地图投影 第二章地图投影方法变形分类
- 格式:ppt
- 大小:2.60 MB
- 文档页数:75
地图学第二章复习题及答案第二章复习题一、选择题1.将地球椭球面上的点投影到平面上,必然会产生变形,长度变形是长度比与1的(B)。
A.积B.差C.和D.商2.为了阐明作为投影变形结果各点上产生的角度和面积变形的概念,法国数学家底索采用了一种图解方法,即通过(D)来论述和显示投影在各方向上的变形。
A.透视光线B.参考椭圆C.数学方法D.变形椭圆3.按投影变形性质分类,可将地图投影分为等角投影、等积投影和(A)。
A.任意投影B.方位投影C.圆柱投影D.圆锥投影4.圆锥投影中纬线投影后为(D),经线投影后为相交于一点的直线束,且夹角与经差成正比。
A.直线B.相交于圆心的直线束C.相交于某一点的弧线D.同心圆圆弧5.我国自1978年以后采用(C)作为百万分一地形图的数学基础。
A.等面积圆锥投影B.等距离圆锥投影C.等角圆锥投影D.等角方位投影6.正轴等距圆锥投影沿(A)保持等距离,即m=1。
A.经线B.纬线。
C.旋转轴D.标准纬线。
7.正轴圆锥投影的变形只与(B)发生关系,而与经差无关,因此同一条纬线上的变形是相等的,也就是说,圆锥投影的等变形线与纬线一致。
A.经线B.纬线C.距离D.方向8.圆锥投影最适宜用于(D)处沿纬线伸展的制图区域的投影。
A.高纬度B.低纬度C.赤道D.中纬度9.就制图区域形状而言,方位投影适宜于具有圆形轮廓的地区,就制图区域地理位置而言,在两极地区,适宜用(A)投影。
A.正轴B.斜轴C.横轴D.纵轴10.横轴等积方位投影在广大地区的小比例尺制图中,特别是(B)中应用得很多。
A.全球地图B.东西半球图C.各大洲地图D.两极地图11.在正常位置的圆柱投影中,纬线表象为(A),经线表象为平行直线。
A.平行直线B.相交于圆心的直线束C.相交于某一点的弧线D.同心圆圆弧12.等角航线是地面上两点之间的一条特殊的定位线,它是两点间同(C)构成相同方位角的一条曲线。
A.所有纬线B.投影轴C.所有经线D.大圆航线13.1949年中华人民共和国成立以后,就确定(D)为我国地形图系列中1:50万,1:20万,1:10万,1:5万,1:2.5万,1:1万及更大比例尺地形图的数学基础。
地图投影分类与变换1.地图投影的分类投影的种类很多,分类方法不尽相同,通常采用的分类方法有两种:一是按变形的性质进行分类:二是按承影面不同(或正轴投影的经纬网形状)进行分类。
(1)按变形性质分类按地图投影的变形性质地图投影一般分为:等角投影、等(面)积投影和任意投影三种。
等角投影:没有角度变形的投影叫等角投影。
等角投影地图上两微分线段的夹角与地面上的相应两线段的夹角相等,能保持无限小图形的相似,但面积变化很大。
要求角度正确的投影常采用此类投影。
这类投影又叫正形投影。
等积投影:是一种保持面积大小不变的投影,这种投影使梯形的经纬线网变成正方形、矩形、四边形等形状,虽然角度和形状变形较大,但都保持投影面积与实地相等,在该类型投影上便于进行面积的比较和量算。
因此自然地图和经济地图常用此类投影。
任意投影:是指长度、面积和角度都存在变形的投影,但角度变形小于等积投影,面积变形小于等角投影。
要求面积、角度变形都较小的地图,常采用任意投影。
(2)按承影面不同分类按承影面不同,地图投影分为圆柱投影、圆锥投影和方位投影等(图1)。
图1 方位投影、圆锥投影和圆柱投影示意图①圆柱投影它是以圆柱作为投影面,将经纬线投影到圆柱面上,然后将圆柱面切开展成平面。
根据圆柱轴与地轴的位置关系,可分为正轴、横轴和斜轴三种不同的圆柱投影,圆柱面与地球椭球体面可以相切,也可以相割(图2a)。
其中,广泛使用的是正轴、横轴切或割圆柱投影。
正轴圆柱投影中,经线表现为等间隔的平行直线(与经差相应),纬线为垂直于经线的另一组平行直线(图2b)。
图2 圆柱投影的类型及其投影图形②圆锥投影它以圆锥面作为投影面,将圆锥面与地球相切或相割,将其经纬线投影到圆锥面上,然后把圆锥面展开成平面而成。
这时圆锥面又有正位、横位及斜位几种不同位置的区别,制图中广泛采用正轴圆锥投影(图3)。
在正轴圆锥投影中,纬线为同心圆圆弧,经线为相交于一点的直线束,经线间的夹角与经差成正比。
地图投影的概念方法和变形及分类依据地图投影变形是球面转化成平面的必然结果,没有变形的投影是不存在的。
对某一地图投影来讲,不存在这种变形,就必然存在另一种或两种变形。
但制图时可做到:在有些投影图上没有角度或面积变形;在有些投影图上沿某一方向无长度变形。
一、地图投影的概念地球椭球体表面是个曲面,而地图通常是二维平面,因此在地图制图时首先要考虑把曲面转化成平面。
然而,从几何意义上来说,球面是不可展平的曲面。
要把它展成平面,势必会产生破裂与褶皱。
这种不连续的、破裂的平面是不适合制作地图的,所以必须采用特殊的方法来实现球面到平面的转化。
球面上任何一点的位置取决于它的经纬度,所以实际投影时首先将一些经纬线交点展绘在平面上,并把经度相同的点连接而成为经线,纬度相同的点连接而成为纬线,构成经纬网。
然后将球面上的点按其经纬度转绘在平面上相应的位置。
由此可见,地图投影就是研究将地球椭球体面上的经纬线网按照一定的数学法则转移到平面上的方法及其变形问题。
其数学公式表达为:χ=f1(λ,φ)y=f2(λ,φ)(2-1)根据地图投影的一般公式,只要知道地面点的经纬度(λ,φ),便可以在投影平面上找到相对应的平面位置(χ,у),这样就可按一定的制图需要,将一定间隔的经纬网交点的平面直角坐标计算出来,并展绘成经纬网,构成地图的"骨架"。
经纬网是制作地图的"基础",是地图的主要数学要素。
二、地图投影的基本方法地图投影的方法,可归纳为几何透视法和数学解析法两种。
1.几何透视法几何透视法是利用透视的关系,将地球体面上的点投影到投影面(借助的几何面)上的一种投影方法。
如假设地球按比例缩小成一个透明的地球仪般的球体,在其球心或球面、球外安置一个光源,将球面上的经纬线投影到球外的一个投影平面上,即将球面经纬线转换成了平面上的经纬线。
几何透视法是一种比较原始的投影方法,有很大的局限性,难于纠正投影变形,精度较低。
第二章复习题一、选择题1.将地球椭球面上的点投影到平面上,必然会产生变形,长度变形是长度比与1的( B )。
A.积B.差C.和D.商2.为了阐明作为投影变形结果各点上产生的角度和面积变形的概念,法国数学家底索采用了一种图解方法,即通过( D )来论述和显示投影在各方向上的变形。
A.透视光线B.参考椭圆C.数学方法D.变形椭圆3.按投影变形性质分类,可将地图投影分为等角投影、等积投影和(A )。
A.任意投影B.方位投影C.圆柱投影D.圆锥投影4.圆锥投影中纬线投影后为( D ),经线投影后为相交于一点的直线束,且夹角与经差成正比。
A.直线B.相交于圆心的直线束C.相交于某一点的弧线D.同心圆圆弧5.我国自1978年以后采用( C )作为百万分一地形图的数学基础。
A.等面积圆锥投影B.等距离圆锥投影C.等角圆锥投影D.等角方位投影6.正轴等距圆锥投影沿( A )保持等距离,即m=1。
A. 经线B. 纬线。
C. 旋转轴D. 标准纬线。
7.正轴圆锥投影的变形只与( B )发生关系,而与经差无关,因此同一条纬线上的变形是相等的,也就是说,圆锥投影的等变形线与纬线一致。
A.经线B.纬线C.距离D.方向8.圆锥投影最适宜用于( D )处沿纬线伸展的制图区域的投影。
A.高纬度B.低纬度C.赤道D.中纬度9.就制图区域形状而言,方位投影适宜于具有圆形轮廓的地区,就制图区域地理位置而言,在两极地区,适宜用( A )投影。
A.正轴B.斜轴C.横轴D.纵轴10.横轴等积方位投影在广大地区的小比例尺制图中,特别是( B )中应用得很多。
A.全球地图B.东西半球图C.各大洲地图D.两极地图11.在正常位置的圆柱投影中,纬线表象为( A ),经线表象为平行直线。
A.平行直线B.相交于圆心的直线束C.相交于某一点的弧线D.同心圆圆弧12.等角航线是地面上两点之间的一条特殊的定位线,它是两点间同( C )构成相同方位角的一条曲线。
地图投影分类在地图制图生产实践中,已经出现了许多种投影,为了便于研究和使用,有必要进行适当的分类。
按投影面分类前文提到了按投影面的形态不同而划分的三种投影:圆锥投影、圆柱投影和方位投影,这是我们在制图过程中经常遇到的三种投影方式。
圆锥投影:可以想象为用一个巨大的圆锥体罩住地球,把地表的位置投影到圆锥面上,然后沿着一条经线将圆锥切开展成平面。
圆锥体罩住地球的方式可以有两种情形:与地球相切(单割线)、与地球相割形成两条与地球表面相割的割线(双割线)。
圆柱投影:用一个圆柱体罩住地球,把地表的位置投影到圆体面上,然后将圆体切开展成平面。
圆柱投影可以作为圆锥投影的一个特例,即圆锥的顶点延伸到无穷远。
方位投影:以一个平面作为投影面,切于地球表面,把地表的位置投影到平面上。
方位投影也可以作为圆锥投影的一个特例,即圆锥的夹角为180度,圆锥变为平面。
按投影面与地球椭球体的相对位置分类根据投影面与地球椭球体的相对位置的不同,还可以将投影类型分为正轴投影、斜轴投影和横轴投影。
正轴投影:投影面的轴(圆锥圆柱的轴线,平面的法线)与地球椭球体的旋转轴重合。
也称正常位置投影,或称极投影。
斜轴投影:投影面的轴(圆锥圆柱的轴线,平面的法线)既不与地球椭球体的旋转轴重合也不与赤道面重合。
也称水平投影。
横轴投影:投影面的轴(圆锥圆柱的轴线,平面的法线)与地球赤道面重合。
也称赤道投影。
按投影后的几何变形分类按照投影后的几何变形分类可分三类:等角投影(正形投影):地面上的任意两条直线的夹角,在经过地球投影绘制到图纸上以后,其夹角保持不变。
等面积投影:地面上的一块面积在经过地球投影绘制到图纸上以后,面积保持不变。
等距离投影:地面上的两个点之间的距离,在经过地球投影绘制到图纸上以后,距离保持不变。
实际上,有许多投影既不能保持等角又不能保持等面积,可以称之为任意投影。
在这类投影中,既有角度变形又有面积变形。
综上所述,投影名称可以结合上述三种分类方法(投影面形状、投影面与地球椭球体的位置、投影后的变形性质)加以命名。