件,然后执行循环语句,一旦不满足条件就退出循环,从而到结论. 【解答】解:如图,这个循环结构是当型循环结构, 第一次循环:0100299S =-=,1k =; 第二次循环:99297S =-=,2k =; 第三次循环:297293S =-=,3k =; 第四次循环:393285S =-=,4k =;第五次循环:485269S =-=,5k =; 第六次循环:569237S =-=,6k =; 第七次循环:637227S =-=-,7k =. 270S =-<Q ,∴输出7k =.故答案为:7.【点评】本题考查当型循环结构的应用,是基础题.解题时要认真审题,仔细解答. 13.(4分)设二项式6((0)x a x->的展开式中的3x 系数为A ,常数项为B ,若4B A =,则a 的值是 2 . 【考点】DA :二项式定理 【专题】5P :二项式定理【分析】首先写出二项展开式的通项,化简后按照要求确定字母的指数,得到特征项. 【解答】解:二项式6()(0)x a x>的展开式,通项为366266()()k kkkk kC xC a xx--=-,令3632k -=,得到2k =,所以3x 系数为222615A C a a ==;令3602k -=,4k =,所以常数项为4446()15B C a a =-=, 又4B A =,所以4215415a a =⨯,0a >,解得2a =; 故答案为:2【点评】本题考查了二项展开式的特征项的求法,关键是正确写出通项.14.(4分)若平面向量α,β满足||1α=,||1β…,且以向量α,β为邻边的平行四边形的面积为12,则α和β的夹角θ的范围是 [30︒,150]︒ .【考点】9S :数量积表示两个向量的夹角 【专题】5A :平面向量及应用【分析】根据平行四边形的面积,得到对角线分成的两个三角形的面积,利用正弦定理写出三角形面积的表示式,表示出要求角的正弦值,根据角的范围写出符合条件的角. 【解答】解:Q 11||||sin 24αβθ=r r1sin 2||||θαβ∴=r r ,||1α=rQ ,||1βr „, 1sin 2θ∴…,[0θ∈Q ,]π [30θ∴∈︒,150]︒,故答案为:[30︒,150]︒,或5[,]66ππ,【点评】本题考查两个向量的夹角,考查利用正弦定理表示三角形的面积,考查不等式的变化,是一个比较简单的综合题目.15.(4分)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为23,得到乙、丙公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若1(0)12P X ==,则随机变量X 的数学期望()E X =53. 【考点】CG :离散型随机变量及其分布列;CH :离散型随机变量的期望与方差 【专题】5I :概率与统计【分析】根据该毕业生得到面试的机会为0时的概率,做出得到乙、丙公司面试的概率,根据题意得到X 的可能取值,结合变量对应的事件写出概率和做出期望.【解答】解:由题意知X 为该毕业生得到面试的公司个数,则X 的可能取值是0,1,2,3, 1(0)12P X ==Q , ∴211(1)312p -=, 12p ∴=,2111111114(1)32232232212P X ==⨯⨯+⨯⨯+⨯⨯=2112111115(2)32232232212P X ==⨯⨯+⨯⨯+⨯⨯=,1452(3)112121212P X ==---=, 4525()1231212123E X ∴=⨯+⨯+⨯=, 故答案为:53【点评】本题考查离散型随机变量的分布列和离散型随机变量的期望,考查生活中常见的一种题目背景,是一个基础题目.16.(4分)设x ,y 为实数,若2241x y xy ++=,则2x y +的最大值是 . 【考点】7F :基本不等式及其应用 【专题】59:不等式的解法及应用【分析】设2t x y =+,将已知等式用t 表示,整理成关于x 的二次方程,二次方程有解,判别式大于等于0,求出t 的范围,求出2x y +的最大值. 【解答】解:2241x y xy ++=Q2(2)31x y xy ∴+-= 令2t x y =+则2y t x =-23(2)1t t x x ∴--= 即226310x tx t -+-=∴△222924(1)15240t t t =--=-+…解得t2x y ∴+【点评】本题考查利用换元转化为二次方程有解、二次方程解的个数由判别式决定. 17.(4分)设1F ,2F 分别为椭圆2213x y +=的焦点,点A ,B 在椭圆上,若125F A F B =u u u r u u u u r ;则点A 的坐标是 (0,1)± . 【考点】4K :椭圆的性质【专题】5D :圆锥曲线的定义、性质与方程【分析】作出直线1F A 的反向延长线与椭圆交于点B ',由椭圆的对称性,得115F A B F '=u u u r u u u u r,利用椭圆的焦半径公式及向量共线的坐标表示列出关于1x ,2x 的方程,解之即可得到点A 的坐标.【解答】解:方法1:直线1F A 的反向延长线与椭圆交于点B ' 又Q 125F A F B =u u u r u u u u r由椭圆的对称性,得115F A B F '=u u u r u u u u r设1(A x ,1)y ,2(B x ',2)y由于椭圆2213x y +=的a 1b =,c =c e a ∴===,1F 0).11||F A x =Q ,12|||F B x ',12|5|x x =,由于1x ,2x „∴10x ->20x ->,12)5x x =125(x x =. ① 又Q 三点A ,1F ,B '共线,115F A B F ='u u u r u u u u r1((x ∴-,120)5(y x -=,20)y -∴125()x x .②由①+②得:10x =. 代入椭圆的方程得:11y =±,∴点A 的坐标为(0,1)或(0,1)-方法2:因为1F ,2F 分别为椭圆2213x y +=的焦点,则12(2,0),(2,0)F F -,设A ,B 的坐标分别为(A A x ,)A y ,(B B x ,)B y ,若125F A F B =u u u r u u u u r ;则25(2)5A B A B x x y y ⎧+=-⎪⎨=⎪⎩,所以625A B AB x x y y ⎧+=⎪⎪⎨⎪=⎪⎩,因为A ,B 在椭圆上,所以22221313A AB B x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,代入解得01A A x y =⎧⎨=⎩或01A A x y =⎧⎨=-⎩,故(0,1)A ±. 方法三、由1||(1)cos e λλθ-=+,5λ=,6e =,6cos θ=,3sin θ=, 2tan k θ==,由222(2)33y x x y ⎧=±⎪⎨⎪+=⎩,即可得到(0,1)A ±. 故答案为:(0,1)±.【点评】本小题主要考查椭圆的标准方程、椭圆的简单性质、向量共线等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想. 三、解答题(共5小题,满分72分)18.(14分)在ABC ∆中,角A ,B ,C ,所对的边分别为a ,b ,c .已知sin sin sin ()A C p B p R +=∈.且214ac b =.(Ⅰ)当54p =,1b =时,求a ,c 的值;(Ⅱ)若角B 为锐角,求p 的取值范围. 【考点】HU :解三角形 【专题】58:解三角形【分析】(Ⅰ)利用正弦定理把题设等式中的角的正弦转化成边,解方程组求得a 和c 的值. (Ⅱ)先利用余弦定理求得a ,b 和c 的关系,把题设等式代入表示出2p ,进而利用cos B 的范围确定2p 的范围,进而确定pd 范围.【解答】(Ⅰ)解:由题设并利用正弦定理得5414a c ac ⎧+=⎪⎪⎨⎪=⎪⎩故可知a ,c 为方程251044x x -+=的两根,进而求得1a =,14c =或14a =,1c =(Ⅱ)解:由余弦定理得22222222112cos ()22cos cos 22b ac ac B a c ac ac B p b b B b =+-=+--=--,即231cos 22p B =+, 因为0cos 1B <<,所以23(2p ∈,2),由题设知p R ∈p <<p < 又由sin sin sin A C p B +=知,p 是正数p << 【点评】本题主要考查了解三角形问题.学生能对正弦定理和余弦定理的公式及变形公式熟练应用.19.(14分)已知公差不为0的等差数列{}n a 的首项1a 为()a a R ∈设数列的前n 项和为n S ,且11a ,21a ,41a 成等比数列. (Ⅰ)求数列{}n a 的通项公式及n S ; (Ⅱ)记1231111n nA S S S S =+++⋯+,1122111n n B a a a -=++⋯+,当2n …时,试比较n A 与n B 的大小.【考点】83:等差数列的性质;8E :数列的求和;8K :数列与不等式的综合 【专题】54:等差数列与等比数列;55:点列、递归数列与数学归纳法【分析】(Ⅰ)设出等差数列的公差,利用等比中项的性质,建立等式求得d ,则数列的通项公式和前n 项的和可得.(Ⅱ)利用(Ⅰ)的n a 和n S ,代入不等式,利用裂项法和等比数列的求和公式整理n A 与n B ,最后对0a >和0a <两种情况分情况进行比较. 【解答】解:(Ⅰ)设等差数列{}n a 的公差为d ,由2214111()a a a =g , 得2111()(3)a d a a d +=+,因为0d ≠,所以1d a a == 所以n a na =,(1)2n n naS +=(Ⅱ)解:Q 1211()1n S a n n =-+123111121(1)1n n A S S S S a n ∴=+++⋯+=-+ Q 1122n n a a --=,所以11121111()22n n n a a a ---==g g 为等比数列,公比为12, 112211()1111212(1)1212n nn n B a a a a a --=++⋯+==--g g 当2n …时,0121n n n nn n =++⋯+>+痧?,即111112n n -<-+ 所以,当0a >时,n n A B <;当0a <时,n n A B >.【点评】本题主要考查了等差数列的性质.涉及了等差数列的通项公式,求和公式以及数列的求和的方法,综合考查了基础知识的运用.20.(15分)如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知8BC =,4PO =,3AO =,2OD = (Ⅰ)证明:AP BC ⊥;(Ⅱ)在线段AP 上是否存在点M ,使得二面角A MC B --为直二面角?若存在,求出AM 的长;若不存在,请说明理由.【考点】LW :直线与平面垂直;MJ :二面角的平面角及求法 【专题】5F :空间位置关系与距离;5G :空间角;5Q :立体几何【分析】以O 为原点,以AD 方向为Y 轴正方向,以射线OP 的方向为Z 轴正方向,建立空间坐标系,我们易求出几何体中各个顶点的坐标.()I 我们易求出AP u u u r ,BC u u u r 的坐标,要证明AP BC ⊥,即证明0AP BC =u u u r u u u rg ;()II 要求满足条件使得二面角A MC β--为直二面角的点M ,即求平面BMC 和平面APC的法向量互相垂直,由此求出M 点的坐标,然后根据空间两点之间的距离公式,即可求出AM 的长.【解答】解:以O 为原点,以AD 方向为Y 轴正方向,以射线OP 的方向为Z 轴正方向,建立空间坐标系,则(0O ,0,0),(0A ,3-,0),(4B ,2,0),(4C -,2,0),(0P ,0,4) ()I 则(0AP =u u u r ,3,4),(8BC =-u u u r,0,0) 由此可得0AP BC =u u u r u u u rg ∴AP BC ⊥u u u r u u u r即AP BC ⊥()II 设PM PA λ=u u u u r u u u r,1λ≠,则(0PM λ=u u u u r ,3-,4)-(4BM BP PM BP PA λ=+=+=-u u u u r u u u r u u u u r u u u r u u u r,2-,4)(0λ+,3-,4)- (4AC =-u u u r ,5,0),(8BC =-u u u r,0,0)设平面BMC 的法向量(a a =r,b ,)c 则00BM a BC a ⎧=⎪⎨=⎪⎩u u u u r r g u u u r r g 4(23)(44)080a b c a λλ--++-=⎧⎨-=⎩令1b =,则(0a =r ,1,23)44λλ+-平面APC 的法向量(b x =r,y ,)z 则00AP b AC b ⎧=⎪⎨=⎪⎩u u u r r g u u u r rg 即340450y z x y +=⎧⎨-+=⎩令5x =则(5b =r,4,3)- 由0a b =r r g 得2343044λλ+-=-g解得25λ=故3AM =综上所述,存在点M 符合题意,此时3AM =【点评】本题考查的知识点是线线垂直的判定,与二面角有关的立体几何综合题,其中建立空间坐标系,求出相关向量,然后将垂直问题转化为向量垂直即向量内积等0是解答本题的关键.21.(15分)已知抛物线21:C x y =,圆222:(4)1C x y +-=的圆心为点M (Ⅰ)求点M 到抛物线1C 的准线的距离;(Ⅱ)已知点P 是抛物线1C 上一点(异于原点),过点P 作圆2C 的两条切线,交抛物线1C 于A ,B 两点,若过M ,P 两点的直线l 垂直于AB ,求直线l 的方程.【考点】KJ :圆与圆锥曲线的综合 【专题】5D :圆锥曲线的定义、性质与方程【分析】()I 由题意抛物线21:C x y =,可以知道其准线方程为14y =-,有圆222:(4)1C x y +-=的方程可以知道圆心坐标为(0,4),所求易得到所求的点到线的距离; ()II 由于已知点P 是抛物线1C 上一点(异于原点),所以可以设出点P 的坐标,利用过点P 作圆2C 的两条切线,交抛物线1C 于A ,B 两点,也可以设出点A ,B 的坐标,再设出过P 的圆2C 的切线方程,利用交与抛物线2C 两点,联立两个方程,利用根与系数之间的关系整体得到两切线的斜率的式子,有已知的MP AB ⊥,得到方程进而求解. 【解答】解:()I 由题意画出简图为:由于抛物线21:C x y =准线方程为:14y =-,圆222:(4)1C x y +-=的圆心(0,4)M ,利用点到直线的距离公式可以得到距离1174()44d =--=.()II 设点0(P x ,20)x ,1(A x ,21)x ,2(B x ,22)x ; 由题意得:01x ≠±,12x x ≠,设过点P 的圆2C 的切线方程为:200()y x k x x -=-即200y kx kx x =-+①2211k =+,即222220000(1)2(4)(4)10x k x x k x -+-+--= 设PA ,PB 的斜率为1k ,212()k k k ≠,则1k ,2k 应该为上述方程的两个根, ∴20012202(4)1x x k k x -+=-,2201220(4)11x k k x --=-g ;代入①得:22000x kx kx x -+-= 则1x ,2x 应为此方程的两个根, 故110x k x =-,220x k x =-220001212002002(4)422,1ABMP x x x k x x k k x x k x x --∴=+=+-=-=-由于MP AB ⊥,202315AB MP k K x ∴=-⇒=g 故2323(,)55P ±∴3115:4l y x =±+直线的方程为.【点评】此题重点考查了抛物线即圆的标准方程,还考查了相应的曲线性质即设出直线方程,利用根与系数的思想整体代换,进而解出点的坐标,理应直线与圆相切得到要求的直线方程.22.(14分)设函数2()()f x x a lnx =-,a R ∈ (Ⅰ)若x e =为()y f x =的极值点,求实数a ;(Ⅱ)求实数a 的取值范围,使得对任意的(0x ∈,3]e ,恒有2()4f x e …成立. 注:e 为自然对数的底数.【考点】6C :函数在某点取得极值的条件;6E :利用导数研究函数的最值 【专题】53:导数的综合应用【分析】(Ⅰ)利用极值点处的导数值为0,求出导函数,将x e =代入等于0,求出a ,再将a 的值代入检验.(Ⅱ)对(0x ∈,3]e 进行分区间讨论,求出()f x 的最大值,令最大值小于24e ,解不等式求出a 的范围.【解答】解:(Ⅰ)求导得2()()2()()(21)x a af x x a lnx x a lnx x x-'=-+=-+-,因为x e =是()f x 的极值点, 所以f '(e )0= 解得a e =或3a e =.经检验,a e =或3a e =符合题意,所以a e =,或3a e =.(Ⅱ)①当01x <„时,对于任意的实数a ,恒有2()04f x e <„成立 ②当13x e <„时,由题意,首先有22(3)(3)34f e e a ln e e =-„,解得33e a e由(Ⅰ)知2()()2()()(21)x a af x x a lnx x a lnx x x-'=-+=-+-,令()21ah x lnx x=+-,则h (1)10a =-<,h (a )20lna =>且(3)2312312(303a h e ln e ln e ln e e =+-+-=>… 又()h x 在(0,)+∞内单调递增,所以函数()h x 在在(0,)+∞内有唯一零点,记此零点为0x 则013x e <<,01x a <<,从而,当0(0,)x x ∈时,()0f x '>, 当0(x x ∈,)a 时,()0f x '<,当(,)x a ∈+∞时,()0f x '>,即()f x 在0(0,)x 内是增函数, 在0(x ,)a 内是减函数,在(,)a +∞内是增函数.所以要使得对任意的(0x ∈,3]e ,恒有2()4f x e „成立只要有2200022()()4(3)(3)34f x x a lnx e f e e a ln e e⎧=-⎨=-⎩„„ 有000()210ah x lnx x =+-=得0002a x lnx x =+,将它代入22000()()4f x x a lnx e =-„得2320044x ln x e „又01x >,注意到函数234x ln x 在(1,)+∞上是增函数故01x e <„,再由0002a x lnx x =+,及函数2xlnx x +在(1,)+∞上是增函数,可得13a e <„, 由22(3)(3)34f e e a ln e e =-„解得33e a e -+,所以得33e a e -.综上,a的取值范围为33e a e -.【点评】本题考查函数的极值的概念,导数运算法则,导数应用,不等式等基础知识,同时考查推理论证能力,分类讨论等分析问题和解决问题的能力,解题的关键是准确求出导数,利用二次求导和函数零点分区间计论导函数的符号,得到原函数的单调性,本题属于难题.考点卡片1.元素与集合关系的判断【知识点的认识】1、元素与集合的关系:一般地,我们把研究对象称为元素,把一些元素组成的总体称为集合,简称集.元素一般用小写字母a,b,c表示,集合一般用大写字母A,B,C表示,两者之间的关系是属于与不属于关系,符号表示如:a∈A或a∉A.2、集合中元素的特征:(1)确定性:作为一个集合中的元素,必须是确定的.即一个集合一旦确定,某一个元素属于还是不属于这集合是确定的.要么是该集合中的元素,要么不是,二者必居其一,这个特性通常被用来判断涉及的总体是否能构成集合.(2)互异性:集合中的元素必须是互异的.对于一个给定的集合,他的任何两个元素都是不同的.这个特性通常被用来判断集合的表示是否正确,或用来求集合中的未知元素.(3)无序性:集合于其中元素的排列顺序无关.这个特性通常被用来判断两个集合的关系.【命题方向】题型一:验证元素是否是集合的元素典例1:已知集合A={x|x=m2﹣n2,m∈Z,n∈Z}.求证:(1)3∈A;(2)偶数4k﹣2(k∈Z)不属于A.分析:(1)根据集合中元素的特性,判断3是否满足即可;(2)用反证法,假设属于A,再根据两偶数的积为4的倍数;两奇数的积仍为奇数得出矛盾,从而证明要证的结论.解答:解:(1)∵3=22﹣12,3∈A;(2)设4k﹣2∈A,则存在m,n∈Z,使4k﹣2=m2﹣n2=(m+n)(m﹣n)成立,1、当m,n同奇或同偶时,m﹣n,m+n均为偶数,∴(m﹣n)(m+n)为4的倍数,与4k﹣2不是4的倍数矛盾.2、当m,n一奇,一偶时,m﹣n,m+n均为奇数,∴(m﹣n)(m+n)为奇数,与4k﹣2是偶数矛盾.。
2011年普通高等学校招生全国统一考试数 学(理科)一、选择题(1)设函数 若,则实数 ( ) (A ) —4或—2 (B ) —4或2 (C )—2或4 (D )—2或2(2)把负数的共轭复数记作i,i 为虚数单位。
若z=1+i,则( )(A ) (B ) (C ) (D)3(3)若某几何体的三视图如图所示,则这个几何体的直观图可以是 ( )(4)下列命题中错误的是 ( )(A )如果平面α⊥平面β,那么平面α内一定直线平行于平面β(B )如果平面α垂直于平面β,那么平面α内一定不存在直线垂直于平面β(C )如果平面α⊥平面γ,平面β⊥平面γ,l αβ⋂=,那么l ⊥平面γ(D )如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β(5)设实数x 、y 是不等式组,若x 、y 为整数,则34x y + 的最小值为 ( )(A )14 (B )16 (C )17 (D )19(6)若02πα<<,02πβ-<<,1cos ()23πα+=,3cos ()42πβ-=,则cos ()2βα+= (A )3 (B )3- (C )53 (D )6- 2,0,(),0.x x f x x x -≤⎧=⎨⎩>()4f α=α=z (1)z z -+•=3i -3i +13i +250x y +->270x y +->, 0x ≥,0y ≥(7)若a 、b 为实数,则“01ab <<”是“1a b <”或1b a>的 ( ) (A )充分二而不必要条件 (B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(8)已知椭圆 221221x y C a b =+=(a >b >0)与双曲线 22214y C x =-=有公共的焦点,1C 的一条最近线与以2C 的长轴为直径的圆相交于,A B 来两点。
若1C 恰好将线段AB 三等分,则 ( )(A )232a = (B ) 2a =13 (C ) 212b = (D )2b =2 (9)有5本不同的书,其中语文书2本,数学书2本,物理书1本,若将其随机地排成一排摆放到书架的同一层上,则同一科目的书都不相邻的概率是 ( )(A )15 (B )25 (C )35 (D )45(10)设,,a b c 为实数,22()()(),()(1)(1)f x x a x bx c g x ax ax bx =+++=+++。
2011年普通高等学校招生全国统一考试浙江卷数学(理科)试题1 / 11 / 12011 年一般高等学校招生全国一致考试(浙江卷)数学(理科)试题一、选择题:本大题共 10 小题,每题 5 分,共 50 分。
在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
1.设函数 f (x)x, x 0,4 ,则实数 =2 , x 若 f ( )x 0.A .-4 或-2B .-4 或 2C .-2 或 4D .-2 或 22.把复数 z 的共轭复数记作 z ,i 为虚数单位,若z 1 i ,则(1z) z =A . 3-iB . 3+iC . 1+3iD .33.若某几何体的三视图如下图,则这个几何体的直观图能够是4.以下命题中错误 的是..A .假如平面平面 ,那么平面内必定存在直线平行于平面B .假如平面 α 不垂直于平面,那么平面内必定不存在直线垂直于平面C .假如平面D .假如平面平面 ,平面平面 , =l ,那么 l 平面平面 ,那么平面内全部直线都垂直于平面x 2 y 5>05.设实数 x, y 知足不等式组 2xy 7>0, 若 x, y 为整数,则 3x 4y 的最小值是x ≥0, y ≥ 0,A .14B . 16C . 17D .196.若 0< <, - < <0 , cos( ) 1, cos(4 )3,则 cos() 2243232 3B .35 36A .3C .D .3997.若 a, b 为实数,则“m< 1或 > 10< ab <1”是 ab的baA .充足而不用要条件B .必需而不充足条件。
2011年普通高等学校招生全国统一考试理科数学(浙江卷)一、单选题1. (2011•浙江)设函数f(x)=,若f(a)=4,则实数a=()A.﹣4或﹣2B.﹣4或2C.﹣2或4D.﹣2或22. (2011•浙江)把复数z 的共轭复数记作,i为虚数单位.若z=1+i,则(1+z)•=()A.3﹣i B.3+i C.1+3i D.33. 若某几何体的三视图如图所示,则这个几何体的直观图可以是()A .B .C .D .4. 下列命题错误的是().A.如果平面平面,那么平面内所有直线都垂直于平面B.如果平面平面,那么平面内一定存在直线平行于平面C.如果平面平面,平面平面,,那么平面D.如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面5. 设实数x、y满足不等式组,若x、y为整数,则3x+4y的最小值是()A.14B.16C.17D.196. 若0<α<,﹣<β<0,cos(+α)=,cos(﹣)=,则cos(α+)=()A.B.﹣C.D.﹣7. 若a、b为实数,则“0<ab<1”是“a<”或“b>”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8. 已知椭圆C1:=1(a>b>0)与双曲线C2:x2﹣=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C恰好将线段AB三等分,则()1A.a2=B.a2=3C.b2=D.b2=29. 有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机地摆放到书架的同一层上,则同一科目的书都不相邻的概率是()A.B.C.D.10. 设a,b,c为实数,f(x)=(x+a)(x2+bx+c),g(x)=(ax+1)(cx2+bx+1).记集合S={x|f(x)=0,x∈R},T={x|g(x)=0,x∈R}.若{S},{T}分别为集合S,T 的元素个数,则下列结论不可能的是()A.{S}=1且{T}=0B.{S}=1且{T}=1C.{S}=2且{T}=2D.{S}=2且{T}=3二、填空题11. (2011•浙江)若函数f(x)=x2﹣|x+a|为偶函数,则实数a= _________ .12. 某程序框图如图所示,则该程序运行后输出的k的值是________ .三、解答题13. 若二项式(x﹣)6(a >0)的展开式中x 3的系数为A ,常数项为B ,若B=4A ,则a 的值是 _________ .14. (2011•浙江)若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为,则α和β的夹角θ的范围是 _________ .15. 某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙、丙公司面试的概率均为P ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数.若P (X=0)=,则随机变量X 的数学期望E (X )= _________ .16. 设x ,y 为实数,若4x 2+y 2+xy=1,则2x+y 的最大值是 _________ .17. 设F 1,F 2分别为椭圆+y 2=1的焦点,点A ,B 在椭圆上,若=5;则点A 的坐标是 _________ .18. 在△ABC 中,角A ,B ,C ,所对的边分别为a ,b ,c .已知sinA+sinC=psinB (p ∈R ).且ac=b 2.(1)当p=,b=1时,求a ,c 的值;(2)若角B 为锐角,求p 的取值范围.19. 已知公差不为0的等差数列{a n }的首项a 1为a (a ∈R )设数列的前n 项和为S n ,且,,成等比数列. (1)求数列{a n }的通项公式及S n ;(2)记A n =+++…+,B n =++…+,当n≥2时,试比较A n 与B n 的大小.20. 如图,在三棱锥P﹣ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2(1)证明:AP⊥BC;(2)在线段AP上是否存在点M,使得二面角A﹣MC﹣B为直二面角?若存在,求出AM的长;若不存在,请说明理由.21. 已知抛物线C1:x2=y,圆C2:x2+(y﹣4)2=1的圆心为点M(1)求点M到抛物线C1的准线的距离;(2)已知点P是抛物线C1上一点(异于原点),过点P作圆C2的两条切线,交抛物线C1于A,B两点,若过M,P两点的直线l垂直于AB,求直线l 的方程.22. (2011•浙江)设函数f(x)=(x﹣a)2lnx,a∈R(1)若x=e为y=f(x)的极值点,求实数a;(2)求实数a的取值范围,使得对任意的x∈(0,3e],恒有f(x)≤4e2成立.注:e为自然对数的底数.。
2011年普通高等学校招生全国统一考试数学(理科)(浙江省)本试卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页,非选择题部分3至4页。
满分150分,考试时间120分钟。
选择题部分(共50分)请考生按规定用笔将所有试题的答案涂、写在答题纸上。
1.答题前,考生务必将自己的姓名、准备考证号用黑色字迹的签字笔或钢笔分别填写在试卷个答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
参考公式:如果事件,A B 互斥,那么 柱体的体积公式()()()P A B P A P B +=+ V sh =如果事件,A B 相互独立,那么 其中s 表示柱体的底面积,h 表示柱体的高()()()P A B P A P B ⋅=⋅ 锥体的体积公式 13V sh = 一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设函数2,0(),0x x f x x x -≤⎧=⎨>⎩,若()4f a =,则实数a = (A )-4或-2 (B )-4或2 (C )-2或4 (D )-2或2解析:此题考察分段函数求值问题,直接代入计算即可,属简单题!选B 。
(2)把复数z 的共轭复数记作z ,i 为虚数单位,若z=1+i,则(1)z z +⋅=(A )3i - (B )3i + (C )13i + (D )3解析:此题考察复数的运算以及共轭复数的定义,属简单题。
选A 。
(3)若某几何体的三视图如图所示,则这个几何体的直观图可以是解析:考察三视图还原直观图,由正视图排除A 、B ,由俯视图可排除C ,故选D 。
简单题。
(4)下列命题中错误的是(A )如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β(B )如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β(C )如果平面α⊥平面γ,平面β⊥平面γ,l αβ⋂=,那么l ⊥平面γ(D )如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β解析:考察线面的平行与垂直关系,紧扣线面平行与垂直的判定与性质,不难选出D 错。
2011年普通高等学校招生全国统一考试(浙江卷)数学(理科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)注意事项:1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式如果事件,A B 互斥 ,那么()()()P A B P A P B +=+如果事件,A B 相互独立,那么()()()P A B P A P B ∙=∙如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(0,1,2,...,)k k n kn n P k C p p k n -=-= 台体的体积公式121()3V h S S =+其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高柱体体积公式V Sh =其中S 表示柱体的底面积,h 表示柱体的高锥体的体积公式13V Sh =其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24S R π=球的体积公式343V R π=其中R 表示球的半径一、 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设函数2,0(),x x f x x x -≤⎧=⎨>⎩,若()4f a =,则实数a =(A )-4或-2 (B )-4或2 (C )-2或4 (D )-2或2 2.把复数z 的共轭复数记作z ,i 为虚数单位,若z=1+i,则(1)z z +⋅= (A )3i - (B )3i + (C )13i + (D )3 3.若某几何体的三视图如图所示,则这个几何体的直观图可以是4.下列命题中错误..的是 (A )如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β (B )如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β (C )如果平面α⊥平面γ,平面β⊥平面γ,l αβ⋂=,那么l ⊥平面γ (D )如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β5.设实数x 、y 是不等式组2502700,0x y x y x y +->⎧⎪+->⎨⎪≥≥⎩,若x 、y 为整数,则34x y +的最小值是(A )14 (B )16 (C )17 (D )19 6.若02πα<<,02πβ-<<,1cos()43πα+=,cos ()42πβ-=,则cos ()2βα+= (A(B)(C(D)7.若a 、b 为实数,则“01ab <<”是“1a b <或1b a>”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件8.已知椭圆22122:1x y C a b +=(a >b >0)与双曲线 222:14y C x -=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则(A )2132a =(B )2a =13 (C )212b = (D )2b =29.有5本不同的书,其中语文书2本,数学书2本,物理书1本。
本文作者:苏卫军 苗孟义2011年普通高等学校招生全国统一考试理科数学(浙江)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设函数2,0,(),0.x x f x x x -≤⎧=⎨>⎩若()4f a =,则实数a =A .4-或2-B .4-或2C .2-或4D .2-或2 2.把复数z的共轭复数记作z ,i 为虚数单位.若1z i =+,则(1)z z +⋅= A .3i - B .3i + C .13i + D .3 3.若某几何体的三视图如图所示,则这个几何体的直观图可以是A .B .C .D . 4.下列命题中错误..的是 A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面α⊥平面γ,平面β⊥平面γ,l αβ=,那么l ⊥平面γD .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β5.设实数,x y 满足不等式组2502700,0.x y x y x y +->⎧⎪+->⎨⎪≥≥⎩若,x y 为整数,则34x y +的最小值是A .14B .16C .17D .19 6.若02πα<<,02πβ-<<,1cos()43πα+=,3cos ()42πβ-=,则cos ()2βα+= A .3 B .3- C .53 D .6-7.若,a b 为实数,则“01ab <<”是“1a b <或1b a>”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件8.已知椭圆1C :22221(0)x y a b a b +=>>与双曲线2C :2214y x -=有公共的焦点,2C 的一条渐近线与1C 的长轴为直径的圆相交于,A B 两点.若1C 恰好将线段AB 三等分,则 A .2132a =B .213a =C .212b = D .22b = 9.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机地并排摆放到书架 的同一层上,则同一科目的书都不相邻的概率是A .15B .25C .35D .4510.设,,a b c 为实数,2()()()f x x a x bx c =+++,2()(1)(1)g x ax cx bx =+++.记集合{|()0,}S x f x x R ==∈,{|()0,}T x g x x R ==∈.若||S ,||T 分别为集合,S T 的元素个数,则下列结论不可能...的是 A .||1S =且||0T = B .||1S =且||1T = C .||2S =且||2T = D .||2S =且||3T = 二、填空题:本大题共7小题,每小题4分,共28分. 11.若函数2()f x x x a =-+为偶函数,则实数a = . 12.若某程序框图如图所示,则该程序运行后输出的k 值为 . 13.设二项式6()(0)x a x->的展开式中3x 的系数为A ,常数项为B .若4B A =,则a 的值是 .14.若平面向量,αβ满足1=a ,1≤β,且以向量,αβ为邻边的平行 四边形的面积为12,则α与β的夹角θ的取值范围是 . 15.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公 司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的 公司个数. 若(0)P X =112=,则随机变量X 的数学期望()E X = .16.设,x y 为实数.若2241x y xy ++=,则2x y +的最大值是 .17.设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B =,则点A 的坐标是 .三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分14分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c .已知()sin sin sin ,A C p B p R +=∈且214ac b =.(Ⅰ)当5,14p b ==时,求,a c 的值;(Ⅱ)若角B 为锐角,求p 的取值范围.19.(本题满分14分)已知公差不为0的等差数列{}n a 的首项1a 为()a a R ∈.设数列的前n 项和为n S ,且11a ,21a ,41a 成等比数列. (Ⅰ)求数列{}n a 的通项公式及n S ; (Ⅱ)记n A =11S +21S +31S +…+1n S ,n B =11a + 21a +221a +… +121n a -.当2n ≥时,试比较n A 与n B 的大小.20.(本题满分15分)如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上, 已知8BC =,4PO =,3AO =,2OD =. (Ⅰ)证明:AP BC ⊥;(Ⅱ)在线段AP 上是否存在点M ,使得二面角A MC B --为 直二面角?若存在,求出AM 的长;若不存在,请说明理由.21.(本题满分15分)已知抛物线1C :2x y =,圆2C :22(4)1x y +-=的圆心为点M .(Ⅰ)求点M 到抛物线1C 的准线的距离;(Ⅱ)已知点P 是抛物线1C 上一点(异于原点),过点P 作圆2C 的两条切线,交 抛物线1C 于,A B 两点,若过,M P 两点的直线l 垂直于AB ,求直线l 的方程.22.(本题满分14分)设函数2()()ln ,f x x a x a R =-∈.(Ⅰ)若x e =为()y f x =的极值点,求实数a ;(Ⅱ)求实数a 的取值范围,使得对任意的(0,3]x e ∈,恒有2()4f x e ≤成立. 注:e 为自然对数的底数.2011年普通高等学校招生全国统一考试理科数学(浙江)试题答案与解读一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.题号 1 2 3 4 5 6 7 8 9 10 答案BADDBCACBD1.设函数2,0,(),0.x x f x x x -≤⎧=⎨>⎩若()4f a =,则实数a =A .4-或2-B .4-或2C .2-或4D .2-或2 答案:选B.解法1:(直接法)当0a ≤时,()4f a a =-=,得4a =-;当0a >时,2()4f a a ==,得2a =,2a =-(舍去).故4a =-或2a =.故选B.解法2:(排除法)当2a =-时,()24f a a =-=≠,排除A,C,D. 故选B.点评:本题主要考查了函数、分段函数的概念,结合分段函数的性质用分类讨论的思想方法进行求解,考查基本运算能力.另外也可以不用动笔,利用排除法就能看出答案.属于容易题. 2.把复数z 的共轭复数记作z ,i 为虚数单位.若1z i =+,则(1)z z +⋅= A .3i - B .3i + C .13i + D .3 答案:选A.解法1:(1)1(1)(1)123z z z zz i i i i i +=+=-++-=-+=-.故选A. 解法2:(1)(2)(1)3z z i i i +=+-=-.故选A.点评:本题主要考查了复数的加法、乘法运算以及共轭复数的概念,计算时要注意运算法则的应用.属于容易题.3.若某几何体的三视图如图所示,则这个几何体的直观图可以是A. B. C. D.答案:选D.解法1:(排除法)选项A,B与正视图不符,选项C与俯视图不符. 故选D.解法2:(直接法)从俯视图看,B和D符合,从正视图看D符合,从侧视图看D符合.故选D.点评:本题主要考查了几何体的直观图与三视图之间的转化关系.属于容易题.三视图是新课程新增内容之一,每年必考,应重视,特别是根据几何体的三视图来还原直观图,从而求几何体的体积或表面积.4.下列命题中错误..的是A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,lαβ=,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β答案:选D.解法:如果平面α⊥平面β,设交线为l,则在平面α内与交线l平行的直线都平行于平面β,故A正确;如果平面α内存在直线垂直于平面β,则由面面垂直的判定定理知αβ⊥,故B正确;两个平面都与第三个平面垂直时,易得交线与第三个平面垂直,故C正确;如果平面α⊥平面β,平面α内与交线平行的直线与β平行,故D错误. 故选D.点评:本题主要考查了平面垂直的性质定理和判定定理,解题时要结合空间想象,对于各种可能出现的情况进行分析处理,要会找反例(画示意图),加以肯定或否定,平时在学习中积累这些反例.5.设实数,x y满足不等式组2502700,0.x yx yx y+->⎧⎪+->⎨⎪≥≥⎩若,x y为整数,则34x y+的最小值是A.14 B.16 C.17 D.19答案:选B.解法:作出可行域,如图中阴影部分所示,由250270x y x y +-=⎧⎨+-=⎩得31x y =⎧⎨=⎩,点(3,1)A 不在可行域, 因为,x y 为整数,借助网格,易得点(4,1)符合条件, 所以min (34)344116x y +=⨯+⨯=,故选B .点评:本题主要考查了线性规划问题中的取整问题,解答时一要注意最值的求解,二要注意在最小值(临界)处求符合条件的整点.属于中等题. 6.若02πα<<,02πβ-<<,1cos()43πα+=,3cos ()42πβ-=,则cos ()2βα+= A .3 B .3- C .53 D .6- 答案:选C . 解法:因为02πα<<,1cos()43πα+=,所以3444πππα<+<,22sin()4πα+=,又因为02πβ-<<,3cos()42πβ-=,所以4422ππβπ<-<,6sin()42πβ-=,所以cos ()2βα+= 1322653cos[()()]cos()cos()sin()sin()4424424423ππβππβππβααα+--=+-++-=⨯+⨯=.故选C . 点评:本题考查了同角三角函数的基本关系以及两角和差公式的运用,解题时要注意合理地拆角和凑角,注意配凑技巧的运用.属于中等题.7.若,a b 为实数,则“01ab <<”是“1a b <或1b a>”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 答案:选A .解法:因为01ab <<,所以,a b 同号,且1ab <.当0,0a b >>时,1a b<;当0,0a b <<时, 1b a >.“01ab <<”是“1a b <或1b a >”的充分条件.但取1,1a b =-=,显然有1a b<,此时不能推出01ab <<.因此“01ab <<”是“1a b <或1b a>”的充分而不必要条件.故选A . 点评:本题结合不等式的性质考查充要条件的判断,要注意逻辑推理和举反例否定相结合,以提高解题的有效性和针对性.属于中等题. 8.已知椭圆1C :22221(0)x y a b a b +=>>与双曲线2C :2214y x -=有公共的焦点,2C 的一条渐近线与1C 的长轴为直径的圆相交于,A B 两点.若1C 恰好将线段AB 三等分,则 A .2132a =B .213a =C .212b = D .22b =答案:选C .解法:如图,设直线AB 与椭圆1C 的一个交点为C (靠近A 的 交点),则||3aOC =,因为渐近线为2y x =±,所以tan 2COx ∠=, 所以sinCOx ∠=,cos COx ∠=,所以点C 的坐标为,代入椭圆方程得 2222414545a a a b +=,又因为225a b -=,所以212b =.故选C . 点评:本题在考查双曲线渐近线的基础上考查了直线与椭圆、圆的位置关系,解题时数形结合,要注意利用直线斜率确定点C 的坐标,运用代数方程思想求参数,a b .属于中等题. 9.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机地并排摆放到书架 的同一层上,则同一科目的书都不相邻的概率是A .15B .25C .35D .45答案:选B .解法:第一步先排语文书有222A =种排法,第二步排物理书,分成两类:一类是物理书放在 语文书之间,有1种排法,这时数学书可从4个空中选2个进行排列,有2412A =种排法;一类是物理书不放在语文书之间有2种排法,再选一本数学书放在语文书之间有2种排法,另一本有3 种排法.因此同一科目的书都不相邻共有2(12223)48⨯+⨯⨯=种排法,而5本书全排列共有55A120=种,所以同一科目的书都不相邻的概率是4821205=,故选B . 点评:本题考查利用排列组合知识解决实际问题的能力,可以用整体法和间接法进行巧解,对于相邻情况的分析在使用间接法时要注意避免重复.属于中等题.10.设,,a b c 为实数,2()()()f x x a x bx c =+++,2()(1)(1)g x ax cx bx =+++.记集合{|()0,}S x f x x R ==∈,{|()0,}T x g x x R ==∈.若||S ,||T 分别为集合,S T 的元素个数,则下列结论不可能...的是 A .||1S =且||0T = B .||1S =且||1T = C .||2S =且||2T = D .||2S =且||3T = 答案:选D .解法1:取0,0,0a b c ===,则3{|()0}S x f x x ===,||1S =,{|()10}T x g x ===,||0T =,因此A 可能成立.取1,0,1a b c ===,则2{|()(1)(1)0}S x f x x x ==++=,||1S =,2{|()(1)(1)0}T x g x x x ==++=,||1T =,因此B 可能成立.取1,0,0a b c =-==,则2{|()(1)0}S x f x x x ==-=,||2S =,2{|()(1)(1)0}T x g x x x ==-+-+=,||2T =,因此C 可能成立.故选D .解法2:当0a ≠时,方程0x a +=与10ax +=的解互为倒数,方程20x bx c ++=与方程 210cx bx ++=的根互为倒数,则集合,S T 的元素个数不可能出现2个和3个,故选D .点评:本题结合集合的知识考查函数、零点、方程等内容,解题时要结合一次函数、二次函数、参数可能出现的情况进行分类讨论,采用排除法解题事半功倍.属于难题. 二、填空题:本大题共7小题,每小题4分,共28分.111213141516 17 0 5 25[,]66ππ 532105(0,1)±11.若函数2()f x x x a =-+为偶函数,则实数a = . 答案:填0.解法1:因为函数2()f x x x a =-+为偶函数,所以()()f x f x -=,即2()x x a ---+2x x a =-+, 所以x a x a -+=+,因为x R ∈,所以0a =.解法2:因为函数2()f x x x a =-+为偶函数,所以(1)(1)f f -=,即111|1|a a --+=-+, 1|1|a a -+=+,所以0a =.点评:本题考查了函数的奇偶性,绝对值的性质,解题时可运用特殊值进行求解,以提高解题的效率.属于容易题.12.若某程序框图如图所示,则该程序运行后输出的k 值为 .答案:填5.解法:根据程序框图知,第一次循环得3k =,34a =,43b =,a b <;第二次循环得4k =,44a =,44b =,a b =;第三次循环得5k =,54410245625a b ==>==,所以5k =.点评:本题结合两数大小的比较考查程序框图,解题的关键是识图,特别是循环结构的使用.属于容易题.13.设二项式6()(0)x a x->的展开式中3x 的系数为A ,常数项为B .若4B A =,则a 的值是 . 答案:填2.解法:由于3662166()r r rr r rr T C xC a x --+==-.令3632r -=,得2r =,则226()A C a =-215a =;令3602r -=,得4r =,则4446()15B C a a =-=.因为4B A =,得4215415a a =⨯,所以2a =.点评:本题考查二项式定理中的特定项的计算,解题的关键是理解通项,结合方程便可求解.属于容易题.14.若平面向量,αβ满足1=a ,1≤β,且以向量,αβ为邻边的平行四边形的面积为12,则α与 β的夹角θ的取值范围是 .答案:填5[,]66ππ.解法1:以向量,αβ为邻边的平行四边形的面积112||||sin ||sin 22S θθ⎡⎤=⨯==⎢⎥⎣⎦αββ,因为 1≤β,1sin 2||θ=β,所以1sin 12θ≤≤,又因为[0,]θπ∈,所以5[,]66ππθ∈. 解法2:如图,取(1,0)A ,作OA =α,OB =β, 则(||cos ,||sin )B θθββ.因为以向量,αβ为邻边的 平行四边形的面积11||sin 2θ=⨯β,1≤β,所以sin θ 112||2=≥β,即1sin 12θ≤≤,又因为[0,]θπ∈, 所以5[,]66ππθ∈.点评:本题考查平面向量的几何意义,平行四边形的面积公式等内容,解答时要注意向量夹角的取值范围.属于中等题.15.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到 甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数. 若(0)P X =112=,则随机变量X 的数学期望(cos ,sin )βθβθ()E X = .答案:填53.解法:因为211(0)(1)312P X p ==-⨯=,所以12p =,随机变量X 的可能值为0,1,2,3,所以1(0)12P X ==,2221211(1)()()32323P X ==⨯+⨯=,2221115(2)()2()323212P X ==⨯⨯+⨯=,2211(3)()326P X ==⨯=,随机变量X 的分布列如上图,所以11515()01231231263E X =⨯+⨯+⨯+⨯= 点评:本题主要考查了离散型随机变量的期望的求解,解答时,先要依据1(0)12P X ==计算出p 的值,再分别求出随机变量X 取1,2,3时的概率,再结合期望公式进行求解. 16.设,x y 为实数,若2241x y xy ++=,则2x y +的最大值是 .解析:解法1:设1(,)22x y x =+α,(1,)5=β, 2x y +=||||⋅≤αβαβ=,αβ同向,即25y x ==取得等号,故2x y +.解法2:(1)当x y ⋅≠0时,2222222222(2)4432)1444x y x y xy xyx y x y xy x y xy x y xy++++===+++++++(3381114551x y y x =+≤=+=++(2)当x y ⋅=0时,显然22)1x y +=( 综上所得,当且仅当x y ⋅≠0且x yy x =4时,282)5x y +≤(, ∴5102325102≤+≤-y x ,即2x+y 的最大值是5102.解法3:因为2241x y xy ++=,改写为()()2212212x y x y ++⨯⨯=. 当2x y +取得最大值时显然2x y =(选择、填空题解法,有猜的成分).此时2512y =,故225y =.显然此时25x y ==. 故2x y +. 解法4:设⎩⎨⎧==θρθρsin y cox x ,∴222222244cos sin sin cos 1x y xy ρθρθρθθ++=++=,∴22214cos sin sin cos ρθθθθ=++,(1) 当sin 0cox θθ⋅≠时22222 (2)(2cos sin )(4cos sin 4sin cos )x y ρθρθρθθθθ+=+=++2222224cos sin 4sin cos 3sin cos 14cos sin sin cos 4cos sin sin cos θθθθθθθθθθθθθθ++==+++++ 33811.4cot tan 155θθ=+≤+=++(2)当sin cox θθ⋅=0时,2 (2)1x y +=∴25x y +≤. 解法5:设224x y xy ++=22(2)()m x y n x y λ++-(0λ>),则244,1,421,m n m n m n λλ+=⎧⎪+=⎨⎪-=⎩ 解得5,83,21,2m n λ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩∴25(2)18x y +≤,当且仅当2x y =时取等号,∴2x y +的最大值为5. 点评:本题主要考查了基本不等式的性质,解答时要注意结合配凑法进行求解,最后要注意开方,避免出错.17.设12,F F 分别为椭圆2213x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B =,则点A 的坐标是 . 解析: 填(0,1)±.解法1:(直接求坐标)设直线A F 1的方程为:2-=my x ,点A 坐标),(A A y x 满足方程组:⎪⎩⎪⎨⎧=+-=13222y x my x ,化简得:0122)3(22=--+my y m ,结合图像可知, (1)当0>m 时:3)1(3222+++=m m m y A ……①,由125F A F B =知:A F 1∥B F 2,故直线A F 1的方程为:2+=my x ,同理可得:3)1(3222+++-=m m m y B ……②,由125F A F B =,易得B A y y 5=……③,由①②③联立解得:22=m ,即:1=A y ,故)1,0(A .(2)当0>m 时:由对称性可得)1,0(-A ,综上可得:点A 的坐标是)1,0(±.解法2:(韦达定理)设直线A F 1与椭圆的另一个交点为C ,由125F A F B =知:A F 1∥B F 2,结合椭圆的对称性(关于原点对称)可得:1CF =F 2,故F 1=15CF ,设点A ,C 坐标分别为:),(11y x ,),(22y x ,直线A F 1的方程为:2-=my x , 则),(11y x ,),(22y x 满足方程组:⎪⎩⎪⎨⎧=+-=13222y x my x ,化简得:0122)3(22=--+my y m ,由韦达定理得: ⎪⎪⎩⎪⎪⎨⎧+-=+=+31322221221m y y m m y y ……①, 由F 1=15CF ,易得215y y -=……②, 由①②联立解得:22=m ,解得: 11±=y ,点A 的坐标是)1,0(±.解法3:(坐标整体代换)设点A ,B 坐标分别为:),(11y x ,),(22y x ,由125F A F B =可得:⎩⎨⎧=-=21215265y y x x ,代入132121=+y x ,并结合132222=+y x 化简可得: 5262=x ,进一步可求得⎩⎨⎧±==1011y x .故点A 的坐标是)1,0(±. 解法4:(椭圆参数化)设B 点坐标为)sin ,cos 3(θθ,则由125F A F B =易得: 点A 坐标为:)sin 5,26cos 35(θθ-,由于点A 也在椭圆上,把该坐标代入椭圆方程得:03)sin 5(3)26cos 35(22=-⨯+-θθ,化简得:144cos 660=θ,即562cos =θ, 求得51sin ±=θ,故点A 的坐标是)1,0(±. 解法5:(直线参数化) 设直线A F 1与椭圆的另一个交点为C ,由125F A F B =知:A F 1∥B F 2,结合椭圆的对称性(关于原点对称)可得:1CF =F 2,故F 1=15CF ,设直线A F 1的参数方程为:⎩⎨⎧=+-=θθsin cos 2t y t x (t 为参数), 点A ,C 对应的参数分别为21,t t ,满足方程: 2)2cos (-θt +03)sin (32=-θt .即:01cos 22)sin 21(22=-⋅-+t t θθ.故⎪⎪⎩⎪⎪⎨⎧+-=+=+θθθ221221sin 211sin 21cos 22t t t t ……①, 由F 1=15CF ,易得215t t -=……②,由①②联立解得:32cos2=θ, 31sin 2=θ解得: 31±=t ,代入得点A 的坐标是)1,0(±. 解法6:(椭圆第二定义)设直线A F 1与椭圆的另一个交点为C ,由125F A F B =知:F 1∥F 2,结合椭圆的对称性(关于原点对称)可得:1CF =F 2,故A F 1=15CF ,设点A ,C 坐标分别为:),(11y x ,),(22y x ,利用椭圆的第二定义可得:2231+x =)223(52+x ,即: 1x =2652+x …①,又由三角形相似的性质可得: 21+x =)2(52--x ,即: 1x =2652--x …②,由①②联立解得: 1x =0, 故点A 的坐标是)1,0(±.点评:本题主要考查了椭圆与平面向量结合的综合问题,解题的关键是充分利用已知条件进行转化,即可求出点A 的坐标.三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤. 18.(本题满分14分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知()sin sin sin ,A C p B p R +=∈且214ac b =.(Ⅰ)当5,14p b ==时,求,a c 的值;(Ⅱ)若角B 为锐角,求p 的取值范围.解: (1)由题并利用正弦定理得:⎪⎩⎪⎨⎧==+4145ac c a . 解得: ⎪⎩⎪⎨⎧==141c a ,或⎪⎩⎪⎨⎧==411c a .(2)由余弦定理,B ac c a b cos 2222-+=B ac ac c a cos 22)(2--+=B b b b p cos 21212222--=,即:B p cos 21232+=因为)1,0(cos ∈B ,得:)2,23(2∈p ,由题设知0>p ,所以226<<p . 点评:(1)本题主要考查三角变换、正弦定理、余弦定理等基础知识,同时考查运算求解能力,难度与去年持平.(2)对于解三角形问题,通常要同时用到正弦定理和余弦定理.如果两个定理都可以解题,应优先考虑正弦定理,此题中条件“()sin sin sin ,A C p B p R +=∈”可看作是关于三个正弦值关系的齐次式,故可利用正弦定理把角化为边.第(2)小题中, “角B 为锐角”条件的转化必然会想到其余弦值的范围,但需特别注意三角形内角大于零,故)1,0(cos ∈B .(3)学生的错误主要是:对于“角B 为锐角”条件的转化不等价,主要表现为:①只用到0cos >B ,求解范围扩大.②没有注意到三角形的内角不能为零,即1cos ≠B ,从而误把B cos 的范围写成了]1,0((4)浙江省高考在大题目中考查三角函数已经形成了规律,即在三角形中考查三角函数问题,这一惯例今后将会延续下去.19.(本题满分14分)已知公差不为0的等差数列{}n a 的首项1a 为a (a ∈R ),设数列的前n 项和为n S ,11a ,21a ,41a 成等比数列. (Ⅰ)求数列{}n a 的通项公式及n S ; (Ⅱ) 记n A =11S +21S +31S +…+1n S , n B =11a + 21a +221a +… +121-n a ,当n ≥2时,试比较n A 与n B 的大小.解: (Ⅰ)设等差数列}{n a 的公差为d ,由412211)1(a a a ⋅=, 得)3()(1121d a a d a +=+. 因为0≠d ,所以a a d ==1,所以na a n =,2)1(+=n an S n (Ⅱ)解法1:因为)111(21+-=n n a S n ,所以: n A =11S +21S +31S +…+1n S )111(2+-=n a .因为a a n n 1221-=-,所以:n B =11a + 21a +221a +… +121-n a )211(2211)21(11n na a -=--⋅=. 当2≥n 时,1210+>+++=n C C C nn n n n ,即n n 211111-<+-所以,当0>a 时,n n B A <;当0<a 时,n n B A >.解法2:由(Ⅰ)得na a n =,2)1(+=n an S n ,∴)111(2)1(21+-=+=n n a n an S n , )111(21111321+-=++++=n a S S S S A n n .∵1122n n a a --=,∴ )211(2211)21(111111122221n nn a a a a a a B n -=--⋅=++++=- .考察函数12--=x y x,2ln 21xy '=-,当2≥x 时0>'y 恒成立,故函数21x y x =--在),2[+∞上是增函数.又当2x =时,222110--=>,所以当2≥x 时,21x x >+恒成立,从而2n ≥时,21nn >+,即111112n n -<-+.所以,当0a >时,n n A B <,当0a <时,n n A B >.点评:(1)本题主要考查等差数列、等比数列、求和公式、不等式、二项式定理等基础知识,同时考查分类讨论思想.此题涉及知识面较广,但难度并不大,属于中档题.(2)学生的困难主要在于:①裂项求和方法掌握不好,因不会对)1(2+n an 进行裂项,导致后面求和无法进行下去.②在比较n2与1+n 大小时,不少同学是先猜测出结果,再利用数学归纳法来证明的,这样做当然可以,但比较费时,不如二项式定理直接、方便.(3)学生的错误主要有:①对数列}{12-n a 的理解有误,误把12-n a 当作有12-n 项来计算.②最后一步结论没有对字母a 的符号进行分类讨论,导致结论不完整.(4) 2009年之前的浙江高考几乎都是把数列作为压轴题来考查的.在新课程以后的连续两年(即:2009,2010两年)高考中均弱化了数列的地位,试卷中不再保留单独的数列大题.但在今年高考卷中数列又重新回到了大题目的位置(代替了概率分布列).这为我们今后的高三教学指明了方向:数列这部分内容很重要,需重视,但在教学中应控制好难度,不应一味拔高. 20.(本题满分15分)如图,在三棱锥P -ABC 中,AB =AC, D 为 BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8, PO =4,AO =3,OD =2 (Ⅰ)证明:AP ⊥BC ;(Ⅱ)在线段AP 上是否存在点M ,使得二面角A -MC -B 为直二面 角?若存在,求出AM 的长;若不存在,请说明理由. 解法1:(I )证明:如图,以O 为原点,以射线OP 为z 轴的正半轴,建立空间直角坐标系O —xyz则(0,0,0),(0,3,0),(4,2,0),(4,2,0),(0,0,4)O A B C P --,(0,3,4),(8,0,0)AP BC ==-,由此可得0AP BC ⋅=,所以AP BC ⊥,即.AP BC ⊥(II )解:设,1,(0,3,4)PM PA PM λλλ=≠=--则BM BP PM BP PA λ=+=+ (4,2,4)(0,3,4)(4,23,44)λλλ=--+--=----(4,5,0),(8,0,0)AC BC =-=-设平面BMC 的法向量1111(,,)n x y z =, 平面APC 的法向量2n 222(,,)x y z =由110,0,BM n BC n ⎧⋅=⎪⎨⋅=⎪⎩ 得11114(23)(44)0,80,x y x x λλ--++-=⎧⎨-=⎩即11110,23(0,1,)2344,44x n z y λλλλ=⎧+⎪=⎨+-=⎪-⎩可取 由220,0.AP n AC n ⎧⋅=⎪⎨⋅=⎪⎩即2222340,450,y z x y +=⎧⎨-+=⎩得222225,4(5,4,3).3,4x y n z y ⎧=⎪⎪=-⎨⎪=-⎪⎩可取 由12230,430,44n n λλ+⋅=-⋅=-得解得25λ=,故AM=3. 综上所述,存在点M 符合题意,AM=3. 解法2:(I )证明:由AB=AC ,D 是BC 的中点,得AD BC ⊥ 又PO ⊥平面ABC ,得.PO BC ⊥因为PO AD O =,所以BC ⊥平面PAD ,故.BC PA ⊥(II )解:如图,在平面PAB 内作BM PA ⊥于M ,连CM , 由(I )中知AP BC ⊥,得AP ⊥平面BMC , 又AP ⊂平面APC ,所以平面BMC ⊥平面APC .在222,41,41.Rt ADB AB AD BD AB ∆=+==中得在222,Rt POD PD PO OD ∆=+中, 在222,,Rt PDB PB PD BD ∆=+中所以222236,PB=6.PB PO OD DB =++=得 在222Rt POA ,25, 5.PA AO OP PA ∆=+==中得又2221cos ,23PA PB AB BPA PA PB +-∠==⋅ 从而PM cos 2PB BPA =∠=,所以AM=PA-PM=3.综上所述,存在点M 符合题意,AM=3. 点评:(1)本题主要考查空间点、线、面位置关系,二面角等基础知识,空间向量的应用等,同时考查空间想象能力和运算求解能力.(2)该题难度比去年稍小,主要原因是背景比较熟悉,学生容易入手.但得分情况也不理想,原因在于第(2)小题的计算量较大,学生在建好坐标系后需要同时计算出两个平面的法向量,计算过程中的失误较多.21.(本题满分15分)已知抛物线1:C 2x =y ,圆2:C 22(4)1x y +-=的圆心为点M .(Ⅰ)求点M 到抛物线1C 的准线的距离;(Ⅱ)已知点P 是抛物线1C 上一点(异于原点),过点P 作圆2C 的两条切线,交抛物线1C 于A ,B 两点,若过M ,P 两点的直线l 垂足于AB ,求直线l 的方程.解法1:(1)由题意可知,抛物线的准线方程为:41-=y ,所以圆心)4,0(M 到准线的距离是417. (2)设),(200x x P ,),(211x x A ,),(222x x B , 由题意得:00≠x , 10±≠x ,21x x ≠.设过点P 的圆2C 的切线方程为)(020x x k x y -=-, 即:200x kx kx y +-=…①,则11|4|2200=+-+k x kx ,即01)4()4(2)1(220200220=--+-+-x k x x k x .设PA ,PB 的斜率为21,k k )(21k k ≠, 则21,k k 是上述方程的两根,所以:1)4(22020021--=+x x x k k ,11)4(2022021---=x x k k 将①代入2x y =得02002=-+-x kx kx x , 由于0x 是此方程的根,故011x k x -=,022x k x -=,所以:1621)4(2220002020002121212221--=---=-+=+=--=x x x x x x x k k x x x x x x k AB , 0204x x k MP-=由AB MP ⊥,得:=MP AB k k )16(200--x x 1)4(020-=-⋅x x ,解得:52320=x ,即点P 的坐标为)523,523(±, 所以直线l 的方程为4115115+±=x y 解法2: (1)同解法一(2) 设),(200x x P ,),(211x x A ,),(222x x B , 由题意得:00≠x , 10±≠x ,21x x ≠.直线PA 的斜率为:0101221x x x x x x k PA +=--=,直线PA 的方程为))((00120x x x x x y -+=-,即:0)(0101=--+x x y x x x ,它与圆2C 相切,故1)(1|4|20101=+++x x x x ,化简得:0156)1(20102120=-+⋅-⋅-x x x x x .同理可得: 0156)1(20202220=-+⋅-⋅-x x x x x .即21,x x 是方程0156)1(200220=-+⋅-⋅-x x x x x 的两根,故1620021--=+x x x x , 所以1620021212221--=+=--=x x x x x x x x k AB ,0204x x k MP -= 由AB MP ⊥,得:=MP AB k k )16(200--x x 1)4(020-=-⋅x x , 解得:52320=x ,即点P 的坐标为)523,523(±, 所以直线l 的方程为4115115+±=x y 点评:(1)本题主要考查抛物线的几何性质,直线与抛物线、圆的位置关系等基础知识,同时考查解析几何的基本思想方法和综合解题能力.属于较难题.(2)解法1利用直线的点斜式方程代入计算,但求解过程中斜率值是很难直接计算出来的,事实上也不用去计算两直线的斜率值,而只要利用韦达定理整体代换即可.解法2设出所有相关点坐标,然后找出这些点坐标的关系,最后也要用到韦达定理整体代换.(3)学生的问题主要有:缺乏韦达定理整体代换的意识,碰到未知量问题一味地只想着把未知量都求出来,这样势必会加大运算量.此题是一道好题,摆在这个位置完全能达到预期目的,即能区分出数学功底强弱的学生.这也给我们平时的教学提了醒:数学是一门有思维含量的学科,很多时候需要多思少算,碰到困难需及时转化,如果一味硬上,是要碰壁的..(4)浙江省近几年高考在大题目中比较多地考查了直线与圆锥曲线的位置关系.对于这部分内容的考查几乎都涉及到了韦达定理.虽然韦达定理在初、高中的课本里均没有出现,但作为高中教学应该补充,高中生应该掌握.22.(本题满分14分)设函数()f x =2()ln x a x -,a ∈R(Ⅰ)若x =e 为()y f x =的极值点,求实数a ;(Ⅱ)求实数a 的取值范围,使得对任意的x ∈(0,3e ],恒有()f x ≤42e 成立. 注:e 为自然对数的底数.解法1:(1)求导得: ).1ln 2)(()(ln )(2)(2'xax a x x a x x a x x f -+-=-+-= 因为e x =是)(x f 的极值点,所以.0)3)(()('=--=ea a e e f解得e a =或e a 3=.经检验,均符合题意. 所以e a =或e a 3=(2)①当10≤<x 时,对于任意的实数a ,恒有240)(e x f <≤成立. ②当e x 31≤<时,由题意,首先有224)3ln()3()3(e e a e e f ≤-=,解得:)3ln(23)3ln(23e ee a e e e +≤≤- 由(1)知).1ln 2)(()('xa x a x x f -+-=令xax x h -+=1ln 2)(,,则0ln 2)(,01)1(>=<-=a a h a h ,且e ae e h 31)3ln(2)3(-+=e e ee e 3)3ln(231)3ln(2+-+≥=0)3ln 313(ln 2>-ee 又)(x h 在),0(+∞内单调递减,所以函数)(x h 在),0(+∞内有唯一零点. 记此零点为0x ,则:,310e x <<a x <<01.从而,当),0(0x x ∈时,0)('>x f ; 当),(0a x x ∈时,0)('<x f ; 当),(+∞∈a x 时,0)('>x f ;即:)(x f 在),0(0x 内单调递增,在),(0a x 内单调递减,在),(+∞a 内单调递增.所以要使24)(e x f ≤对]3,1(e x ∈恒成立,只要:⎩⎨⎧≤-=≤-=22202004)3ln()3()3(4ln )()(e e a e e f e x a x x f 成立. 由01ln 2)(000=-+=x ax x h ,知:000ln 2x x x a +=. 代入202004ln )()(e x a x x f ≤-= 可得:202204ln 4e x x ≤.又10>x ,注意到函数x x y 22ln =在),1[+∞内单调递增,可得:e a 31≤<.又因为)3ln(23)3ln(23e e e a e e e +≤≤-,综上可得: e a e e e 3)3ln(23≤≤-.解法2:(1)同解法一.(2) ①当10≤<x 时,对于任意的实数a ,恒有240)(e x f <≤成立. ②当e x 31≤<时, 由224ln )()(e x a x x f ≤-=可得:xe x a xe x ln 2ln 2+≤≤-在区间]3,1(e 上恒成立.令xe x x h ln 2)(-=,xe x x g ln 2)(+=,故min max )()(x g a x h ≤≤易知x e x x h ln 2)(-=在]3,1(e 上单调递增,故)3()(max e h x h =)3ln(23e e e -=又xx x ex g ln ln 1)('⋅⋅-=,令0)('=x g 得:e x x x =⋅⋅ln ln ,注意到函数x x x y ln ln ⋅⋅=在),1[+∞内单调递增,且e e e e =⋅⋅ln ln , 故)(x g 在e x =处取到极小值(最小值) e e g 3)(=,即e x g 3)(min =.综上可得: e a e ee 3)3ln(23≤≤-解法3: (1)同解法一.(2)①当01x <≤时,对任意的实数a ,恒有()0f x ≤,2()4f x e ≤恒成立. ②当13x e <≤时,由2()4f x e ≤得224ln ()e x x a ≤-,当1a <时,224()e x a -在[1,3]e 单调递减,在3x e =取最小值,所以224ln 3(3)e e e a ≤-,所以33e a e ≤≤, 这与1a <矛盾,舍去.当13a e ≤≤时,224()e x a -关于x a =对称,在(,3)a e 上递减, 因为ln x 递增,所以3x e =时,224ln 3(3)e e e a ≤-,得33e a e ≤≤.当3a e >时,[1,3]x e ∈,22()()ln (3)ln f x x a x x e x =->-, 而x e =时,2()4f x e >,矛盾,所以3a e ≤. 综上,实数a 的取值范围为33e a e ≤≤.点评:(1)本题主要考查函数极值的概念、导数运算法则、导数应用,不等式等基础知识,同时考查推理论证能力,分类讨论分析问题和解决问题的能力.属于难题.(2)从2009年开始,浙江省已经连续三年把导函数作为压轴题来命制,现在看来这个模式已经基本固定.就像前几年一直把数列作为压轴题来处理一样,这个模式今后可能还要延续好几年.这个模式的效果究竟怎样呢?从今年高考阅卷反馈的信息来看,该题全省平均分只有2分左右.说明该题确实起到了压轴的作用,去除今年的评卷尺度较严的主观因素,从一个方面更能说明学生能力的欠缺,基本功很不扎实,要知道,此题第(1)小题就有6分的分值呀,而第(1)小题的难度并不大,即使对于第(2)小题,其解法也有很多种,如果我们在平时的学习和复习中能强化思想方法,夯实基础知识,那这道题的难度绝不可能是想象中那么大.(3)含字母参数的恒成立问题,解决的方法主要有以下几种:一是直接构造整体函数,通过分类讨论研究出函数的最值(极值),从而达到解决问题的目的.二是通过分离变量构造确定函数, 再转化为求确定函数的最值问题从而能有效避开繁琐的分类讨论,最终解决问题,此题采用该解法其简洁程度明显优于解法 1.三是先移项构造两个熟悉的函数,再转化为熟悉函数的最值问题作比较,但这种方法的应用是有局限性的,往往对两个函数的单调性有特别要求,解题时必须结合图像来看,需格外小心,否则可能导致错误.(4)与导函数有关的高考大题目,时下比较流行的是幂型函数(二次或三次型)与对数函数x ln 或指数函数xe 组合而成,这类函数问题的解决方法具有一定的套路,不妨看看今年各省的题目,有兴趣的读者可以做做,这或许将对我们今后的教学与复习起到一些作用:(2011安徽卷 理科 第16题)设2()1xe f x ax=+其中a 为正实数 (Ⅰ)当a 43=时,求()f x 的极值点; (Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围. (2011北京卷 理科 第18题)。
2011年普通高等学校招生全国统一考试(浙江卷)理科数学一、选择题(本大题共10小题,每小题5分,共50分)在每小题给出的四个选项中,只有一项是符合题目要求的•‘―x,x, 0,卄1•设函数f(x)=< 2右f(o)=4,则实数。
= ()x ,x A0.A. -4 或-2B. -4 或2C. -2 或4D. -2 或2 【测量目标】分段函数.【考查方式】已知分段函数的解析式,给出定值求出此时自变量的值【难易程度】容易【参考答案】B【试题解析】当:,0 时,f (:•)--「- 4,「- -4 ;当、;> 0时,f (:• ) = :• 2= 4, = 2 .2.把复数z的共轭复数记作z , i为虚数单位,若z =1 • i ,则(1 • z) |_Z = ()A.3 -iB.3+iC.1+3iD.3【测量目标】复数代数形式的四则运算.【考查方式】给出复数,结合共轭复数的特点,求出关于复数的代数运算【难易程度】容易【参考答案】A【试题解析】••• z =1 i,二z =1 -i,二(1 z)Lk =(1 1 i)(i」)=3-i.3.若某几何体的三视图如图所示,则这个几何体的直观图可以是()正视图侧视圏耐视图第3题图A B C D【测量目标】平面图形的直观图与三视图•【考查方式】直接给出三视图,求其直观图•【难易程度】容易【参考答案】D【试题解析】由正视图可排除A、B选项;由俯视图可排除C选项•4.下列命题中错误的是()A. 如果平面〉—平面:,那么平面:-内一定存在直线平行于平面1B. 如果平面二不垂直于平面:,那么平面二内一定不存在直线垂直于平面:C.如果平面〉-平面,平面[_平面• n :=i,那么I _平面D.如果平面〉—平面:,那么平面:-内所有直线都垂直于平面一:【测量目标】面面垂直的判定和面面平行的判定【考查方式】已知面面之间的关系,判断结果正误【难易程度】中等【参考答案】D【试题解析】若这条线是平面 :-和平面1的交线I,则交线I在平面〉内,明显可得交线I在平面:内,所以交线I不可能垂直于平面:,平面〉内所有直线都垂直于平面:是错误的.x 2y -5>05.设实数x, y满足不等式组2x y「7>0,若x, y为整数,则3x 4y的最小值是()x 厖0, y 0.A.14B.16C.17D.19【测量目标】二元线性规划求目标函数的最值.【考查方式】已知不等式组,求出目标函数的最值.【难易程度】中等【参考答案】B【试题解析】可行域如图所示第5题图近线与以C 1的长轴为直径的圆相交于 代B 两点,若C 1恰好将线段 AB 三等分,则 (),又•••边界线为虚线取不到, 且目标函数线的斜率为7 = 1•••当z =3x - 4y 过点(4, 1)时,有最小值11 7•若a,b 为实数,则 0v ab v 1 ”是a < —或b >—的baA.充分而不必要条件 C. 充分必要条件【测量目标】充分、必要条件 •【考查方式】结合不等式的性质考查充分、必要条件 【难易程度】容易 【参考答案】A1【试题解析】当a 0,b 0时,由0 ::: ab ::: 1两边同除b 可得a 成立;(步骤1)b1 1 1a :::0,b :::0时,两边同除以a 可得b 成立,• 0 < ab :: 1 ”是a 或b ”的充分条 b1 1件,由a 或b 得不到0 ::: ab ::: 1.(步骤2)联立「x+2y-5 = 0,解之得/=3 2x+ y —7 = 016.一 n —0,ncos( )41 n I-'cos( )=34 23,则 cos()2A .33B.【测量目标】两角和与差的余弦 •【考查方式】给出两个余弦角的值和角度的范围, 【难易程度】中等 通过与所求角余弦的关系, 求出结果【参考答案】【试题解析】n1 nT cos( ) , 0 ::4 3 - n P3 ,又•••沁(二)厶__6_ 3nn 、 0 , • sin( )二 24 2(步骤Pn n P1)A。
糖果工作室 原创 欢迎下载!
绝密★考试结束前
2011年普通高等学校招生全国统一考试(浙江卷)
数学(理科)
本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至3页,非选择题部分4至5页。
满分150分,考试时间120分钟。
请考生按规定用笔将所有试题的答案涂、写在答题纸上。
选择题部分(共50分)
注意事项:
1.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试卷和答题纸规定的位置上。
2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
不能答在试题卷上。
参考公式
如果事件,A B 互斥 ,那么
()()()P A B P A P B +=+
如果事件,A B 相互独立,那么
()()()P A B P A P B •=•
如果事件A 在一次试验中发生的概率为P ,那么n 次独立重复试验中事件A 恰好发生k 次的概率
()(1)(0,1,2,...,)k k
n k n n P k C p p k n -=-=
台体的体积公式
121
()3
V h S S =
其中1S ,2S 分别表示台体的上、下面积,h 表示台体的高
柱体体积公式V Sh =
其中S 表示柱体的底面积,h 表示柱体的高
锥体的体积公式1
3
V Sh =
其中S 表示锥体的底面积,h 表示锥体的高
球的表面积公式
24S R π=
球的体积公式
34
3
V R π=
其中R 表示球的半径
一、 选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是
符合题目要求的。
1.设函数2,0
(),0
x x f x x x -≤⎧=⎨>⎩,若()4f a =,则实数a =
(A )-4或-2 (B )-4或2 (C )-2或4 (D )-2或2 2.把复数z 的共轭复数记作z ,i 为虚数单位,若z=1+i,则(1)z z +⋅= (A )3i - (B )3i + (C )13i + (D )3 3.若某几何体的三视图如图所示,则这个几何体的直观图可以是
4.下列命题中错误..
的是 (A )如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β (B )如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β (C )如果平面α⊥平面γ,平面β⊥平面γ,l αβ⋂=,那么l ⊥平面γ (D )如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β
5.设实数x 、y 是不等式组250
2700,0x y x y x y +->⎧⎪
+->⎨⎪≥≥⎩
,若x 、y 为整数,则34x y +的最小值是
(A )14 (B )16 (C )17 (D )19 6.若02
π
α<<
,02π
β-
<<,1cos()43πα+=,3cos ()423πβ-=
,则cos ()2
β
α+= (A )
33 (B )33- (C )539 (D )6
9
- 7.若a 、b 为实数,则“01ab <<”是“1a b <
或1
b a
>”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件
8.已知椭圆22122:1x y C a b +=(a >b >0)与双曲线 22
2:14
y C x -
=有公共的焦点,2C 的一条渐近线与以1C 的长轴为直径的圆相交于,A B 两点,若1C 恰好将线段AB 三等分,则
(A )2
132a =
(B )2a =13 (C )2
12
b = (D )2b =2 9.有5本不同的书,其中语文书2本,数学书2本,物理书1本。
若将其随机地并排摆放到书架的同
一层上,则同一科目的书都不相邻的概率是 (A )
15 (B )25 (C )53 (D )45
10.设,,a b c 为实数,2
2
()()(),()(1)(1)f x x a x bx c g x ax cx bx =+++=+++。
记集合
{|()0,},{|()0,}.S x f x x R T x g x x R ==∈==∈若||S ,||T 分别为集合,S T 的元素个数,则下列
结论不可能...
的是 (A )||1S = 且 ||0T = (B )||1S = 且 ||1T = (C )||2S = 且 ||2T = (D )||2S = 且 ||3T =
非选择题部分(共100分)
注意事项:
1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。
2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。
二、填空题:本大题共7小题,每小题4分,共28分。
11.若函数2
()f x x x a =-+为偶函数,则实数a = 。
12.若某程序框图如图所示,则该程序运行后输出的k 值为 13.若二项式6
((0)x a
>的展开式中3x 的系数为A ,常数项为B ,若4B A =,则a 的值是 。
14.若平面向量,αβ满足1,1a β=≤,且以向量,αβ为邻边的平行四边形的面积为12
,则α与β
的夹角θ的取值范围是 。
15.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为
2
3
,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的。
记X 为该毕业生得到面试的公司个数。
若1
(0)12
P X ==
,则随机变量X 的数学期望()E X = .
16.设,x y 为实数,若2
2
41x y xy ++=,则2x y +的最大值是 .
17.设12,F F 分别为椭圆2
213
x y +=的左、右焦点,点,A B 在椭圆上,若125F A F B =,则点A 的坐标是 .
三、解答题:本大题共5小题,共72分。
解答应写出文字说明、证明过程或演算步骤。
18.(本题满分14分)在ABC ∆中,角,,A B C 所对的边分别为a ,b ,c ,已知
()sin sin sin ,A C p B p R +=∈且214
ac b =.
(Ⅰ)当5
,14
p b ==时,求,a c 的值; (Ⅱ) 若角B 为锐角,求p 的取值范围。
19.(本题满分14分)已知公差不为0的等差数列{}n a 的首项1a 为a (a ∈R ),设数列的前n 项和为n S ,
11a ,21a ,4
1a 成等比数列。
(Ⅰ)求数列{}n a 的通项公式及n S ; (Ⅱ) 记n A =11S +21S +31S +…+1n S , n B =11a + 21a +221a +… +1
21-n a ,当n ≥2时,试比较n A 与n
B 的大小。
20.(本题满分15分)如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2 (Ⅰ)证明:AP ⊥BC ;
(Ⅱ)在线段AP 上是否存在点M ,使得二面角A -MC -B 为直二面角?若存在,求出AM 的长;若不存在,请说明理由。
21.(本题满分15分)已知抛物线1:C 2x =y ,圆2:C 22(4)1x y +-=的圆心为点M 。
(Ⅰ)求点M 到抛物线1C 的准线的距离;
(Ⅱ)已知点P 是抛物线1C 上一点(异于原点),过点P 作圆2C 的两条切线,交抛物线1C 于A ,B 两点,若过M ,P 两点的直线l 垂足于AB ,求直线l 的方程.
22.(本题满分14分)设函数()f x =2
()ln x a x -,a ∈R
(Ⅰ)若x =e 为()y f x =的极值点,求实数a ;
(Ⅱ)求实数a 的取值范围,使得对任意的x ∈(0,3e ],恒有()f x ≤42
e 成立. 注:e 为自然对数的底数。